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A method with easy operation procedure and simple calibration condition is presented in this paper to solve the base frame
calibration problem for cooperative robots. It is carried out through constructing a series of handclasp configurations and recording
coordinates of the contact points, respectively, in base frame of each robot.Then the rotationmatrix and translationmatrix between
base frame of cooperative robots can be calculated which is just the calibration result for cooperative robots. Based on typical
installation mode for industrial robot, the floor mounted, wall mounted and ceiling mounted, constraints between base frames of
these robots are further explored. These constraints are used to improve the calibration results for base frame calibration problem.
In order to validate the correctness and effectiveness of our method, experiments on two industrial robots (Motoman VA1400 and
HP20) are carried out at the end of the paper.The calibration errors are less than 8mm inmost cases, which satisfies the requirement
of positioning accuracy for most industrial process, such as arc welding, transporting, and cutting. These experiment results assert
the correctness of our method which can be used effectively to solve the base frame calibration problem for cooperative robots in
manufacturing process.

1. Introduction

Cooperative robot system is a hot topic in robotics and
much literature has been reported in this field. A multiple
robot system surpasses a single robot system greatly in terms
of flexibility and versatility in task execution. Particularly,
multiple robot cooperation is required if we are to assemble
andmanipulate parts without the aid of fixtures or jigs or if we
to smoothly transfer heavy and voluminous objects from one
place to another. In the case of cooperation control between
two robots, one robot must be informed of the position and
orientation of the other robots. Therefore, robot base frame
between one and another must be calibrated out before the
cooperation starts. This paper aims at presenting an effective
solution to such a problem of base frame calibration between
two cooperative robots.

“Base frame calibration, which is to determine
the relative translation and rotation between

base frames of two cooperative robots, is a
challenging and basic problem formultiple robot
system. A direct measurement is unaccessible
because origins of the robot base frames are out
of reach. Calibrations for an individual robot
have already been investigated extensively and
many effectivemethods have been developed [1–
3]. Nevertheless, few researches have been made
on calibration problem between two robots.
Reference [4] proposed a passive base frame
calibration method for two cooperative indus-
trial robots by using a series of “peg-into-hole”
manipulations to set up the calibration equation
as 𝐴𝑋 = 𝑋𝐵. The calibration accuracy depends
on how precisely the peg aligned with the
hole, which is monitored and adjusted manually
by human operator. Through a hand-mounted
vision sensor, a more human-independent cal-
ibrating approach for dual robots system is
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presented in [5]. It takes advantage of relative
motion between the robot end-effectors which
can be recorded by the vision sensor to calculate
the transformation relation between the base
frames of dual robots. However, vision sen-
sor parameters and their mounted postures are
required for calculation of the transformation.
Therefore, calibration result would be poor if
these prerequisites were unprecise. Reference [6]
introduced another calibration method based
on Direct Linear Transformation using two
CCD (Charge Coupled Device) cameras for
cooperative industrial robots. Without know-
ing the mounting information of the cameras,
it just uses a set of motions commanded to
each manipulator. By detecting the motion with
the cameras, relative rotation and translation
between base frames of the two robots can be
obtained. A simpler but more effective calibra-
tion method is presented in [7]. It uses only
two calibration plates which are inexpensive to
manufacture and requires no other measuring
instrument. Only by forming the cooperative
manipulators into a closed chain, commanding
them to move through a set of postures and
recording the joint information, the calibration
problem can be formulated as a nonlinear opti-
mization problem.” (This paragraph is cited from
our previously published paper in [8]. It has been
included in this paper just for integrity reason.)

In one of our previous works [8], a new calibration
method based on handclasp manipulation is proposed. This
method uses only a series of handclasp manipulations and
their corresponding joint information to calculate the trans-
formation relation between base frames of the coopera-
tive robots. No external calibration apparatus or elaborate
setups are needed. Great advantages of this method are the
easy operational procedure and simple calibrating condition,
which makes it quite feasible for use in manufacturing field,
whereas the calibration problem considered in [8] is a generic
form. For industrial process, robot base installation has
strong characteristics. These characteristics can be described
by a concept of robot installation angle. Definite constraints
exist between robot installation angle for typical installed
robots. Considering these constraints, the calibration results
in [8] can be greatly improved for typical installed robots.
Therefore, further research has been conducted to improve
the calibration accuracy of our previously proposed calibra-
tion method. Focus of the innovation in this paper lies in
that constraints between robot installation angles for typical
installed robots have been involved in the calibration process,
which improves the calibration accuracy a lot. Remainder
of this paper is organized as follows. Section 2 introduces
theoretical analysis of the improved method for robot base
calibration. Section 3 presents the calibration procedure of
this method. In addition to the method introduction, cal-
ibration experiments for two cooperative industrial robots
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Figure 1: Robot base installation angle.

are presented in Section 4. Concluding remarks follow in
Section 5.

