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The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using
analytic techniques, one proves the Gevrey regularity of the 𝐶∞ solutions in non-Maxwellian and strong singularity cases.

1. Introduction

Thestandard formof the initial value problem for the spatially
homogeneous nonlinear noncutoff Boltzmann equation is
expressed as follows:

𝜕𝑓

𝜕𝑡
= 𝑄 (𝑓, 𝑓) , V ∈ R

𝑛

, 𝑡 ∈ (0, 𝑇] ;

𝑓|
𝑡=0

= 𝑓
0
(V) ,

(1)

where 𝑇 is a fixed positive number and 𝑓(𝑡, V) denotes the
density distribution function for velocity V at time 𝑡. The
Boltzmann collision operator is expressed as follows:

𝑄 (𝑔, 𝑓) = ∫
R𝑛
∫
S𝑛−1

𝐵 (V − V
∗
, 𝜎)

× {𝑔 (V
∗
) 𝑓 (V) − 𝑔 (V

∗
) 𝑓 (V)} 𝑑𝜎 𝑑V

∗
,

(2)

where S𝑛−1 is the unit sphere ofR𝑛. For 𝜎 ∈ S𝑛−1,

V =
V + V

∗

2
+

V + V
∗



2
𝜎, V

∗
=
V + V

∗

2
−

V + V
∗



2
𝜎. (3)

The Boltzmann collision cross section 𝐵 ≥ 0 is a function that
was assumed to be the following form:

𝐵 (
V − V

∗

 , 𝜎) = Φ (
V − V

∗

) 𝑏 (cos 𝜃) ,

cos 𝜃 = V − V
∗

V − V
∗



⋅ 𝜎, 𝜃 ∈ [0,
𝜋

2
] ,

(4)

where the kinetic factor Φ(|V − V
∗
|) = |V − V

∗
|
𝛾. The angular

part 𝑏 has a singularity that satisfies for constant 𝐾 > 0 and
𝑠 ∈ (0, 1):

𝑏 (cos 𝜃) ≈ 𝐾

𝜃2+2𝑠
, 𝜃 → 0. (5)

Cases 0 < 𝑠 < 1/2, 1/2 ≤ 𝑠 < 1 are considered mild
singularity and strong singularity, respectively. The following
norms of weighted function spaces are introduced:
𝑓
𝐿
𝑝

𝑟

=
⟨V⟩

𝑟

𝑓 (V)𝐿𝑝 ,
𝑓
𝐻𝑠
𝑟

=

⟨𝐷V⟩

𝑠

⟨V⟩𝑟𝑓 (V)
𝐿2
,

(6)

where ⟨V⟩ = (1 + |V|2)1/2. ⟨𝐷V⟩ = (1 + |𝐷V|
2

)
1/2 is the

corresponding pseudo-differential operator.The definition of
the Gevrey space can now be listed; compare [1–5].

Definition 1. For 𝑠 ≥ 1, the smooth function 𝑢 ∈ 𝐺
𝑠

(R𝑛)

which is theGevrey spacewith index 𝑠 if there exists a positive
constant 𝐶 such that, for any 𝑘 ∈ N,


𝐷
𝑘

V𝑢
𝐿2(R𝑛)

≤ 𝐶
𝑘+1

(𝑘!)
𝑠

, (7)

or, equivalently,

‖𝑢‖
𝐻
𝑘
(R𝑛) =


⟨𝐷V⟩

𝑘

𝑢
𝐿2(R𝑛)

≤ 𝐶
𝑘+1

(𝑘!)
𝑠

, (8)

where

𝐷
𝑘

V𝑢


2

𝐿
2
(R𝑛)

= ∑

|𝛽|=𝑘


𝐷
𝛽

V𝑢


2

𝐿
2
(R𝑛)

. (9)
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It is indicated that 𝑢 ∈ 𝐺
𝑠

(R𝑛) is also equivalent to the fact
that there exists 𝜖

0
> 0 such that 𝑒𝜖0⟨𝐷V⟩

1/𝑠

𝑢 ∈ 𝐿
2

(R𝑛).

Research on the Gevrey regularity of the Boltzmann
equation can be traced back to the work of Ukai [6], who
constructed a unique local solution in Gevrey space for
both spatially homogeneous and inhomogeneous noncutoff
Boltzmann equations. In 2004,Desvillettes andWennberg [7]
gave a conjecture of the Gevrey smoothing effect. Five years
later, the propagation of Gevrey regularity for solutions of the
nonlinear spatially homogeneous Boltzmann equation with
Maxwellian molecules is obtained in [8]. In that same year,
Morimoto et al. [4] studied linearized cases and proved the
Gevrey regularity of solutions without any extra assumption
for the initial datum. They then considered the 𝐶∞ solutions
with Maxwellian decay in [9]; that is, a positive number 𝛿

0

exists such that, for any 𝑡
0
∈ (0, 𝑇),

𝑒
𝛿
0
⟨V⟩2
𝑓 ∈ 𝐿

∞

([𝑡
0
, 𝑇] ;𝐻

∞

(R
𝑛

)) . (10)

Under the hypotheses of 0 < 𝑠 < 1/2, 𝛾 ≥ 0, 𝛾 + 2𝑠 < 1, and
the modified kinetic factorΦ(|V|) = (1+ |V|2)𝛾/2, they showed
the Gevrey smooth property for this type of solutions to the
Cauchy problem of the nonlinear homogeneous Boltzmann
equation. By using the original definition of kinetic factor,
Zhang and Yin [10] extended the above result in a general
framework: 0 < 𝑠 < 1/2 and −1 < 𝛾 + 2𝑠 < 1.

In this paper, the same issue in the strong singularity case
1/2 < 𝑠 < 1 is disussed. To discuss this issue properly,
some notations are introduced. For any 𝑎 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) ∈

Z𝑛
+
, V = (V

1
, V
2
, . . . , V

𝑛
) and 𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
), the following

expression is denoted:

|𝑎|
∗
= 𝑎

1
+ 𝑎

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
, 𝜉

𝑎

= 𝜉
𝑎
1

1
𝜉
𝑎
2

2
⋅ ⋅ ⋅ 𝜉

𝑎
𝑛

𝑛
,

𝑓
(𝑎)

= 𝐷
𝑎

V𝑓 = 𝜕
𝑎
1

V
1

𝜕
𝑎
2

V
2

⋅ ⋅ ⋅ 𝜕
𝑎
𝑛

V
𝑛

𝑓.

