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The problem of projective synchronization of drive-response coupled dynamical network with delayed system nodes and multiple
coupling time-varying delays is investigated. Some sufficient conditions are derived to ensure projective synchronization of drive-
response coupled network under the impulsive controller by utilizing the stability analysis of the impulsive functional differential
equation and comparison theory. Numerical simulations on coupled time delay Lorenz chaotic systems are exploited finally to
illustrate the effectiveness of the obtained results.

1. Introduction

In the past few years, it is found that synchronization is
one of the most important and interesting collective behav-
iors of complex networks and has been extensively inves-
tigated in different fields of engineering and sociology [1–
11]. Meanwhile, many kinds of synchronization have been
proposed, such as complete synchronization, phase synchro-
nization, lag synchronization, anticipated synchronization,
cluster synchronization, generalized synchronization, and
projective synchronization. And various control methods
such as adaptive control [12–15], impulsive control [16–
20], pinning control [21–25], and intermittent control [26,
27] have been reported to achieve the different kinds of
synchronization for complex networks.

In projective synchronization, the drive-response systems
can be synchronized up to a scaling factor. Due to the poten-
tial applications in secure communication, the projective
synchronization has been extremely investigated including
chaotic systems [28–32] and complex dynamical networks
[33–40]. Xu [29] studied the projective synchronization
in coupled partially linear systems via adaptive feedback
control. Furthermore, Hu et al. [35] introduced a drive-
response dynamical network model and investigated its
projective synchronization properties using pinning control

to obtain the desired scaling factor. A short time later, they
investigated projective cluster synchronization in a drive-
response dynamical network model with coupled partially
linear chaotic systems [36].The impulsive projective synchro-
nization between the drive system and response dynamical
network without the time delay was investigated in [37]. It
is noted that in practical cases time delays are often encoun-
tered. Ignoring them may lead to design flaws and incorrect
analysis conclusions. Consequently, time delay case should
be considered. Recently, Sun et al. [38] studied the projective
synchronization in drive-response dynamical networks of
partially linear systems with time-varying coupling delay.
Chen et al. [39] proposed projective (anticipatory, exact, and
lag) synchronization criteria for a drive-response complex
network with different scale factors. Moreover, in much of
the literature, time delays in the couplings are considered;
however, time delays in the dynamical nodes [32, 40], which
are more complex, are still relatively unexplored. Zheng [40]
investigated the adaptive-impulsive projective synchroniza-
tion of drive-response delayed complex dynamical networks
with time-varying coupling. Cao et al. [32] proposed projec-
tive synchronization of a class of delayed chaotic systems via
impulsive control, where the drive-response system can be
synchronized to within a scaling factor. On the other hand, it
is well known that the impulsive control method [16–20, 32,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 581971, 10 pages
http://dx.doi.org/10.1155/2014/581971

http://dx.doi.org/10.1155/2014/581971


2 Abstract and Applied Analysis

37, 40] is discontinuous, effective, robust, and low-cost and
has been widely applied in many fields, such as information
science, control systems, communication security, and space
techniques. To the best of the authors’ knowledge, projec-
tive synchronization of a drive-response coupled dynamical
network model with time-delayed dynamical nodes and
delayed coupling has not been reported via impulsive control.
Moreover, inmany networks, nodesmay influence each other
not only by nondelayed state information but also by delayed
state information. Therefore, both nondelayed coupling and
multiple delayed couplings should be also considered.

Motivated by the above discussions, this paper aims to
handle the problem of the impulsive projective synchro-
nization for a drive-response coupled dynamical network
with dynamical nodes delay and both nondelayed coupling
and multiple delayed couplings. The sufficient conditions for
projective synchronization are derived analytically by using
the stability analysis of the impulsive functional differential
equation, and an impulsive controller is designed. Analytical
results show that drive-response coupled dynamical networks
with multiple time delays can realize projective synchroniza-
tion within a scaling factor.

Notations. Throughout this paper, 𝑅
𝑛 and 𝑅

𝑛×𝑛 denote,
respectively, the 𝑛-dimensional Euclidean space and the set
of all 𝑛 × 𝑛 real matrices. The superscript 𝑇 denotes matrix or
vector transposition. 𝐼

𝑛
is the 𝑛 × 𝑛 identity matrix. 𝜆max(𝐴)

means the maximum eigenvalue of matrix 𝐴. The Euclidean
norm in 𝑅

𝑛 is defined as ‖ ⋅ ‖; for vector 𝑥 ∈ 𝑅
𝑛, ‖𝑥‖ = 𝑥

𝑇

𝑥

and for matrix 𝐴 ∈ 𝑅
𝑛×𝑛, ‖𝐴‖ = √𝜆max(𝐴

𝑇𝐴). 𝜇(𝐴) =

𝜆max(𝐴
𝑇

+ 𝐴), and the symbol ⊗ is the Kronecker product
of two matrices. The upper bound is denoted by sup. The
matrices, if their dimensions are not explicitly stated, are
assumed to have appropriate dimensions.

The rest of this paper is organized as follows: in Section 2,
the model of drive-response coupled dynamical network
with time-varying delays is introduced and some necessary
preliminaries are given. In Section 3, the projective syn-
chronization criteria are derived by using impulsive control.
Numerical simulations are shown in Section 4. The conclu-
sion is finally drawn in Section 5.