2. Method of the Calibration

2.1. Robot Installation Angle. In applications with a single
robot, the world system is usually chosen in the base of the
robot. Yet, when several robots work together in a task, it is
beneficial to use aworld system independent of the individual
robots. To enable this, the path controller has to manage
the position of the individual robots in the world system by
defining a separate robot base frame.

For most industrial applications, only three installation
types exist for the robot base mounting, which is called
floor mounted, wall mounted, and ceiling mounted. For
quantitative descriptions of the aforementioned robot base
installation types, concept of robot installation angle is
defined as follows.

Definition 1. As shown in Figure 1, the installation angle is
defined as the joint 𝜃 between axis-𝑋 of robot base frame and
the ground level line.

Since the definition of robot base frame has a unique
form in industry standard [9], the above definition of the
robot installation angle is invariant with respect to the robot’s
front and rear. For further illustration, examples of typical
installation angle are shown in Figure 2.

By the definition of robot installation angle, a floor
mounted robot has an installation angle of 0∘, a wall mounted
robot has an installation angle of −90∘ or 90∘, and a ceiling
mounted robot has an installation angle of 180∘. Introduc-
ing these values to base frame calibration between typical
installed robots, the calibration results will be improved
greatly comparedwith the calibration results presented in [8].

2.2. Calibration of Generally Installed Cooperative Robots. In
[8], we proposed a base frame calibration method for gener-
ally installed cooperative robots. Principle of the calibration
method in [8] is used as the development basis for this paper.



Journal of Applied Mathematics 3

0
∘

90
∘

−90
∘

180
∘

Figure 2: Examples of typical installation angle.

b1F b1
b2 b2F

H

Measuring tips 

Robot VA1400

Robot HP20

Figure 3: Handclasp manipulation for two cooperative industrial
robots Motoman VA1400 and HP20.

For two cooperative robots as shown in Figure 3, b1F is
the base frame system for robot Motoman VA1400 and b2F
is the base frame system for robot Motoman HP20. These
two robots form a handclasp configuration in Figure 3 with
measuring tips mounted at the end of each robot. Let the
homogenous matrix b1Hb2 ∈ R4×4 be the relative position
and orientation between these two robots. b1Hb2 can be
calibrated by 4handclaspmanipulations as shown in Figure 3.

Reference [8] presents basic forms of the base frame
calibration equations for two cooperative robots.Those equa-
tions are generic forms. For typical installed robots, those
equations can be refined to improve the calibration results as
discussed in the next part of the paper.

2.3. Calibration Equations for Typical Installed Robot. In this
paper, only three types of the robot base installation are
considered, which are floor mounted, wall mounted, and
ceiling mounted. Thereafter, only three types of the robot
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Figure 4: Handclasp manipulation between a floor mounted robot
and a floor mounted robot.

base calibration problems are considered here, which are
calibration of a floormounted robot to a floormounted robot,
calibration of a floor mounted robot to a wall mounted robot,
and calibration of a floormounted robot to a ceilingmounted
robot. Although the resulting classification is not exhaustive,
it covers most cases of the industrial applications.

2.3.1. Calibration of a Floor Mounted Robot Relative to a
FloorMounted Robot. As shown in Figure 4, a floormounted
robot is carrying out the handclasp manipulation with a floor
mounted robot. By the above introduced method, relative
position and orientation between base frames of the two
robots can be calibrated. Theoretically speaking, the rotation
matrix for orientation between the two base frames must
be orthogonal and normalized, whereas the solution cannot
ensure this characteristic, because resolution of transducer
for robot joint positions is limited and error exists in system
modeling. Therefore, an orthonormalization procedure is
necessary to refine the calibrated result for frame rotation.