(11)

For any 𝑟 ∈ R, let

(𝑎 − 𝑟)! = (𝑎
1
− 𝑟)! ⋅ (𝑎

2
− 𝑟)! ⋅ ⋅ ⋅ (𝑎

𝑛
− 𝑟)!,

(𝑟𝑎)! = (𝑟𝑎
1
)! ⋅ (𝑟𝑎

2
)! ⋅ ⋅ ⋅ (𝑟𝑎

𝑛
)!

(12)

with a convention that 𝐾! = 1 if 0 ≥ 𝐾 ∈ Z. For any 𝑎 =
(𝑎


1
, 𝑎


2
, . . . , 𝑎



𝑛
) ∈ Z𝑛

+
, write 𝑎 ≤ 𝑎 if 𝑎

𝑖
≤ 𝑎

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Moreover,

𝐶
𝑎


𝑎
=

𝑎!

𝑎! (𝑎 − 𝑎)!
. (13)

Instead of the assumption of Maxwellian decay, the smooth
solutions 𝑓(𝑡, ⋅) ∈ S(R𝑛) are considered to satisfy the
following inequality (this type of solutions had been studied
in some literature. E.g., cf. [11]):

𝑓
𝐻2𝑠 ≤ 𝐶1. (14)

For any 𝑃 ∈ R+,
𝑓
𝐿1
𝑃

≤ 𝐶
1
⋅ 2
𝑃

, (15)

whereS(R𝑛) is the standard Schwartz space and 𝐶
1
is a fixed

constant. For any 𝑎 ∈ Z𝑛
+
,

V𝑎𝑓(𝑎) ≤ 0. (16)

A preliminary analysis in Section 2 is conducted and
Theorem 2 is proved in Section 3.

Theorem 2. For ] > 1, 1/2 < 𝑠 < 1, and 0 < 𝛾 < 1,
assume that𝑓(𝑡, V) ∈ S(R𝑛) is a smooth solution of the Cauchy
problem (1) that satisfies (14), (15), and (16). Then for any
0 < 𝑡 ≤ 𝑇, the initial value 𝑓(0, ⋅) ∈ 𝐺

]
(R𝑛) implies that

𝑓(𝑡, ⋅) ∈ 𝐺
]
(R𝑛).

The proof procedure ofTheorem 3 is proved in Section 4.

Theorem 3. For 1/2 < 𝑠 < 1 and 0 < 𝛾 < 1, assume that
𝑓(𝑡, V) ∈ S(R𝑛) is a smooth solution of the Cauchy problem
(1) that satisfies (14), (15), and (16). A positive number exists
𝑇
0
< 𝑇 such that for any 0 < 𝑡 ≤ 𝑇

0
, 𝑓(𝑡, ⋅) ∈ 𝐺1/𝑠(R𝑛).

Evidently, themain conclusion of this paper, directly from
Theorems 2 and 3 can be obtained.

Theorem 4. For 1/2 < 𝑠 < 1 and 0 < 𝛾 < 1, assume that
𝑓(𝑡, V) ∈ S(R𝑛) is a smooth solution of the Cauchy problem
(1) that satisfies (14), (15), and (16). Then, for any 0 < 𝑡 ≤ 𝑇,
𝑓(𝑡, ⋅) ∈ 𝐺

1/𝑠

(R𝑛).

2. Preliminary Analysis

In this section, the lemmas are stated and their proof process
is provided.

Lemma 5. Let 𝑙 > 0, 𝑚 > 0 be two given numbers. Assume
that 𝑓 is a function that satisfies (15). Then, for any fixed
number 𝜖 > 0, a constant 𝐶 = 𝐶(𝜖) exists such that ‖𝑓‖2

𝐻
𝑚

𝑙

≤

𝐶‖𝑓‖
2

𝐻
𝑚+𝜖 .

Proof. By Lemma 2.4 in [11],

𝑓


2

𝐻
𝑚

𝑙

≤ 𝐶 ⋅
𝑓
𝐻𝑚−𝜖
2𝑙

⋅
𝑓
𝐻𝑚+𝜖

≤ 𝐶
1+(1/2)𝑓



1/2

𝐻
𝑚−2𝜖

4𝑙

⋅
𝑓


1/2

𝐻
𝑚 ⋅
𝑓
𝐻𝑚+𝜖

≤ 𝐶
2−(1/2)𝑓



1/2

𝐻
𝑚−2𝜖

4𝑙

⋅
𝑓


2−(1/2)

𝐻
𝑚+𝜖

...

≤ 𝐶
2−(1/2

𝑘−1

)𝑓


1/2
𝑘−1

𝐻
𝑚−𝑘𝜖

2
𝑘
𝑙

⋅
𝑓


2−(1/2
𝑘−1

)

𝐻
𝑚+𝜖

≤ 𝐶
2𝑓



1/2
𝑘−1

𝐻
𝑚−𝑘𝜖

2
𝑘
𝑙

⋅
𝑓


2

𝐻
𝑚+𝜖 .

(17)
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A positive integer 𝑘 is chosen such that 𝑘𝜖−𝑚 > 𝑛/2. For any
𝑞 > 𝑛/2, 𝐿1(R𝑛) ⊆ 𝐻−𝑞

(R𝑛). By combining this Lemma with
(15), the following is obtained:

𝑓


1/2
𝑘−1

𝐻
𝑚−𝑘𝜖

2
𝑘
𝑙

≤ 𝐶


⋅
𝑓


1/2
𝑘−1

𝐿
1

2
𝑘
𝑙

≤ 𝐶


⋅ 𝐶
1
⋅ (2

2
𝑘

𝑙

)

1/2
𝑘−1

≤ 𝐶


⋅ 𝐶
1
⋅ 4
𝑙

.

(18)

Therefore,
𝑓


2

𝐻
𝑚

𝑙

≤ 𝐶
𝑓


2

𝐻
𝑚+𝜖 . (19)

Lemma 6. If ] ≥ 1, then, for any 2 ≤ 𝑟 ∈ N, there exists a
constant 𝐵 depending only on 𝑟 such that, for any 𝑘 ∈ N,

∑

𝑘

≤𝑘

𝐶
𝑘


𝑘
⋅

{(2𝑘


− 𝑟)!}
]

{(2𝑘 − 𝑟)!}
] ≤ 𝐵. (20)

Moreover, if ] ≥ 1 and 𝑟 > 1 + (2]/(] − 1)), then there exists a
constant 𝐵 depending on ] and 𝑟 such that, for any 𝑘 ∈ N,

∑

𝑎

∈Z𝑛
+
,0<|𝑎

|
∗
<2𝑘

𝐶
|𝑎


|
∗

2𝑘

⋅

{(

𝑎

∗
+ 1 − 𝑟)!}

]
⋅ {(2𝑘 −


𝑎

∗
+ 1 − 𝑟)!}

]

{(2𝑘 − 𝑟)!}
]

≤ 𝐵


.