2. Model Description and Preliminaries

The projective synchronization in coupled partially linear
delayed chaotic systems via impulsive control is studied in
[32]. Inspired by [32], the drive-response coupled network
model with dynamical nodes delay and multiple coupling
delays, in which dynamical nodes are partially linear time-
delayed chaotic systems, is described as follows:

�̇�
𝑑

= 𝑀(𝑧) ⋅ 𝑢
𝑑

(𝑡) + 𝛾Γ (𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) − 𝑢
𝑑

(𝑡)) ,

�̇� (𝑡) = 𝑓 (𝑢
𝑑

(𝑡) , 𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡))) ,

�̇�
𝑟

𝑖
= 𝑀(𝑧) ⋅ 𝑢

𝑟

𝑖
(𝑡) + 𝛾Γ (𝑢

𝑟

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑢

𝑟

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐴𝑢

𝑟

𝑗
(𝑡)

+ 𝑐
𝜏
1

𝑁

∑

𝑗=1

𝑐
𝜏
1

𝑖𝑗
𝐴
𝜏
1𝑢

𝑟

𝑗
(𝑡 − 𝜏

1
(𝑡)) + ⋅ ⋅ ⋅

+ 𝑐
𝜏
𝑚

𝑁

∑

𝑗=1

𝑐
𝜏
𝑚

𝑖𝑗
𝐴
𝜏
𝑚𝑢

𝑟

𝑗
(𝑡 − 𝜏

𝑚
(𝑡)) ,

(1)
where the drive system and the response network systems are
linked through the variable 𝑧(𝑡) ∈ 𝑅

1. 𝑢𝑑(𝑡) ∈ 𝑅
𝑛 is the state

variables of the drive system, and 𝑢
𝑟

𝑖
(𝑡) ∈ 𝑅

𝑛 denotes the state
variables of the 𝑖th node in the response network systems.
The 𝑑 and 𝑟 stand for the drive system and response system,
respectively, and 𝑀(𝑧) ∈ 𝑅

𝑛×𝑛 is a matrix which depends on
the variable 𝑧(𝑡). The constant 𝛾 is a positive constant and
Γ ∈ 𝑅

𝑛×𝑛 a matrix. The constants 𝑐 > 0 and 𝑐
𝜏
𝑙 > 0 (𝑙 =

1, 2, . . . , 𝑚) are the nondelayed and the delayed coupling
strength to be adjusted, respectively, and the time-varying
delays 𝜏(𝑡) and 𝜏

𝑙

(𝑡) are bounded by a known constant; that
is, 0 ≤ 𝜏(𝑡) ≤ 𝜏, 0 ≤ 𝜏𝑙(𝑡) ≤ 𝜏𝑙 . 𝐴 ∈ 𝑅

𝑛×𝑛 and 𝐴
𝜏
𝑙 ∈

𝑅
𝑛×𝑛 represent the nondelayed and delayed inner-coupling

matrices, respectively. 𝐶 = (𝑐
𝑖𝑗
)
𝑁×𝑁

and 𝐶
𝜏
𝑙 = (𝑐

𝜏
𝑙

𝑖𝑗
)
𝑁×𝑁

are the nondelayed and delayed outer-coupling configuration
matrices, respectively, in which 𝑐

𝑖𝑗
̸= 0 (𝑐

𝜏
𝑙

𝑖𝑗
̸= 0) if there is a

link from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗) and 𝑐
𝑖𝑗
(𝑡) = 0 (𝑐

𝜏
𝑙

𝑖𝑗
= 0)

otherwise; the diagonal elements of matrix 𝐶 (𝐶
𝜏
𝑙) are given

by 𝑐
𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑐
𝑖𝑗
, (𝑐𝜏𝑙

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑐
𝜏
𝑙

𝑖𝑗
), 𝑖 = 1, 2, . . . , 𝑁,

𝑙 = 1, 2, . . . , 𝑚.

Remark 1. In this paper, it should be pointed out that we do
not require that the time-varying delay is a differential func-
tionwith a bound of its derivative, whichmeans that the time-
varying delays include a wide range of functions. Moreover,
the coupling configuration matrices are not assumed to be
symmetric or irreducible.

In order to derive our main results, some necessary
definitions and lemmas are needed.

Definition 2. The projective synchronization is said to take
place in drive-response coupled network (1), if there exists
constant 𝛼 (𝛼 ̸= 0) such that lim

𝑡→∞
= ‖𝑢

𝑟

𝑖
(𝑡) − 𝛼𝑢

𝑑

(𝑡)‖ = 0

for all 𝑖, where 𝛼 is the scaling factor.

Lemma 3 (see [41]). Let 0 ≤ 𝜏(𝑡), 𝜏
1
(𝑡), 𝜏

2
(𝑡), . . . , 𝜏

𝑚
(𝑡) ≤

𝜏, 𝜏 = max(𝜏, 𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
), 𝐹(𝑡, 𝑢, 𝑢

1
, . . . , 𝑢

𝑚
) : 𝑅

+

×

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 × ⋅ ⋅ ⋅ × 𝑅→ 𝑅 be nondecreasing in 𝑢

𝑖
for each fixed

(𝑡, 𝑢, 𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢

𝑖+1
, 𝑢

𝑚
), 𝑖 = 1, 2, . . . , 𝑚, and let 𝐼

𝑘
(𝑢) :

𝑅 → 𝑅 be nondecreasing in 𝑢. Suppose that 𝑢(𝑡) and 𝜐(𝑡)

satisfy

𝐷
+

𝑢 (𝑡) ≤ 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢
1
(𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑢

𝑚
(𝑡 − 𝜏

𝑚
(𝑡))) ,

𝑡 ≥ 0,

𝑢 (𝑡
𝑘
) ≤ 𝐼

𝑘
𝑢 (𝑡

𝑘
) , 𝑘 ∈ 𝑁,

𝐷
+

𝜐 (𝑡) > 𝐹 (𝑡, 𝜐 (𝑡) , 𝜐
1
(𝑡 − 𝜏

1
(𝑡)) , . . . , 𝜐

𝑚
(𝑡 − 𝜏

𝑚
(𝑡))) ,

𝑡 ≥ 0,

𝜐 (𝑡
+

𝑘
) ≥ 𝐼

𝑘
𝜐 (𝑡

𝑘
) , 𝑘 ∈ 𝑁,

(2)
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where the right and upper Dini’s derivative 𝐷
+

𝑢(𝑡) is defined
as 𝐷+

𝑢(𝑡) = lim
ℎ→0

+((𝑢(𝑡 + ℎ) − 𝑢(𝑡))/ℎ), where ℎ → 0
+

means that ℎ approaches zero from the right-hand side. Then
𝑢(𝑡) ≤ 𝜐(𝑡) for −𝜏 ≤ 𝑡 ≤ 0 implies that 𝑢(𝑡) ≤ 𝜐(𝑡) for 𝑡 ≥ 0.