The criterion for rotation matrix orthonormalization is
that modification made on frame rotation b1Rb2 must be the
least. The Frobenius norm of matrix A is adopted to evaluate
the difference between two matrices, which is

‖A‖F = (

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1


𝑎
𝑖𝑗



2

)

1/2

, (1)

whereA is an𝑚×𝑛matrix,A
𝑚×𝑛

= (𝑎
𝑖𝑗
)
𝑚×𝑛

. By the Frobenius
norm, a cost function for the orthonormalization can be
defined as

𝐽 =

R−b1Rb2



2

F

s.t. R ⋅ RT
= I
3×3

, R ∈ R
3×3

.

(2)
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The Frobenius distance between R and b1Rb2 is adopted
as the cost function because each element difference will
contribute to the increase of matrix distance. The Frobenius
norm is much more sensitive to the element variation than
other matrix norms. When 𝐽 is minimized, it means that
each element variation between R and b1Rb2 is averagely
minimized. Let b1R∗b2 be the orthonormalized result; we have

𝐽 (
b1R∗b2) = min

R⋅RT
=I3


R−b1Rb2



2

F
. (3)

Equation (3) means orthonormal matrix b1R∗b2 is the optimal
Frobenius norm approximation for preliminary solution
b1Rb2.

For the calibration case in Figure 4, relative orientation
between the two cooperative robots exists in the form of
a rotation around axis-𝑍 of the robot base frame. Since
the two robots have the same installation angle of 0

∘,
rotation matrix between their base frames b1F and b2F will
be

Rot (𝑍, 𝜃) = [

[

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]

]

, (4)

where 𝜃 is an arbitrary angle.
Let 𝛼 = cos 𝜃, 𝛽 = sin 𝜃; then 𝛼

2

+ 𝛽
2

= 1. Substituting
𝛼, 𝛽 into (2) yields

𝐽 =

Rot (𝑍, 𝜃 (𝛼, 𝛽)) −b1Rb2



2

F

s.t. 𝛼
2

+ 𝛽
2

= 1.

(5)

Equation (5) can be viewed as a mathematical optimization
problem, which is to find the minimum of a multivariable
function 𝐽 subject to constraint 𝛼2 + 𝛽

2

= 1. The method
of Lagrange multipliers [10] provides an effective strategy
for solving these problems. Define the Lagrangian function
as

𝐽 =

Rot (𝛼, 𝛽) −b1Rb2



2

F
+ 𝜆 (𝛼

2

+ 𝛽
2

− 1) . (6)

Let the preliminary calibration result b1Rb2 be

b1Rb2 =
[

[

𝑛
𝑥

𝑜
𝑥

𝑎
𝑥

𝑛
𝑦

𝑜
𝑦

𝑎
𝑦

𝑛
𝑧

𝑜
𝑧

𝑎
𝑧

]

]

. (7)

Substituting (7) into (6) and expanding the function 𝐽

yields

𝐽 =

Rot (𝛼, 𝛽) −b1Rb2



2

F + 𝜆 (𝛼
2

+ 𝛽
2

− 1)

= (𝛼 − 𝑛
𝑥
)
2

+ (−𝛽 − 𝑜
𝑥
)
2

+ 𝑎
2

𝑥

+ (𝛽 − 𝑛
𝑦
)
2

+ (𝛼 − 𝑜
𝑦
)
2

+ 𝑎
2

𝑦

+ 𝑛
2

𝑧

+ 𝑜
2

𝑧

+ (1 − 𝑎
𝑧
)
2

+ 𝜆 (𝛼
2

+ 𝛽
2

− 1) .

(8)

Minimizing the function 𝐽 (8) with respect to 𝛼, 𝛽, and 𝜆,
we obtain

𝜕𝐽

𝜕𝛼
= 2 (𝛼 − 𝑛

𝑥
) + 2 (𝛼 − 𝑜

𝑦
) + 2𝜆𝛼 = 0,

𝜕𝐽

𝜕𝛽
= 2 (𝛽 + 𝑜

𝑥
) + 2 (𝛽 − 𝑛

𝑦
) + 2𝜆𝛽 = 0,

𝜕𝐽

𝜕𝜆
= 𝛼
2

+ 𝛽
2

− 1 = 0.

(9)

Unique solution exists for (9); that is,

𝜆 = √(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

− 2,

𝛼 =

𝑛
𝑥
+ 𝑜
𝑦

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

,

𝛽 =

𝑛
𝑦
− 𝑜
𝑥

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

.