(21)

Proof. By using Proposition 3.1 in [9], the following is
obtained:

∑

𝑘

≤𝑘

𝐶
𝑘


𝑘
⋅

{(2𝑘


− 𝑟)!}
]

{(2𝑘 − 𝑟)!}
]

= ∑

𝑘

≤𝑘

𝐶
𝑘


𝑘
⋅

{(𝑘


− 𝑟)!}
]

{(𝑘 − 𝑟)!}
]

⋅ {

(2𝑘


− 𝑟) ⋅ (2𝑘


− 𝑟 − 1) ⋅ ⋅ ⋅ (𝑘


− 𝑟 + 1)

(2𝑘 − 𝑟) ⋅ (2𝑘 − 𝑟 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑟 + 1)
}

]

≤ ∑

𝑘

≤𝑘

𝐶
𝑘


𝑘
⋅

{(𝑘


− 𝑟)!}
]

{(𝑘 − 𝑟)!}
] ≤ 𝐵.

(22)

This completes the proof of the first inequality.Thereafter, the
same analysis technique is applied as the proof of Proposition
3.1 in [9] to discuss the second inequality. Notice that

2𝑘 (2𝑘 − 1) ⋅ ⋅ ⋅ (2𝑘 − 𝑟 + 1)

(2𝑘 − 𝑘) (2𝑘 − 𝑘 − 1) ⋅ ⋅ ⋅ (2𝑘 − 𝑘 − 𝑟 + 1)
≤ 3

𝑟 (23)

if 2𝑘 − 𝑘 ≥ 2𝑘/2 and 2𝑘 ≥ 4𝑟. Therefore, for ] > 1 and
𝑟 > 1 + (2]/(] − 1)), one has

∑

0<|𝑎

|
∗
<2𝑘

𝐶
|𝑎


|
∗

2𝑘
⋅

{(

𝑎

∗
+ 1 − 𝑟)!}

]
⋅ {(2𝑘 −


𝑎

∗
+ 1 − 𝑟)!}

]

{(2𝑘 − 𝑟)!}
]

= ∑

0<𝑘

<2𝑘

𝐶
𝑘


2𝑘
⋅

{(𝑘


+ 1 − 𝑟)!}
]
⋅ {(2𝑘 − 𝑘



+ 1 − 𝑟)!}
]

{(2𝑘 − 𝑟)!}
]

≤ ∑

0<𝑘

<2𝑘

( (2𝑘 (2𝑘 − 1) ⋅ ⋅ ⋅ (2𝑘 − 𝑟 + 1))

× (𝑘


(𝑘


− 1) ⋅ ⋅ ⋅ (𝑘


− 𝑟 + 1) (2𝑘 − 𝑘


)

× (2𝑘 − 𝑘


− 1) ⋅ ⋅ ⋅ (2𝑘 − 𝑘


− 𝑟 + 1))
−1

)

⋅

(𝑘


+ 1 − 𝑟)
]
⋅ (2𝑘 − 𝑘



+ 1 − 𝑟)
]

{(2𝑘 − 𝑟) (2𝑘 − 𝑟 − 1) ⋅ ⋅ ⋅ (2𝑘 − 2𝑟 + 1)}
]−1

≤ 3
𝑟

∑

0<𝑘

<2𝑘

(𝑘


+ 1 − 𝑟)
]
⋅ (2𝑘 − 𝑘



+ 1 − 𝑟)
]

{(2𝑘 − 𝑟) (2𝑘 − 𝑟 − 1) ⋅ ⋅ ⋅ (2𝑘 − 2𝑟 + 1)}
]−1

≤ 𝐵


.

(24)

This completes the proof of the second inequality.

3. Proof of Theorem 2

Suppose that ] > 1, 1/2 < 𝑠 < 1, and 0 < 𝛾 < 1. Let 𝑓(𝑡, ⋅) ∈
S(R𝑛) be a smooth solution of the Cauchy problem (1) that
satisfies (14), (15), and (16). Write

𝑀
𝑘
𝑓 = (1 − Δ)

𝑘

𝑓 = ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


(−1)
𝑘


⋅ 𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!
𝑓
(2𝑎)

. (25)

Then the Fourier transform𝑀
𝑘
𝑓(𝜉) = (1+|𝜉|

2

)
𝑘

𝑓(𝜉). For any
𝑎


, 𝑎 ∈ Z𝑛
+
, |𝑎|

∗
= 𝑘, and 𝑎 ≤ 𝑎, it follows from (16) that

V𝑎


𝑓
(𝑎)

𝑓
(𝑎−𝑎


)

= V𝑎𝑓(𝑎) ⋅ V𝑎


−𝑎

𝑓
(𝑎−𝑎


)

≥ 0,

(26)

which implies that, for any integer 𝑙 ≥ 0,

⟨V⟩2𝑙𝑓(𝑎)(⟨V⟩2𝑙)
(𝑎


)

𝑓
(𝑎−𝑎


)

≥ 0. (27)
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Therefore,

𝑓


2

𝐻
𝑘

2𝑙

= (𝑀
𝑘
⟨V⟩2𝑙𝑓, ⟨V⟩2𝑙𝑓)

𝐿
2

= (∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


(−1)
𝑘


⋅ 𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!
(⟨V⟩2𝑙𝑓)

(2𝑎)

, ⟨V⟩2𝑙𝑓)
𝐿
2

= ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!
((⟨V⟩2𝑙𝑓)

(𝑎)

, (⟨V⟩2𝑙𝑓)
(𝑎)

)
𝐿
2

≥ sup
|𝑎|
∗
=𝑘

𝑘!

𝑎!
(⟨V⟩2𝑙𝑓(𝑎) + ∑

0<𝑎

≤𝑎

(⟨V⟩2𝑙)
(𝑎


)

𝑓
(𝑎−𝑎


)

,

⟨V⟩2𝑙𝑓(𝑎) + ∑

0<𝑎

≤𝑎

(⟨V⟩2𝑙)
(𝑎


)

𝑓
(𝑎−𝑎


)

)

𝐿
2

≥ sup
|𝑎|
∗
=𝑘

𝑘!