3. Projective Synchronization Analysis

This section addresses the implementation of projective syn-
chronization between the drive and response networks with
time delay characteristics. By taking a theoretical approach
based on the classic Lyapunov stability theory, we derive the
criteria of network projective synchronization and present an
impulsive control scheme.

By selecting proper control gain matrix 𝐵
𝑘
𝑖

∈ 𝑅
𝑛×𝑛, the

drive-response network (1) can be rewritten as the following
controlled impulsive differential equation:

�̇�
𝑑

(𝑡) = 𝑀 (𝑧) ⋅ 𝑢
𝑑

(𝑡) + 𝛾Γ (𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) − 𝑢
𝑑

(𝑡)) ,

�̇� (𝑡) = 𝑓 (𝑢
𝑑

(𝑡) , 𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡))) ,

�̇�
𝑟

𝑖
= 𝑀(𝑧) ⋅ 𝑢

𝑟

𝑖
(𝑡) + 𝛾Γ (𝑢

𝑟

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑢

𝑟

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐴𝑢

𝑟

𝑗
(𝑡)

+

𝑚

∑

𝑙=1

𝑁

∑

𝑗=1

𝑐
𝜏
𝑙𝑐
𝜏
𝑙

𝑖𝑗
𝐴
𝜏
𝑙𝑢
𝑟

𝑗
(𝑡 − 𝜏

𝑙
(𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑒
𝑖
= 𝐵

𝑖
𝑘

𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(3)

where the impulsive time instants 𝑡
𝑘
satisfy 𝑡

0
< 𝑡

1
< 𝑡

2
<

⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ , and lim
𝑘→∞

𝑡
𝑘

= +∞, Δ𝑢
𝑟

𝑖
= 𝑢

𝑟

𝑖
(𝑡
+

𝑘
) −

𝑢
𝑟

𝑖
(𝑡
−

𝑘
) is the control law in which 𝑢

𝑟

𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑢
𝑟

𝑖
(𝑡) and

𝑢
𝑟

𝑖
(𝑡
−

𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑢
𝑟

𝑖
(𝑡). Without loss of generality, we assume

that lim
𝑡→ 𝑡
−

𝑘

𝑢
𝑟

𝑖
(𝑡) = 𝑢

𝑟

𝑖
(𝑡
𝑘
), which means that the solution of

(3) is left continuous at time 𝑡
𝑘
.

Remark 4. Compared with continuous control, discontin-
uous control, including impulsive control and intermittent
control, is effective, practical, and applicable in many areas,
especially for secure communication. Impulsive controller
has a relatively simple structure and is easy to implement. In
an impulsive synchronization scheme, the response system
receives the information from the drive system only in
discrete times and the amount of conveyed information is,
therefore, decreased. This is very advantageous in practice
due to reduced control cost.

Letting projective synchronization error be 𝑒
𝑖
(𝑡) = 𝑢

𝑟

𝑖
(𝑡)−

𝛼𝑢
𝑑

(𝑡), the error dynamical network is characterized by
̇𝑒
𝑖
(𝑡) = 𝑀 (𝑧) 𝑒

𝑖
(𝑡) + 𝛾Γ (𝑒

𝑖
(𝑡 − 𝜏 (𝑡) − 𝑒

𝑖
(𝑡)))

+ 𝑐

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐴𝑒

𝑗
(𝑡)

+

𝑚

∑

𝑙=1

𝑁

∑

𝑗=1

𝑐
𝜏
𝑙𝐶

𝜏
𝑙

𝑖𝑗
𝑒
𝑗
(𝑡 − 𝜏

𝑙
(𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

�̇� (𝑡) = 𝑓 (𝑢
𝑑

(𝑡) , 𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡))) ,

Δ𝑒
𝑖
= 𝐵

𝑖
𝑘

𝑒
𝑖
(𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . .

(4)

Let 𝑒(𝑡) = (𝑒
𝑇

1
(𝑡), 𝑒

𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))

𝑇, and then (4) can be
rewritten in the Kronecker product form as

̇𝑒 (𝑡) = [(𝐼
𝑁

⊗ (𝑀 (𝑧) − 𝛾Γ)) + 𝑐 (𝐶 ⊗ 𝐴)] 𝑒 (𝑡)

+ (𝐼
𝑁

⊗ 𝛾Γ) 𝑒 (𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑙=1

𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙) 𝑒 (𝑡 − 𝜏

𝑙
(𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

�̇� (𝑡) = 𝑓 (𝑢
𝑑

(𝑡) , 𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) , 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡))) ,

𝑒 (𝑡
+

𝑘
) = (𝐼

𝑁𝑛
+ (𝐼

𝑁
⊗ 𝐵

𝑖
𝑘

)) 𝑒 (𝑡
𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . .

(5)

Let 𝐶([𝑡
0
− 𝜏, 𝑡

0
], 𝑅

𝑛

) be the Banach space of continuous
vector-valued functions mapping the interval [𝑡

0
− 𝜏, 𝑡

0
]

into 𝑅
𝑛 with a topology of uniform convergence. ‖𝜙‖ =

sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

‖𝜙(𝑠)‖ is used to denote the norm of a function
𝜙 ∈ 𝐶([𝑡

0
−𝜏, 𝑡

0
], 𝑅

𝑛

). For functional differential equation (5),
its initial condition is given by 𝑒(𝑠) = 𝜙(𝑠) ∈ 𝐶([𝑡

0
−𝜏, 𝑡

0
], 𝑅

𝑛

).
For simplicity, it is assumed that 𝑒(𝑡) is continuous at 𝑡

0
= 0.

Letting 0 < 𝜌 = sup{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞, 𝜆max[(𝐼𝑁𝑛 + (𝐼

𝑁
⊗

𝐵
𝑘
𝑖

))
𝑇

(𝐼
𝑁𝑛

+(𝐼
𝑁
⊗𝐵

𝑘
𝑖

))] ≤ 𝜂, based on the theory of impulsive
functional differential equation and comparison method, we
have the following results.

Theorem5. For given synchronization scaling factor 𝛼, projec-
tive synchronization in the drive-response coupled dynamical
network with multiple time-varying delays model will occur if
the following inequalities hold:

0 < 𝜂 < 1, (6)

ln 𝜂

𝜌
+ sup[𝜇 (𝑀 (𝑧)) +

2

√𝜂

𝐼𝑁 ⊗ 𝛾Γ


+

𝑚

∑

𝑙=1

2

√𝜂

𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)
] < 0,

(7)

where𝑀(𝑧) = (𝐼
𝑁
⊗(𝑀(𝑧)−𝛾Γ))+𝑐(𝐶⊗𝐴), and then the error

system (5) can converge globally exponentially to a decay rate
𝜆/2, where 𝜆 > 0 is the solution of 𝜆−𝑎+(1/√𝜂)‖𝐼

𝑁
⊗𝛾Γ‖𝑒

𝜆𝜏

+

∑
𝑚

𝑙=1
(1/√𝜂)‖𝑐

𝜏
𝑙(𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)‖𝑒

𝜆𝜏
𝑙 = 0 with 𝑎 = − sup[𝜇(𝑀(𝑧)) +

(2/√𝜂)‖𝐼
𝑁
⊗𝛾Γ‖+∑

𝑚

𝑙=1
(2/√𝜂)‖𝑐

𝜏
𝑙(𝐶

𝜏
𝑙 ⊗𝐴

𝜏
𝑙)‖]−(ln 𝜂/𝜌).That

is to say, the coupled dynamical drive-response network with
time-varying delays can realize the projective synchronization
via impulsive control.

Proof. Consider the following Lyapunov candidate function:

𝑉 (𝑡) = 𝑒
𝑇

(𝑡) 𝑒 (𝑡) . (8)
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For 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ 𝑁, differentiating 𝑉(𝑡) along the

solution of (5), one obtains that

�̇� (𝑡) = 2𝑒
𝑇

(𝑡) ̇𝑒 (𝑡)

= 2𝑒
𝑇

(𝑡) [(𝐼
𝑁

⊗ (𝑀 (𝑧) − 𝛾Γ)) + 𝑐 (𝐶 ⊗ 𝐴)] 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝐼
𝑁

⊗ 𝛾Γ) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 2

𝑚

∑

𝑙=1

𝑒
𝑇

(𝑡) 𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙) 𝑒 (𝑡 − 𝜏

𝑙
(𝑡)) .

(9)

It is clear that

2𝑒
𝑇

(𝑡) (𝐼
𝑁

⊗ 𝛾Γ) 𝑒 (𝑡 − 𝜏 (𝑡))

≤ 𝜍𝑒
𝑇

(𝑡) 𝑒 (𝑡)

+
1

𝜍
𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) (𝐼
𝑁

⊗ 𝛾Γ)
𝑇

(𝐼
𝑁

⊗ 𝛾Γ) 𝑒 (𝑡 − 𝜏 (𝑡))

2

𝑚

∑

𝑙=1

𝑒
𝑇

(𝑡) 𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙) 𝑒 (𝑡 − 𝜏

𝑙
(𝑡))

≤

𝑚

∑

𝑙=1

𝜍
𝑙
𝑒
𝑇

(𝑡) 𝑒 (𝑡)

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑒
𝑇

(𝑡 − 𝜏
𝑙
(𝑡)) (𝑐

𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙))

𝑇

× (𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)) 𝑒 (𝑡 − 𝜏

𝑙
(𝑡)) .

(10)

From the definition of𝑀(𝑧), then, one obtains

�̇� (𝑡) ≤ 𝑒
𝑇

(𝑡) [𝑀(𝑧)
𝑇

+ 𝑀(𝑧)] 𝑒 (𝑡) + 𝜍𝑒
𝑇

(𝑡) 𝑒 (𝑡)

+

𝑚

∑

𝑙=1

𝜍
𝑙
𝑒
𝑇

(𝑡) 𝑒 (𝑡)

+
1

𝜍
𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) (𝐼
𝑁

⊗ 𝛾Γ)
𝑇

(𝐼
𝑁

⊗ 𝛾Γ) 𝑒 (𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑒
𝑇

(𝑡 − 𝜏
𝑙
(𝑡)) (𝑐

𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙))

𝑇

× (𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)) 𝑒 (𝑡 − 𝜏

𝑙
(𝑡))

≤ sup[𝜇 (𝑀 (𝑧)) + 𝜍 +

𝑚

∑

𝑙=1

𝜍
𝑙
]𝑉 (𝑡)

+
1

𝜍

𝐼𝑁 ⊗ 𝛾Γ


2

𝑉 (𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)


2

𝑉 (𝑡 − 𝜏
𝑙
(𝑡)) .