(10)

After 𝛼, 𝛽, 𝜆 are obtained, we have the refined calibration
result for rotation as

b1R∗b2 = Rot (𝛼, 𝛽) =

[
[
[
[
[
[
[
[
[

[

𝑛
𝑥
+ 𝑜
𝑦

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

−

𝑛
𝑦
− 𝑜
𝑥

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

0

𝑛
𝑦
− 𝑜
𝑥

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

𝑛
𝑥
+ 𝑜
𝑦

√(𝑛
𝑥
+ 𝑜
𝑦
)
2

+ (𝑛
𝑦
− 𝑜
𝑥
)
2

0

0 0 1

]
]
]
]
]
]
]
]
]

]

(11)
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Figure 5: Handclasp manipulation between a floor mounted robot
and a wall mounted robot.

inwhich b1R∗b2 is the orthonormalized and refined calibration
result for rotation matrix. Thereafter, the translation vector
also needs to be recalculated, which is

b1T∗b2 =
1

4
[(

b1
𝑃
1
−
b1R∗b2 ⋅

𝑏𝑗

𝑃
1
) + (

b1
𝑃
2
−
b1R∗b2 ⋅

b2
𝑃
2
)

+ (
b1
𝑃
3
−
b1R∗b2 ⋅

b2
𝑃
3
) + (

b1
𝑃
4
−
b1R∗b2 ⋅

b2
𝑃
4
)] .

(12)

Equations (11) and (12) are developed form of the cali-
bration equations in [8], which will lead to more accurate
calibration results comparedwith othermethods as presented
in [8].

2.3.2. Calibration of a Floor Mounted Robot Relative to a
Wall Mounted Robot. As shown in Figure 5, a floor mounted
robot is carrying out the handclasp manipulation with a wall
mounted robot. For the calibration case in Figure 5, relative
orientation between the two cooperative robots exists in the
form of 3 successive rotations.

(I) A rotation of angle 𝛼 for Robot HP20 around axis-𝑍
of the robot base frame b2F to make axis-𝑌 of b2F horizontal,
which is

Rot (𝑍, 𝛼) = [

[

cos𝛼 − sin𝛼 0

sin𝛼 cos𝛼 0

0 0 1

]

]

. (13)

(II) A rotation of −90∘ for Robot HP20 around axis-𝑌 of
the robot base frame b2F tomake axis-𝑍 of b2F vertical to the
ground, which is

Rot (𝑌, −90∘) = [

[

cos (−90∘) 0 sin (−90
∘

)

0 1 0

− sin (−90
∘

) 0 cos (−90∘)
]

]

= [

[

0 0 −1

0 1 0

1 0 0

]

]

.

(14)

(III) A rotation of angle 𝛽 for Robot HP20 around axis-
𝑍 of the robot base frame b2F to make axis-𝑋 of b2F stretch
along the same direction as axis-𝑋 of b1F, which is

Rot (𝑍, 𝛽) = [

[

cos𝛽 − sin𝛽 0

sin𝛽 cos𝛽 0

0 0 1

]

]

. (15)

By (13), (14), and (15), we have the rotation matrix
between robot base frame b1F and b2F as

R (𝛼, 𝛽) = Rot (𝑍, 𝛽) ⋅ Rot (𝑌, −90∘) ⋅ Rot (𝑍, 𝛼)

= [

[

cos𝛽 − sin𝛽 0

sin𝛽 cos𝛽 0

0 0 1

]

]

⋅ [

[

0 0 −1

0 1 0

1 0 0

]

]

⋅ [

[

cos𝛼 − sin𝛼 0

sin𝛼 cos𝛼 0

0 0 1

]

]

= [

[

0 − sin𝛽 − cos𝛽
0 cos𝛽 − sin𝛽

1 0 0

]

]

[

[

cos𝛼 − sin𝛼 0

sin𝛼 cos𝛼 0

0 0 1

]

]

= [

[

− sin𝛽 sin𝛼 − sin𝛽 cos𝛼 − cos𝛽
cos𝛽 sin𝛼 cos𝛽 cos𝛼 − sin𝛽

cos𝛼 − sin𝛼 0

]

]

.