𝑎!
(⟨V⟩2𝑙𝑓(𝑎), ⟨V⟩2𝑙𝑓(𝑎))

𝐿
2

= sup
|𝑎|
∗
=𝑘

𝑘!

𝑎!


𝑓
(𝑎)


2

𝐿
2

2𝑙

.

(28)

NowTheorem 2 is proved. Bymultiplying both sides of (1) by
𝑀
2𝑘
𝑓, one gets

1

2

𝑑
𝑀𝑘

𝑓


2

𝐿
2

𝑑𝑡
= (

𝜕𝑓

𝜕𝑡
,𝑀

2𝑘
𝑓)

𝐿
2

= (𝑄 (𝑓, 𝑓) ,𝑀
2𝑘
𝑓)
𝐿
2 .

(29)

Consequently,

𝑀𝑘
𝑓 (𝑡)



2

𝐿
2 =

𝑀𝑘
𝑓 (0)



2

𝐿
2 + 2∫

𝑡

0

(𝑄 (𝑓, 𝑓) ,𝑀
2𝑘
𝑓)
𝐿
2𝑑𝜏

=
𝑀𝑘

𝑓 (0)


2

𝐿
2 + 2∫

𝑡

0

(𝐼
1
+ 𝐼

2
) 𝑑𝜏,

(30)

where

𝐼
1
= (𝑄 (𝑓,𝑀

𝑘
𝑓) ,𝑀

𝑘
𝑓)
𝐿
2 ;

𝐼
2
= (𝑄 (𝑓, 𝑓) ,𝑀

2𝑘
𝑓)
𝐿
2 − (𝑄 (𝑓,𝑀𝑘

𝑓) ,𝑀
𝑘
𝑓)
𝐿
2 .

(31)

The following lemma is cited to estimate 𝐼
1
.

Lemma 7 (part of Theorem 3.1 in [12]). Let 0 < 𝛾 < 1 and
1/2 < 𝑠 < 1. Suppose that Φ(|𝑧|) = |𝑧|𝛾. Then

−(𝑄 (𝑔, 𝐹) , 𝐹)
𝐿
2 ≥ 𝐶𝑔‖𝐹‖

2

𝐻
𝑠

𝛾/2

−
𝑔
𝐿1
𝛾

⋅ ‖𝐹‖
2

𝐻
𝜂

𝛾/2

− 𝐶(
𝑔


2𝑠

𝐿
1

2−𝛾

+
𝑔
𝐿1
2−𝛾

) ‖𝐹‖
2

𝐿
2

𝛾/2

,

(32)

where 𝐶
𝑔
> 0 is a constant that depends on 𝑔 and 0 < 𝜂 < 𝑠

depends on 𝛾, 𝑠.

By using this lemma with 𝑔 = 𝑓 and 𝐹 = 𝑀
𝑘
𝑓, the

following is obtained:

𝐼
1
+ 𝐶

0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

≤ 𝐶(
𝑓


2𝑠

𝐿
1

2−𝛾

+
𝑓
𝐿1
2−𝛾

)
𝑀𝑘

𝑓


2

𝐿
2

𝛾/2

+
𝑓
𝐿1
𝛾

𝑀𝑘
𝑓


2

𝐻
𝜂

𝛾/2

,

(33)

where 0 < 𝜂 < 𝑠 and 𝐶
0
is a constant that depends only on 𝑓.

Given that

𝑔


2

𝐻
𝜂 ≤

𝑔


𝜂/𝑠

𝐻
𝑠 ⋅
𝑔


(𝑠−𝜂)/𝑠

𝐿
2

≤ 𝜀
𝑔


2

𝐻
𝑠 + 𝜀

−𝜂/(𝑠−𝜂)𝑔


2

𝐿
2 , (34)

one obtains

𝑓
𝐿1
𝛾

𝑀𝑘
𝑓


2

𝐻
𝜂

𝛾/2

≤ 𝜀
𝑀𝑘

𝑓


2

𝐻
𝑠

𝛾/2

+ 𝐶
𝜀

𝑓


𝑠/(𝑠−𝜂)

𝐿
1

𝛾

𝑀𝑘
𝑓


2

𝐿
2

𝛾/2

.

(35)

One chooses 𝜀 = 𝐶
0
/2 and applies (15) to deduce that

𝐼
1
+
1

2
𝐶
0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

≤ 𝐶 ⋅ (
𝑓


2𝑠

𝐿
1

2−𝛾

+
𝑓
𝐿1
2−𝛾

+
𝑓


𝑠/(𝑠−𝜂)

𝐿
1

𝛾

)

⋅
𝑀𝑘

𝑓


2

𝐿
2

𝛾/2

≤ 𝐶 ⋅
𝑀𝑘

𝑓


2

𝐿
2

𝛾/2

.

(36)

By combining the above inequality and (30), one yields the
following:

𝑀𝑘
𝑓 (𝑡)



2

𝐿
2 + 𝐶0 ∫

𝑡

0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

𝑑𝜏

≤
𝑀𝑘

𝑓 (0)


2

𝐿
2 + 𝐶∫

𝑡

0

𝑀𝑘
𝑓


2

𝐿
2

𝛾/2

𝑑𝜏 + 2∫

𝑡

0

𝐼
2
𝑑𝜏.

(37)

Next it is planned to give an estimation of 𝐼
2
. By using the

conclusion in page 146 of [9] (see also page 1177 of [10]), one
has

(𝑄 (𝑓, 𝑓))
(𝑎)

= 𝑄 (𝑓, 𝑓
(𝑎)

) + 𝑄 (𝑓
(𝑎)

, 𝑓)

+ ∑

0<𝑎

<𝑎

𝐶
𝑎


𝑎
⋅ 𝑄 (𝑓

(𝑎


)

, 𝑓
(𝑎−𝑎


)

) .