(11)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁, one has

𝑉 (𝑡
+

𝑘
) = 𝑒

𝑇

(𝑡
𝑘
) (𝐼

𝑁𝑛
+ (𝐼

𝑁
⊗ 𝐵

𝑘
))
𝑇

(𝐼
𝑁𝑛

+ (𝐼
𝑁

⊗ 𝐵
𝑘
)) 𝑒 (𝑡

𝑘
)

≤ 𝜂𝑒
𝑇

(𝑡
𝑘
) 𝑒 (𝑡

𝑘
)

= 𝜂𝑉 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(12)

For any 𝜀 > 0, let 𝜐(𝑡) be a unique solution of the following
impulsive delay system:

̇𝜐 (𝑡) = sup[𝜇 (𝑀 (𝑧)) + 𝜍 +

𝑚

∑

𝑙=1

𝜍
𝑙
] 𝜐 (𝑡)

+
1

𝜍

𝐼𝑁 ⊗ 𝛾Γ


2

𝜐 (𝑡 − 𝜏 (𝑡))

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)


2

𝜐 (𝑡 − 𝜏
𝑙
(𝑡)) + 𝜀, 𝑡 ̸= 𝑡

𝑘
,

𝜐 (𝑡
+

𝑘
) = 𝜂𝜐 (𝑡

𝑘
) , 𝑘 ∈ 𝑁,

𝜐 (𝑠) =
𝜙 (𝑠)



2

, −𝜏 ≤ 𝑠 ≤ 0,

(13)

where 𝜙(𝑠) = (𝜙
𝑇

1
(𝑠), 𝜙

𝑇

2
(𝑠), . . . , 𝜙

𝑇

𝑁
(𝑠))

𝑇.
Since 𝑉(𝑠) ≤ ‖𝜙(𝑠)‖

2 for −𝜏 ≤ 𝑠 ≤ 0, it follows from (12)-
(13) and Lemma 3 that

0 ≤ 𝑉 (𝑡) ≤ 𝜐 (𝑡) , for 𝑡 ≥ 0. (14)

By the formula for the variation of parameters,one obtains
𝜐(𝑡) from (13) that

𝜐 (𝑡)

= 𝜔 (𝑡, 0) 𝜐 (0)

+ ∫

𝑡

0

𝜔 (𝑡, 𝑠) (
1

𝜍

𝐼𝑁 ⊗ 𝛾Γ


2

𝜐 (𝑠 − 𝜏 (𝑠))

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑐
𝜏
𝑙 (𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)


2

𝜐 (𝑡 − 𝜏
𝑙
(𝑠)) + 𝜀)𝑑𝑠,

(15)

where 𝜔(𝑡, 𝑠), 0 ≤ 𝑠 ≤ 𝑡, is Cauchy matrix of the linear system

̇𝜍 (𝑡) = sup[𝜇 (𝑀 (𝑧)) + 𝜍 +

𝑚

∑

𝑙=1

𝜍
𝑙
] 𝜍 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝜍 (𝑡
+

𝑘
) = 𝜂𝜍 (𝑡

𝑘
) , 𝑘 ∈ 𝑁.

(16)
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According to the representation of the Cauchymatrix, we
get the following estimation of 𝜔(𝑡, 𝑠), since 0 < 𝜂 < 1 and
𝑡
𝑘
− 𝑡

𝑘−1
≤ 𝜌,

𝜔 (𝑡, 𝑠) = 𝑒
sup[𝜇(𝑀(𝑧))+𝜍+∑

𝑚

𝑙=1
𝜍
𝑙
](𝑡−𝑠)

∏

𝑠<𝑡
𝑘
≤𝑡

𝜂

≤ 𝑒
(−𝑎−(ln 𝜂/𝜌))(𝑡−𝑠)

𝜂
(((𝑡−𝑠)/𝜌)−1)

=
1

𝜂
𝑒
−𝑎(𝑡−𝑠)

, 0 ≤ 𝑠 ≤ 𝑡,

(17)

For simplicity, let 𝛾 = (1/𝜂)sup
−𝜏≤𝑠≤0

{‖𝜙(𝑠)‖
2

}, 𝜍 =

(1/√𝜂)‖𝐼
𝑁

⊗ 𝛾Γ‖, 𝜍
𝑙
= (1/√𝜂)‖𝑐

𝜏
𝑙(𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)‖, from (15) and

(17), one has

𝜐 (𝑡) ≤
1

𝜂
𝑒
−𝑎𝑡

𝜐 (0)

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

1

𝜂

× [
1

𝜍

𝐼𝑁 ⊗ 𝛾Γ


2

𝜐 (𝑠 − 𝜏 (𝑠))

+

𝑚

∑

𝑙=1

1

𝜍
𝑙

𝑐
𝜏
𝑙(𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)


2

𝜐 (𝑡 − 𝜏
𝑙
(𝑠)) + 𝜀] 𝑑𝑠

≤ 𝛾𝑒
−𝑎𝑡

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

[𝜍𝜐 (𝑠 − 𝜏 (𝑠))

+

𝑚

∑

𝑙=1

𝜍
𝑙
𝜐 (𝑠 − 𝜏

𝑙
(𝑠)) +

𝜀

𝜂
] 𝑑𝑠.