(16)

For simplicity, let 𝜇 = cos𝛼, ] = sin𝛼, 𝜌 = cos𝛽, 𝜎 =

sin𝛽; then 𝜇
2

+ ]2 = 1, 𝜌
2

+ 𝜎
2

= 1,

R (𝛼, 𝛽) = [

[

−𝜎] −𝜎𝜇 −𝜌

𝜌] 𝜌𝜇 −𝜎

𝜇 −] 0

]

]

= R (𝜇, ], 𝜌, 𝜎) . (17)

Substituting (17) into (2) yields

𝐽 =

R (𝜇, ], 𝜌, 𝜎) −b1Rb2



2

F

s.t. 𝜇
2

+ ]2 = 1, 𝜌
2

+ 𝜎
2

= 1.

(18)

Equation (18) also is a multivariable function optimiza-
tion problem. By Lagrange multipliers method, define the
Lagrangian function as

𝐽 =

Rot (𝜇, ], 𝜌, 𝜎) −b1Rb2



2

F

+ 𝜆
1
(𝜇
2

+ ]2 − 1) + 𝜆
2
(𝜌
2

+ 𝜎
2

− 1) .

(19)
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Figure 6: Handclasp manipulation between a floor mounted robot
and a ceiling mounted robot.

Substituting (7) into (19) and expanding the function 𝐽 yields

𝐽 = (−𝜎] − 𝑛
𝑥
)
2

+ (−𝜎𝜇 − 𝑜
𝑥
)
2

+ (−𝜌 − 𝑎
𝑥
)
2

+ (𝜌] − 𝑛
𝑦
)
2

+ (𝜌𝜇 − 𝑜
𝑦
)
2

+ (−𝜎 − 𝑎
𝑦
)
2

+ (𝜇 − 𝑛
𝑧
)
2

+ (−] − 𝑜
𝑧
)
2

+ (−𝑎
𝑧
)
2

+ 𝜆
1
(𝜇
2

+ ]2 − 1) + 𝜆
2
(𝜌
2

+ 𝜎
2

− 1) .

(20)

Minimizing the function 𝐽 (20) with respect to 𝜇, ], 𝜌, and
𝜎, we obtain

𝜕𝐽

𝜕𝜇
= 2𝜇 + 𝑜

𝑥
𝜎 − 𝑜
𝑦
𝜌 + 𝜇𝜆

1
− 𝑛
𝑧
= 0

𝜕𝐽

𝜕]
= 2] + 𝑛

𝑥
𝜎 − 𝑛
𝑦
𝜌 + ]𝜆

1
+ 𝑜
𝑧
= 0

𝜕𝐽

𝜕𝜌
= 2𝜌 − 𝑛

𝑦
] − 𝑜
𝑦
𝜇 + 𝜌𝜆

2
+ 𝑎
𝑥
= 0

𝜕𝐽

𝜕𝜎
= 2𝜎 + 𝑛

𝑥
] + 𝑜
𝑥
𝜇 + 𝜎𝜆

2
+ 𝑎
𝑦
= 0

𝜕𝐽

𝜕𝜆
1

= 𝜇
2

+ ]2 − 1 = 0

𝜕𝐽

𝜕𝜆
2

= 𝜌
2

+ 𝜎
2

− 1 = 0.

(21)

Collectively, there are 6 unique equations in (21) totaling the
number of elements in function 𝐽 (20). Therefore, unique
solution exists for (21), which can be reached by Levenberg-
Marquardt method with a numeric iterative procedure.

After 𝜇, ], 𝜌, and 𝜎 are obtained, an orthonormalized and
refined calibration result b1R∗b2 for rotation matrix can be
obtained by (17). Thereafter, the translation vector b1T∗b2 also
needs to be recalculated as (12).

2.3.3. Calibration of a Floor Mounted Robot Relative to
a Ceiling Mounted Robot. As shown in Figure 6, a floor
mounted robot is carrying out the handclasp manipulation
with a ceiling mounted robot. For the calibration case in
Figure 6, relative orientation between the two cooperative
robots exists in the form of 2 successive rotations.

(I) A rotation of 180∘ for Robot HP20 around axis-𝑋 of
the robot base frame b2F to make axis-𝑍 of b2F vertical to
ground, which is

Rot (𝑋, 180
∘

) = [

[

1 0 0

0 cos (180∘) − sin (180
∘

)

0 sin (180
∘

) cos (180∘)
]

]

= [

[

1 0 0

0 −1 0

0 0 −1

]

]

.