(38)

Thus,

𝐼
2
= (𝑄 (𝑓, 𝑓) ,𝑀

2𝑘
𝑓)
𝐿
2 − (𝑄 (𝑓,𝑀𝑘

𝑓) ,𝑀
𝑘
𝑓)
𝐿
2

= (𝑀
𝑘
𝑄 (𝑓, 𝑓) ,𝑀

𝑘
𝑓)
𝐿
2 − (𝑄 (𝑓,𝑀𝑘

𝑓) ,𝑀
𝑘
𝑓)
𝐿
2
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= (∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


(−1)
𝑘


𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!
(𝑄 (𝑓, 𝑓))

(2𝑎)

,𝑀
𝑘
𝑓)

𝐿
2

− (𝑄 (𝑓,𝑀
𝑘
𝑓) ,𝑀

𝑘
𝑓)
𝐿
2

= ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

(−1)
𝑘


⋅ 𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎
(𝑄(𝑓

(𝑎


)

, 𝑓
(2𝑎−𝑎



)

) ,𝑀
𝑘
𝑓)

𝐿
2

+ (𝑄 (𝑀
𝑘
𝑓, 𝑓) ,𝑀

𝑘
𝑓)
𝐿
2

= 𝐼
21
+ 𝐼

22
.

(39)

One refers to the estimation from Proposition 3.6 in [13].

Lemma 8. Suppose that 𝛾 + 2𝑠 > 0 and 0 < 𝑠 < 1. Then, for
any 𝜎 ∈ [2𝑠 − 1, 2𝑠] and 𝑝 ∈ [0, 𝛾 + 2𝑠],

(𝑄 (𝑓, 𝑔) , ℎ)𝐿2
 ≤ 𝐶

𝑓
𝐿1
𝛾+2𝑠

𝑔
𝐻𝜎
𝛾+2𝑠−𝑝

‖ℎ‖
𝐻
2𝑠−𝜎

𝑝

. (40)

By using this lemma with 𝜎 = 2𝑠 and 𝑝 = 𝛾 + 2𝑠, one gets

𝐼
22
= (𝑄 (𝑀

𝑘
𝑓, 𝑓) ,𝑀

𝑘
𝑓)
𝐿
2

≤ 𝐶
𝑀𝑘

𝑓
𝐿1
𝛾+2𝑠

⋅
𝑓
𝐻2𝑠 ⋅

𝑀𝑘
𝑓
𝐿2
𝛾+2𝑠

≤ 𝐶
𝑀𝑘

𝑓


2

𝐿
2

2𝑙

,

(41)

where 2𝑙 > 𝛾 + 2𝑠 + 𝑛/2. The final inequality is used in
hypothesis (14) and the fact that 𝐿2

𝑚
(R𝑛) ⊆ 𝐿

1

𝛾+2𝑠
(R𝑛) if

𝑚 > 𝛾 + 2𝑠 + 𝑛/2. Write


𝑓 (𝑡)


𝑘 = sup

|𝑎|
∗
≤𝑘

𝑓 (𝑡)
𝐻|𝑎|∗ ⋅ 𝜌

|𝑎|
∗

{(|𝑎|
∗
− 𝑟)!}

] , (42)

where 0 < 𝜌 < 1, ] > 1, 𝑟 > 1 + (2]/(] − 1)). Combining (28)
and Lemma 8 with 𝑝 = 𝛾 + 2𝑠, the following is obtained:

𝐼
21
= ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

(−1)
𝑘


⋅ 𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎
(𝑄(𝑓

(𝑎


)

, 𝑓
(2𝑎−𝑎



)

) ,𝑀
𝑘
𝑓)

𝐿
2

≤ 𝐶∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎


𝑓
(𝑎


)
𝐿1
𝛾+2𝑠


𝑓
(2𝑎−𝑎



)
𝐻𝜎

×
𝑀𝑘

𝑓
𝐻2𝑠−𝜎
𝛾+2𝑠

≤ 𝐶∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎


𝑓
(𝑎


)
𝐿2
2𝑙


𝑓
(2𝑎−𝑎



)
𝐻𝜎

×
𝑀𝑘

𝑓
𝐻2𝑠−𝜎
𝛾+2𝑠

≤ 𝐶∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎
⋅
𝑎


!

𝑎

∗!

⋅

(2𝑎 − 𝑎


)!

2𝑎 − 𝑎

∗!

⋅
𝑓

𝐻
|𝑎

|∗

2𝑙

⋅
𝑓
𝐻|2𝑎−𝑎


|∗+𝜎

⋅
𝑓
𝐻2𝑘+2𝑠−𝜎
𝛾+2𝑠

,

(43)

where 𝑠 < 𝜎 < 1, 2𝑙 > 𝛾+2𝑠+𝑛/2. By choosing 𝑠 ∈ (2𝑠−𝜎, 𝑠)
and applying Lemmas 5 and 6 and the fact that

sup
|𝑎|
∗
=𝑘


𝐶
𝑎

2𝑎

𝐶
𝑘


2𝑘


≤ 1, sup
|𝑎|
∗
=𝑘


𝑎!

𝑘!
≤ 𝐶, (44)

one has

𝐼
21
≤ 𝐶∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

(𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!
⋅ 𝐶

𝑎


2𝑎
⋅
𝑎


!

𝑎

∗!

⋅

(2𝑎 − 𝑎


)!

2𝑎 − 𝑎

∗!

⋅
𝑓
𝐻|𝑎

|∗+1

⋅
𝑓
𝐻|2𝑎−𝑎


|∗+1

⋅
𝑓
𝐻𝑠

+2𝑘
)

≤ 𝐶{(2𝑘 − 𝑟)!}
]

× ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

(𝐶
𝑘


𝑘
⋅
𝑘


!

𝑎!

⋅ 𝐶
𝑎


2𝑎
⋅
𝑎


!

𝑎

∗!

⋅

(2𝑎 − 𝑎


)!

2𝑎 − 𝑎

∗!

⋅ ( ({(

𝑎

∗
+ 1 − 𝑟)!}

]

⋅ {(

2𝑎 − 𝑎


∗
+ 1 − 𝑟)!}

]
)
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× ({(2𝑘


− 𝑟)!}
]
)
−1

)

⋅

{(2𝑘


− 𝑟)!}
]

{(2𝑘 − 𝑟)!}
] ⋅


𝑓



2

2𝑘

⋅
𝑓
𝐻𝑠

+2𝑘
⋅ 𝜌
−2𝑘


−2

)

≤ 𝐶


⋅ 𝜌
−2𝑘

⋅ {(2𝑘 − 𝑟)!}
]
⋅

𝑓



2

2𝑘
⋅
𝑓
𝐻𝑠

+2𝑘

⋅ ∑

𝑘

≤𝑘

∑

|𝑎|
∗
=𝑘


∑

0<𝑎

<2𝑎

(𝐶
𝑘


𝑘
⋅ 𝐶

|𝑎


|
∗

2𝑘

⋅
𝑎!