(18)

Defining 𝜑(𝜆) = 𝜆 − 𝑎 + 𝜍𝑒
𝜆𝜏

+ ∑
𝑚

𝑙=1
𝜍
𝑙
𝑒
𝜆𝜏, from (7), one

has 𝑎, 𝜍, ∑𝑚

𝑙=1
𝜍
𝑙
and 𝑎 − 𝜍 − ∑

𝑚

𝑙=1
𝜍
𝑙
> 0, and also 𝜑(0) < 0,

𝜑(+∞) > 0, 𝜑(𝜆) = 1 + 𝜍𝜏𝑒
𝜆𝜏

+ ∑
𝑚

𝑙=1
𝜍
𝑙
𝜏
𝑙
𝑒
𝜆𝜏
𝑙 > 0. Therefore,

there exists a unique solution 𝜆 > 0 such that 𝜑(𝜆) = 0.
On the other hand, since 𝜀 > 0, 𝜆 > 0, 𝑎 − 𝜍 − ∑

𝑚

𝑙=1
𝜍
𝑙
> 0,

and (1/𝜂) > 1, one has

𝜐 (𝑡) ≤
1

𝜂
sup

−𝜏≤𝑠≤0

𝜐 (𝑠)

< 𝛾𝑒
−𝜆𝑡

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
, −𝜏 ≤ 𝑡 ≤ 0.

(19)

In the following, we will prove that the following inequal-
ity holds:

𝜐 (𝑡) < 𝛾𝑒
−𝜆𝑡

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
, 𝑡 > 0. (20)

If (20) is not true; that is, it is assumed that there exists a
𝑡
∗

> 0 such that

𝜐 (𝑡
∗

) ≥ 𝛾𝑒
−𝜆𝑡
∗

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
, (21)

𝜐 (𝑡) < 𝛾𝑒
−𝜆𝑡

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
, 𝑡 < 𝑡

∗

. (22)

From (18) and (22), one has

𝜐 (𝑡
∗

)

≤ 𝛾𝑒
−𝑎𝑡
∗

+ ∫

𝑡
∗

0

𝑒
−𝑎(𝑡
∗
−𝑠)

[𝜍𝜐 (𝑠 − 𝜏 (𝑠)) +

𝑚

∑

𝑙=1

𝜍
𝑙
𝜐 (𝑠 − 𝜏

𝑙
(𝑠)) +

𝜀

𝜂
] 𝑑𝑠

< 𝑒
−𝑎𝑡
∗

(𝛾 +
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
)

+ 𝑒
−𝑎𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎𝑠

[𝜍(𝛾𝑒
−𝜆(𝑠−𝜏(𝑠))

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
)

+

𝑚

∑

𝑙=1

𝜍
𝑙
(𝛾𝑒

−𝜆(𝑠−𝜏
𝑙
(𝑠))

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
)

+
𝜀

𝜂
] 𝑑𝑠

≤ 𝑒
−𝑎𝑡
∗

(𝛾 +
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
)

+ 𝑒
−𝑎𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎𝑠

[𝜍𝑒
−𝜆(𝑠−𝜏(𝑠))

+

𝑚

∑

𝑙=1

𝜍
𝑙
𝑒
−𝜆(𝑠−𝜏

𝑙
(𝑠))

+
(𝜍 + ∑

𝑚

𝑙=1
𝜍
𝑙
) 𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
+

𝜀

𝜂
] 𝑑𝑠

≤ 𝑒
−𝑎𝑡
∗

{𝛾 +
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)

+ 𝛾(𝜍𝑒
𝜆𝜏

+

𝑚

∑

𝑙=1

𝜍
𝑙
𝑒
𝜆𝜏
𝑙)∫

𝑡
∗

0

𝑒
(𝑎−𝜆)𝑠

𝑑𝑠

+
𝑎𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
∫

𝑡
∗

0

𝑒
𝑎𝑠

𝑑𝑠}

< 𝛾𝑒
−𝜆𝑡
∗

+
𝜀

𝜂 (𝑎 − 𝜍 − ∑
𝑚

𝑙=1
𝜍
𝑙
)
,

(23)

which contradicts (21), so (20) holds. Letting 𝜀 → 0, we get

𝑉 (𝑡) = ‖𝑒(𝑡)‖
2

≤ 𝜐 (𝑡) ≤ 𝛾𝑒
−𝜆𝑡

. (24)

Therefore, we have

‖𝑒 (𝑡)‖ ≤ √𝛾𝑒
−(𝜆/2)𝑡

, 𝑡 ≥ 0. (25)

When 𝑡 → ∞, the error system (5) is global exponential
asymptotically stable, which implies that the drive-response
coupled networks (1) achieve projective synchronizationwith
a scaling factor via impulsive control. This completes the
proof of Theorem 5.

From Theorem 5, it is easy to obtain the following
corollaries for the drive-response coupled dynamical network
without the nodes delay.
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Corollary 6. Letting 𝜏(𝑡) = 0, 𝐶 ̸= 0, and 𝐶
𝜏
𝑙 = 0 for 𝑙 =

1, 2, . . . , 𝑚, if the following inequality holds:
ln 𝜂

𝜌
+ sup [𝜇 (𝐼

𝑁
⊗ 𝑀(𝑧) + 𝑐 (𝐶 ⊗ 𝐴))] < 0, (26)

where 0 < 𝜂 < 1, then the dynamical drive-response
network without coupling delays can achieve the projective
synchronization.

Corollary 7. Letting 𝜏(𝑡) = 0, 𝐶 = 0, and 𝐶
𝜏
𝑙 ̸= 0 for 𝑙 =

2, . . . , 𝑚, if the following inequality holds:

ln 𝜂

𝜌
+ sup[𝜇 (𝐼

𝑁
⊗ 𝑀(𝑧)) +

1

√𝜂

𝑐
𝜏
1 (𝐶

𝜏
1 ⊗ 𝐴

𝜏
1)
] < 0;

(27)

where 0 < 𝜂 < 1, then the dynamical drive-response network
with coupling delays can achieve the projective synchronization.