𝑘!
⋅
𝐶
𝑎

2𝑎

𝐶
𝑘


2𝑘


⋅

{(2𝑘


− 𝑟)!}
]

{(2𝑘 − 𝑟)!}
]

⋅ ( ({(

𝑎

∗
+ 1 − 𝑟)!}

]

⋅ {(2𝑘


−

𝑎

∗
+ 1 − 𝑟)!}

]
)

× ({(2𝑘


− 𝑟)!}
]
)
−1

))

≤ 𝐶


⋅ 𝜌
−2𝑘

⋅ {(2𝑘 − 𝑟)!}
]
⋅

𝑓



2

2𝑘
⋅
𝑓
𝐻𝑠

+2𝑘

⋅ ∑

𝑘

≤𝑘

(𝐶
𝑘


𝑘

{(2𝑘


− 𝑟)!}
]

{(2𝑘 − 𝑟)!}
] ∑

|𝑎|
∗
=𝑘


𝑎!

𝑘!
∑

0<|𝑎

|
∗
<2𝑘


𝐶
|𝑎


|
∗

2𝑘


⋅

{(

𝑎

∗
+ 1 − 𝑟)!}

]
⋅ {(2𝑘



−

𝑎

∗
+ 1 − 𝑟)!}

]

{(2𝑘 − 𝑟)!}
] )

≤ 𝐶


𝜌
−2𝑘

⋅ {(2𝑘 − 𝑟)!}
]
⋅

𝑓



2

2𝑘
⋅
𝑓
𝐻𝑠

+2𝑘

≤ 𝐶𝜌
−4𝑘

⋅ {(2𝑘 − 𝑟)!}
2]
⋅

𝑓



4

2𝑘
+
𝑓


2

𝐻
𝑠

+2𝑘
.

(45)

Combining the above expression with (41) yields

𝐼
2
= 𝐼

21
+ 𝐼

22
≤ 𝐶𝜌

−4𝑘

⋅ {(2𝑘 − 𝑟)!}
2]
⋅

𝑓



4

2𝑘

+
𝑓


2

𝐻
𝑠

+2𝑘
+ 𝐶

𝑀𝑘
𝑓


2

𝐿
2

2𝑙

.

(46)

Plugging this estimation into (37) and applying Lemma 5
again, one obtains

𝑓 (𝑡)


2

𝐻
2𝑘 + 𝐶0 ∫

𝑡

0

𝑓


2

𝐻
𝑠+2𝑘𝑑𝜏

≤
𝑀𝑘

𝑓 (𝑡)


2

𝐿
2 + 𝐶0 ∫

𝑡

0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

𝑑𝜏

≤
𝑀𝑘

𝑓 (0)


2

𝐿
2 + 𝐶∫

𝑡

0

𝑀𝑘
𝑓


2

𝐿
2

𝛾/2

𝑑𝜏

+ 𝐶∫

𝑡

0

𝑀𝑘
𝑓


2

𝐿
2

2𝑙

𝑑𝜏 + 2∫

𝑡

0

𝑓


2

𝐻
𝑠

+2𝑘
𝑑𝜏

+ 𝐶𝜌
−4𝑘

⋅ {(2𝑘 − 𝑟)!}
2]
⋅ ∫

𝑡

0


𝑓



4

2𝑘
𝑑𝜏

≤
𝑓 (0)



2

𝐻
2𝑘 + 𝐶𝜌

−4𝑘

⋅ {(2𝑘 − 𝑟)!}
2]

⋅ ∫

𝑡

0


𝑓



4

2𝑘
𝑑𝜏 + 𝐶∫

𝑡

0

𝑓


2

𝐻
𝑠

+2𝑘
𝑑𝜏.

(47)

By using Remark 2 in [11],

𝐶∫

𝑡

0

𝑓


2

𝐻
𝑠

+2𝑘
𝑑𝜏 ≤ 𝐶

0
∫

𝑡

0

𝑓


2

𝐻
𝑠+2𝑘𝑑𝜏 + 𝐶



∫

𝑡

0

𝑓


2

𝐻
2𝑘𝑑𝜏.

(48)

Therefore,

𝑓 (𝑡)


2

𝐻
2𝑘 ≤

𝑓 (0)


2

𝐻
2𝑘 + 𝐶𝜌

−4𝑘

⋅ {(2𝑘 − 𝑟)!}
2]

⋅ ∫

𝑡

0


𝑓



4

2𝑘
𝑑𝜏 +𝐶∫

𝑡

0

𝑓


2

𝐻
2𝑘𝑑𝜏.

(49)

By multiplying both sides of (1) by 𝑀
2𝑘+1

𝑓 and using the
same analysis techniques, one can also get

𝑓 (𝑡)


2

𝐻
2𝑘+1 ≤

𝑓 (0)


2

𝐻
2𝑘+1 + 𝐶𝜌

−2(2𝑘+1)

⋅ {(2𝑘 + 1 − 𝑟)!}
2]
⋅ ∫

𝑡

0


𝑓



4

2𝑘+1
𝑑𝜏

+ 𝐶∫

𝑡

0

𝑓


2

𝐻
2𝑘+1𝑑𝜏.

(50)

Thus, for any 𝑘 ∈ N,

𝑓 (𝑡)


2

𝐻
𝑘 ≤

𝑓 (0)


2

𝐻
𝑘 + 𝐶𝜌

−2𝑘

⋅ {(𝑘 − 𝑟)!}
2]

⋅ ∫

𝑡

0


𝑓



4

𝑘
𝑑𝜏 + 𝐶∫

𝑡

0

𝑓


2

𝐻
𝑘𝑑𝜏.

(51)

That is,

[

𝑓 (𝑡)
𝐻𝑘

{(𝑘 − 𝑟)!}
] ⋅ 𝜌

𝑘

]

2

≤

𝑓 (0)




2

𝑘

+ 𝐶∫

𝑡

0

(

𝑓



2

𝑘
+

𝑓



4

𝑘
) 𝑑𝜏,

(52)

which yields


𝑓 (𝑡)




2

𝑘
≤

𝑓 (0)




2

𝑘
+ 𝐶∫

𝑡

0

(

𝑓



2

𝑘
+

𝑓



4

𝑘
) 𝑑𝜏. (53)

Thereafter, set

𝐹 (𝑡) =

𝑓 (0)




2

𝑘
+ 𝐶∫

𝑡

0

(

𝑓



2

𝑘
+

𝑓



4

𝑘
) 𝑑𝜏. (54)

A straightforward calculation provides the following:

𝐹


(𝑡) = 𝐶 ⋅ (

𝑓



2

𝑘
+

𝑓



4

𝑘
) ≤ 𝐶 ⋅ (𝐹 (𝑡) + 𝐹

2

(𝑡)) ,

𝑡 ∈ [0, 𝑇] .