Remark 8. Weconsider the equidistant impulsive interval 𝑡
𝑘
−

𝑡
𝑘−1

= Δ and the impulsive control gain matrix 𝐵
𝑘

= 𝑏𝐼
𝑛
,

𝑘 = 1, 2, . . ., in Theorem 5. Then, if the following condition
holds:Δ < −((2|1+𝑏| ln |1+𝑏|)/(|1+𝑏| sup[𝜇(𝑀(𝑧))]+2‖𝐼

𝑁
⊗

𝛾Γ‖ + 2∑
𝑚

𝑙=1
‖𝑐

𝜏
𝑙(𝐶

𝜏
𝑙 ⊗𝐴

𝜏
𝑙)‖)), −2 < 𝑏 < 0, then the projective

synchronization is achieved.

Remark 9. The value of scaling factor 𝛼 has no effect on the
error dynamics of the system (see (4)) because the values
of ̇𝑒

𝑖
(𝑡) are independent of the scaling factor 𝛼. So we can

arbitrarily direct the scaling factor 𝛼 onto any desired value.

Remark 10. When 𝐶
𝜏
𝑙 = 0 and 𝜏 = 0 for 𝑙 = 1, 2, . . . , 𝑚,

the drive-response coupled network (1) becomes the drive-
response coupled network discussed in [35–37], and when
𝐶 = 0, 𝜏 = 0, and 𝐶

𝜏
𝑙 = 0 for 𝑙 = 2, . . . , 𝑚, the network (1)

becomes the network discussed in [38, 39].Thus, the obtained
results in this paper are more general than those of the above
literatures.

Remark 11. Sun et al. [38] studied the projective synchro-
nization in drive-response dynamical networks with time-
varying coupling delay, but the time-varying delay in the
paper is differential and its derivative is simultaneously
required to be not greater than 1, which is a very strict
condition. Obviously, we do not need these limit conditions
in theorems and corollaries.

4. Numerical Simulation

In this section, numerical simulations are given to verify and
demonstrate the effectiveness of the proposed synchroniza-
tion scheme for synchronizing the drive-response coupled
network with time-delayed dynamical nodes and multiple
coupling delays onto a scaling factor. We consider the time
delay Lorenz chaotic system [32] as the drive system. The
Lorenz system with a time delay is described by

(

�̇�

̇𝑦

�̇�

) = (

𝜎 (𝑦 − 𝑥)

(𝑎 − 𝑧) 𝑥 − 𝑦

𝑥𝑦 − 𝑒𝑧

) + 𝛾(

𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥

𝑦 (𝑡 − 𝜏 (𝑡)) − 𝑦

𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧

) , (28)

where 𝛾 = 10, 𝜏(𝑡) = 5−𝑒
−𝑡, 𝜎 = 16, 𝑎 = 40, 𝑒 = 4, Γ = 𝐼

2
.The

system (28) with the above parameters is chaotic, as shown in
Figure 1.

For simplicity, the drive-response network systems with
two terms of time-varying delayed coupling are described as
follows:

�̇�
𝑑

(𝑡) = 𝑀 (𝑧) ⋅ 𝑢
𝑑

(𝑡) + 10 (𝑢
𝑑

(𝑡 − 𝜏 (𝑡)) − 𝑢
𝑑

(𝑡)) ,

�̇� (𝑡) = 𝑥 (𝑡) 𝑦 (𝑡) − 𝑧 (𝑡) + 10 (𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡)) ,

�̇�
𝑟

𝑖
(𝑡) = 𝑀 (𝑧) ⋅ 𝑢

𝑟

𝑖
(𝑡) + 10 (𝑢

𝑟

𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑢

𝑟

𝑖
(𝑡))

+ 𝑐

5

∑

𝑗=1

𝑐
𝑖𝑗
𝐴𝑢

𝑟

𝑗
(𝑡)

+

2

∑

𝑙=1

5

∑

𝑗=1

𝑐
𝜏
𝑙𝑐
𝜏
𝑙

𝑖𝑗
𝐴
𝜏
𝑙𝑢
𝑟

𝑗
(𝑡 − 𝜏

𝑙
(𝑡)) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑢
𝑟

𝑖
= 𝑢

𝑟

𝑖
(𝑡
+

𝑘
) − 𝑢

𝑟

𝑖
(𝑡
−

𝑘
) = 𝐵

𝑖
𝑘

[𝑢
𝑟

𝑖
− 𝛼𝑢

𝑑

] ,

𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . ,

(29)

where𝑀(𝑧) = (
−𝜎 𝜎

𝑎−𝑧 −1
).

The coupling configuration matrices 𝐶 = (𝑐
𝑖𝑗
)
𝑁×𝑁

, 𝐶𝜏
1 =

(𝑐
𝜏
1

𝑖𝑗
)
𝑁×𝑁

, and 𝐶
𝜏
2 = (𝑐

𝜏
2

𝑖𝑗
)
𝑁×𝑁

are

𝐶 = (

−3 −1 0 3 1

1 −3 0 0 2

0 1 0 −1 0

0 1 1 −1 −1

−2 2 0 −1 1

),

𝐶
𝜏
1 = (

−2 0 0 1 1

2 −4 0 0 2

0 2 0 −2 0

1 1 1 −2 −1

−2 2 1 −2 1

),

𝐶
𝜏
2 = (

−1 −1 0 2 0

1 −3 0 0 2

0 1 0 −1 0

0 1 0 0 −1

−2 2 0 −1 1

).

(30)

According to Theorem 5, we have the result that, for the
given scaling factor 𝛼, if inequalities (6) and (7) can be satis-
fied, then the error dynamical system (4) will be stabilized
at zero equilibrium asymptotically; that is, the projective
synchronization of drive-response network systems will be
realized.