(55)
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If the initial value 𝑓(0) ∈ 𝐺
]
(R𝑛), one can use a small 𝜌 to

satisfy |‖𝑓(0)‖|2
𝑘
⋅ 𝑒
𝐶𝑇

< 1/2. By using (53),


𝑓 (𝑡)




2

𝑘
≤ 𝐹 (𝑡) ≤


𝑓 (0)




2

𝑘
⋅ 𝑒
𝐶𝑡

1 −

𝑓 (0)




2

𝑘
⋅ 𝑒𝐶𝑡

≤


𝑓 (0)




2

𝑘
⋅ 𝑒
𝐶𝑇

1 −

𝑓 (0)




2

𝑘
⋅ 𝑒𝐶𝑇

≤ 1.

(56)

Therefore, for any 𝑘 ∈ N,

𝑓 (𝑡)
𝐻𝑘 ≤ 𝜌

−𝑘

⋅ {(𝑘 − 𝑟)!}
]
≤ 𝜌

−𝑘

⋅ {𝑘!}
]
. (57)

That is, 𝑓(𝑡) ∈ 𝐺
]
(R𝑛). This completes the proof of

Theorem 2.

4. Proof of Theorem 3

In this section, the proof of Theorem 3 is provided. That is,
for 1/2 < 𝑠 < 1 and 0 < 𝛾 < 1, considering the solution
𝑓(𝑡, ⋅) of the Cauchy problem (1) that satisfies the hypotheses
in Theorem 3, one shows that there is a positive number 𝑇

0

that exists such that𝑓(𝑡, ⋅) ∈ 𝐺1/𝑠(R𝑛) if 𝑡 ∈ (0, 𝑇
0
]. To do this,

one assumes that ] = 𝑠−1 and 𝐴 = 2𝑘, 𝑘 ∈ N. By multiplying
both sides of (29) by (𝜌𝑡])2𝐴, one obtains

2(𝑄 (𝑓, 𝑓) ,𝑀
2𝑘
𝑓)
𝐿
2 ⋅ (𝜌𝑡

]
)
2𝐴

= (𝜌𝑡
]
)
2𝐴

⋅
𝑑
𝑀𝑘

𝑓


2

𝐿
2

𝑑𝑡

=
𝑑

𝑑𝑡
[(𝜌𝑡

]
)
2𝐴

⋅
𝑀𝑘

𝑓


2

𝐿
2] − 𝜌

1/]

⋅ (2]𝐴) ⋅ (𝜌𝑡])2𝐴−(1/]) ⋅ 𝑀𝑘
𝑓


2

𝐿
2 .

(58)

By integrating the above equation from zero to 𝑡, the follow-
ing expression is obtained:

(𝜌𝑡
]
)
2𝐴

⋅
𝑀𝑘

𝑓 (𝑡)


2

𝐿
2 − (𝜌𝑡

]
)
2𝐴

⋅
𝑀𝑘

𝑓


2

𝐿
2
|𝑡=0

= 2∫

𝑡

0

(𝑄 (𝑓, 𝑓) ,𝑀
2𝑘
𝑓)
𝐿
2 ⋅ (𝜌𝜏

]
)
2𝐴

𝑑𝜏

+ ∫

𝑡

0

𝜌
1/]
(2]𝐴) ⋅ (𝜌𝜏])2𝐴−(1/])𝑀𝑘

𝑓


2

𝐿
2𝑑𝜏.

(59)

By writing

[[[𝑓 (𝑡)]]]
𝑘
= sup
|𝑎|
∗
≤𝑘

𝑓 (𝑡)
𝐻|𝑎|∗ ⋅ (𝜌𝑡

]
)
|𝑎|
∗

{(|𝑎|
∗
− 𝑟)!}

] , (60)

one can get

2∫

𝑡

0

(𝑄 (𝑓, 𝑓) ,𝑀
2𝑘
𝑓)
𝐿
2 ⋅ (𝜌𝜏

]
)
2𝐴

𝑑𝜏

+ 𝐶
0
∫

𝑡

0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

⋅ (𝜌𝜏
]
)
2𝐴

𝑑𝜏

≤ 𝐶[∫

𝑡

0

𝑓


2

𝐻
𝑠

+2𝑘
⋅ (𝜌𝜏

]
)
2𝐴

𝑑𝜏

+∫

𝑡

0

{(𝐴 − 𝑟)!}
2]
⋅ [[[𝑓]]]

4

𝐴
𝑑𝜏] ,

(61)

where 0 < 2𝑠 − 1 < 2𝑠 − 𝜎 < 𝑠 < 𝑠 < 1. Considering that the
analytical method is quite similar to the one in Section 3, the
proof of the above inequality is omitted. Therefore,

(𝜌𝑡
]
)
2𝐴𝑓 (𝑡)



2

𝐻
𝐴 + 𝐶0 ∫

𝑡

0

𝑓


2

𝐻
𝐴+𝑠 ⋅ (𝜌𝜏

]
)
2𝐴

𝑑𝜏

≤ (𝜌𝑡
]
)
2𝐴𝑀𝑘

𝑓 (𝑡)


2

𝐿
2

+ 𝐶
0
∫

𝑡

0

𝑀𝑘
𝑓


2

𝐻
𝑠

𝛾/2

⋅ (𝜌𝜏
]
)
2𝐴

𝑑𝜏

≤ (𝜌𝑡
]
)
2𝐴𝑀𝑘

𝑓


2

𝐿
2
|𝑡=0

+ 𝐶∫

𝑡

0

𝑓


2

𝐻
𝐴+𝑠
 ⋅ (𝜌𝜏

]
)
2𝐴

𝑑𝜏

+ 𝐶∫

𝑡

0

{(𝐴 − 𝑟)!}
2]
⋅ [[[𝑓]]]

4

𝐴
𝑑𝜏

+ ∫

𝑡

0

𝜌
1/]
(2]𝐴) ⋅ (𝜌𝜏])2𝐴−(1/])𝑀𝑘

𝑓


2

𝐿
2𝑑𝜏.

(62)

By using the conclusion in page 157 of [9],

𝜌
1/]
⋅ 𝐴 ⋅ (𝜌

1/]
𝜏)
−1

≪
1

2
(𝜌𝜏

]
)
−2

|(𝐴 − 𝑟)|
2]
⋅ ⟨𝜉⟩

2𝑠−2

+ ⟨𝜉⟩
2𝑠

,

(63)

provided that 𝜌 is sufficiently small. Thus,

𝜌
1/]
⋅ 𝐴 ⋅ (𝜌𝜏

]
)
2𝐴−(1/])

⟨𝜉⟩
2𝐴

= 𝜌
1/]
⋅ 𝐴 ⋅ (𝜌

1/]
𝜏)
−1

⋅ 𝜏
2𝐴]

⋅ ⟨𝜉⟩
2𝐴

⋅ 𝜌
2𝐴

≪
1

2
(𝜌𝜏

]
)
−2

|(𝐴 − 𝑟)|
2]
⋅ ⟨𝜉⟩

2𝐴+2𝑠−2

⋅ 𝜏
2𝐴]

⋅ 𝜌
2𝐴

+ ⟨𝜉⟩
2𝐴+2𝑠

⋅ 𝜏
2𝐴]

⋅ 𝜌
2𝐴

=
1

2
(𝜌𝜏

]
)
2(𝐴−1)

⋅ |(𝐴 − 𝑟)|
2]
⋅ ⟨𝜉⟩

2𝐴+2𝑠−2

+ (𝜌𝜏
]
)
2𝐴

⋅ ⟨𝜉⟩
2𝐴+2𝑠

.

(64)
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That is,

1

{(𝐴 − 𝑟)!}
2] ∫

𝑡

0

𝜌
1/]
(2]𝐴) ⋅ (𝜌𝜏])2𝐴−(1/])𝑀𝑘

𝑓


2

𝐿
2𝑑𝜏

≪ 2] ⋅ (
1

2
∫

𝑡

0

(𝜌𝜏
]
)
2(𝐴−1)

⋅
𝑓


2

𝐻
𝐴+𝑠−1

{(𝐴 − 1 − 𝑟)!}
2] 𝑑𝜏

+ ∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴+𝑠

{(𝐴 − 𝑟)!}
2] 𝑑𝜏) .

(65)

Let

[𝑓]
𝑘
= sup
|𝑎|
∗
≤𝑘

∫

𝑡

0

(𝜌𝜏
]
)
2|𝑎|
∗

⋅
𝑓


2

𝐻
|𝑎|∗+𝑠

{(|𝑎|
∗
− 𝑟)!}

2] 𝑑𝜏. (66)

By using (65), if 𝜌 is a sufficiently small number,

1

{(𝐴 − 𝑟)!}
2] ∫

𝑡

0

𝜌
1/]
(2]𝐴) ⋅ (𝜌𝜏])2𝐴−(1/])𝑀𝑘

𝑓


2

𝐿
2𝑑𝜏

≤
𝐶
0

2
[𝑓]

𝐴
.

(67)

Thus, the following inequality in this case is obtained:

(𝜌𝑡
]
)
2𝐴

⋅
𝑓 (𝑡)



2

𝐻
𝐴

{(𝐴 − 𝑟)!}
2] + 𝐶

0
∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴+𝑠

{(𝐴 − 𝑟)!}
2] 𝑑𝜏

≤

(𝜌𝑡
]
)
2𝐴

⋅
𝑀𝑘

𝑓


2

𝐿
2
|𝑡=0

{(𝐴 − 𝑟)!}
2] + 𝐶∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴+𝑠


{(𝐴 − 𝑟)!}
2] 𝑑𝜏

+ 𝐶∫

𝑡

0

[[[𝑓]]]
4

𝐴
𝑑𝜏 +

𝐶
0

2
[𝑓]

𝐴

≤
𝑓 (0)



2

𝐿
2 + 𝐶∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴+𝑠


{(𝐴 − 𝑟)!}
2] 𝑑𝜏

+ 𝐶∫

𝑡

0

[[[𝑓]]]
4

𝐴
𝑑𝜏 +

𝐶
0

2
[𝑓]

𝐴
.

(68)

Combing the above inequality with Remark 2 in [11] yields

(𝜌𝜏
]
)
2𝐴

⋅
𝑓 (𝑡)



2

𝐻
𝐴

{(𝐴 − 𝑟)!}
2] +

𝐶
0

2
∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴+𝑠

{(𝐴 − 𝑟)!}
2] 𝑑𝜏

≤
𝑓 (0)



2

𝐿
2 + 𝐶∫

𝑡

0

(𝜌𝜏
]
)
2𝐴

⋅
𝑓


2

𝐻
𝐴

{(𝐴 − 𝑟)!}
2] 𝑑𝜏

+ 𝐶∫

𝑡

0

[[[𝑓]]]
4

𝐴
𝑑𝜏 +

𝐶
0

2
[𝑓]

𝐴

≤
𝑓 (0)



2

𝐿
2 + 𝐶∫

𝑡

0

([[[𝑓]]]
4

𝐴
+ [[[𝑓]]]

4

𝐴
) 𝑑𝜏

+
𝐶
0

2
[𝑓]

𝐴
.

(69)

By using the same approach, one can prove that the above
inequality in the case 𝐴 = 2𝑘 + 1, 𝑘 ∈ N. By taking
the supremum in each term on the left hand side of this
inequality, one obtains the following for any 𝑘 ∈ N:

[[[𝑓 (𝑡)]]]
2

𝑘
≤
𝑓 (0)



2

𝐿
2 + 𝐶∫

𝑡

0

([[[𝑓]]]
2

𝑘
+ [[[𝑓]]]

4

𝑘
) 𝑑𝜏.

(70)

Choosing a suitable number 𝑇
0

∈ (0, 𝑇) satisfies the
following:

𝑓(0)


2

𝐿
2 ⋅ 𝑒

𝐶𝑇
0 <

1

2
. (71)

Then, for any 0 < 𝑡 < 𝑇
0
,

[[[𝑓 (𝑡)]]]
2

𝑘
≤

𝑓 (0)


2

𝐿
2 ⋅ 𝑒

𝐶𝑇
0

1 −
𝑓 (0)



2

𝐿
2 ⋅ 𝑒

𝐶𝑇
0

≤ 1, (72)

which provides the Gevrey smoothing effect in (0, 𝑇
0
). This

completes the proof of Theorem 3.
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