In the numerical simulations, we assume 𝑐 = 0.1, 𝑐𝜏1 =

0.3, 𝑐𝜏2 = 0.2, 𝐴 = 𝐴
𝜏
𝑙 = 𝐼

3
, 𝐵

𝑖
𝑘

= diag{−0.8, −0.8},
(1 + 𝑏)

2

= 𝜂 = 0.04 > 0. The two coupling delays are
𝜏
1
(𝑡) = 1 + 0.2 sin 𝑡 and 𝜏

2
(𝑡) = 0.6 + 0.1 sin 𝑡, respectively.

After calculations, getting 𝜆max(𝑀
𝑇

(𝑧) + 𝑀(𝑧)) = −(𝜎 +

1) + √(𝜎 − 1)
2

+ (𝜎 + 𝑎 − 𝑧)
2

< 41, sup[𝜇(𝑀(𝑧))] =

21.4346, 2‖𝐼
𝑁

⊗ 𝛾Γ‖ = 20, 2∑
2

𝑙=1
‖𝑐

𝜏
𝑙(𝐶

𝜏
𝑙 ⊗ 𝐴

𝜏
𝑙)‖ = 8.3232,
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Figure 1: Chaotic behavior of the time-delayed system (28).
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Figure 2: Evolution of (a) state trajectories of drive and response
systems and (b) projective synchronization error without impulsive
control when 𝜏(𝑡) = 5 − 𝑒

−𝑡.

then, one has Δ < 0.0197. Taking the impulsive interval Δ =

𝑡
𝑘+1

− 𝑡
𝑘
= 0.01, then, it is easy to verify that all conditions in

Remark 8 are satisfied. The projective synchronization error
is defined by ‖𝑒(𝑡)‖ = √(𝑥

𝑖1
− 𝛼𝑥

1
)
2

+ (𝑦
𝑖2
− 𝛼𝑦

2
)
2, 𝑖 =

1, 2, . . . , 5. When the given scaling factor is 𝛼 = 2, Figure 2
shows the evolution process of the error and the states of
the drive-response network without impulsive control. From
Figure 2, it is easy to see that the projective synchronization
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Figure 3: The phase plot of 𝑥 and 𝑦 plane with 𝛼 = 2.
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Figure 4: Evolution of (a) state trajectories of drive (the dash
line) and response systems (the solid line) and (b) projective
synchronization error under impulsive control.

is not achieved. Figure 3 displays the projective synchroniza-
tion trajectory of the drive-response dynamical networks.
Figure 4 shows the evolution process of the error and the
states of the drive-response network with impulsive control.
When the given scaling factor is 𝛼 = −0.5, as shown in
Figures 5 and 6, the numerical results show that the impulsive
controlling scheme for the drive-response coupled dynamical
network with time-varying delays is effective.

Especially, if 𝜏 = 0, the delayed system (28) becomes
the Lorenz system. But if the other conditions are chosen
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Figure 5: The phase plot of 𝑥 and 𝑦 plane with 𝛼 = −0.5.
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Figure 6: Evolution of (a) state trajectories of drive (the dash
line) and response systems (the solid line) and (b) projective
synchronization error under impulsive control.

to be the same as above, one has Δ < 0.0650. We choose
impulsive interval Δ = 𝑡

𝑘+1
− 𝑡

𝑘
= 0.05, and the projective

synchronization can be obtained with the given scaling factor
𝛼 = −2, and the simulation results are as shown in Figures 7,
8, and 9. Obviously, the numerical simulations confirm the
theoretical analysis.

Remark 12. In this paper, the projective synchronization
problem of drive-response coupled dynamical network with
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Figure 7: Evolution of (a) state trajectories of drive and response
systems and (b) projective synchronization error without impulsive
control when 𝜏(𝑡) = 0.
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Figure 8: The phase plot of 𝑥 and 𝑦 plane with 𝛼 = −2, 𝜏(𝑡) = 0.

multiple time-varying delays is studied by employing the
impulsive control scheme. As well known, compared with
the controller used in adaptive control method [38], the con-
troller used in impulsive method usually is relatively simple
and is easy to implement. In the impulsive synchronization,
the response networks receive the information from the
drive system only in discrete times, which can reduce the
information redundancy in the transmitted signal, increase
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Figure 9: Evolution of (a) state trajectories of drive (the dash
line) and response systems (the solid line) and (b) projective
synchronization error under impulsive control.

the robustness, and reduce the control cost. Furthermore,
from the simulation results, it is clear that the impulsive
control scheme is more effective than the adaptive control
scheme.

5. Conclusion

In this paper, the projective synchronization of drive-
response coupled dynamical network with time delays
dynamical nodes and multiple coupling delays has been
studied. Some sufficient conditions for realizing the projec-
tive synchronization with a scaling factor are established by
using the stability analysis of impulsive delayed systems and
comparison method. Numerical simulations have also been
given to show the effectiveness and the correctness of the
theoretical analysis finally.

In the analysis and simulation study in this paper, we
fully considered the impact of the time delay element on
the projective synchronization of the drive-response network
systems. In order to obtain a generic solution of projective
synchronization criteria and control scheme, we neglected
the particularities of networks. In fact, the dynamic processes
of different oscillators are not always unified; as a result
their dynamic characteristics under time delay need to be
further investigated. Furthermore, we did not consider the
environment factors, for example, noise, on the networks,
which often affect the synchronization process of the drive-
response network systems. Therefore, with respect to the
future work, we will further consider the projective synchro-
nization problem of drive-response network with different

dynamics oscillators under different scaling factors. Simulta-
neously, other environmental factors, for example, the noise,
will be taken into account in the study to further improve the
robustness of the control solutions.
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