(22)

(II) A rotation of angle 𝜃 for RobotHP20 around axis-𝑍 of
the robot base frame b2F to make axis-𝑋 of b2F stretch along
the same direction as axis-𝑋 of frame b1F, which is

Rot (𝑍, 𝜃) = [

[

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]

]

. (23)

By (22) and (23), we have the rotation matrix between
robot base frame b1F and b2F as

R (𝜃) = Rot (𝑍, 𝜃)Rot (𝑋, 180
∘

)

= [

[

cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

]

]

[

[

1 0 0

0 −1 0

0 0 −1

]

]

= [

[

cos 𝜃 sin 𝜃 0

sin 𝜃 − cos 𝜃 0

0 0 −1

]

]

.

(24)

Let 𝛼 = cos 𝜃, 𝛽 = sin 𝜃; then 𝛼
2

+ 𝛽
2

= 1,

R (𝜃) = [

[

𝛼 𝛽 0

𝛽 −𝛼 0

0 0 −1

]

]

= R (𝛼, 𝛽) . (25)

Substituting (25) into (2) yields

𝐽 =

R (𝛼, 𝛽) −

b1Rb2


2

F

s.t. 𝛼
2

+ 𝛽
2

= 1.

(26)

Equation (26) also is a multivariable function optimiza-
tion problem. By Lagrange multipliers method, define the
Lagrangian function as

𝐽 =

R (𝛼, 𝛽) −

b1Rb2


2

F + 𝜆 (𝛼
2

+ 𝛽
2

− 1)

= (−𝛼 − 𝑛
𝑥
)
2

+ (−𝛽 − 𝑜
𝑥
)
2

+ (−𝑎
𝑥
)
2
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+ (𝛽 − 𝑛
𝑦
)
2

+ (𝛼 − 𝑜
𝑦
)
2

+ (−𝑎
𝑦
)
2

+ (−𝑛
𝑧
)
2

+ (−𝑜
𝑧
)
2

+ (−1 − 𝑎
𝑧
)
2

+ 𝜆 (𝛼
2

+ 𝛽
2

− 1) .

(27)

Minimizing the function 𝐽 (27) with respect to 𝛼, 𝛽, and
𝜆 yields

𝜕𝐽

𝜕𝛼
= 2 (𝛼 + 𝑛

𝑥
) + 2 (𝛼 − 𝑜

𝑦
) + 2𝜆𝛼 = 0,

𝜕𝐽

𝜕𝛽
= 2 (𝛽 + 𝑜

𝑥
) + 2 (𝛽 − 𝑛

𝑦
) + 2𝜆𝛽 = 0,

𝜕𝐽

𝜕𝜆
= 𝛼
2

+ 𝛽
2

− 1 = 0.

(28)

Unique solution exists for (28); that is,

𝜆 = √(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

− 2,

𝛼 =

𝑛
𝑥
− 𝑜
𝑦

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

,

𝛽 =

𝑛
𝑦
+ 𝑜
𝑥

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

.

(29)

After 𝛼, 𝛽, 𝜆 are obtained, we have the refined calibration
result for rotation as

b1R∗b2 = R (𝛼, 𝛽) =

[
[
[
[
[
[
[
[
[

[

𝑛
𝑥
− 𝑜
𝑦

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

𝑛
𝑦
+ 𝑜
𝑥

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

0

𝑛
𝑦
+ 𝑜
𝑥

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

−

𝑛
𝑥
− 𝑜
𝑦

√(𝑛
𝑥
− 𝑜
𝑦
)
2

+ (𝑛
𝑦
+ 𝑜
𝑥
)
2

0

0 0 −1

]
]
]
]
]
]
]
]
]

]

(30)

inwhich b1R∗b2 is the orthonormalized and refined calibration
result for rotation matrix. Thereafter, the translation vector
b1T∗b2 also needs to be recalculated as (12).

Equations (30) and (12) are developed form of the
calibration equations in [8], which will lead to more accurate
calibration results comparedwith othermethods as presented
in [8].

3. Calibration Procedure

Base frame calibration between two cooperative robots is to
identify elements of a rotation matrix b1Rb2 and translation
vector b1Tb2. Information that we need for our calibration
method includes robot joint positions, robot link param-
eters, and measuring tip dimensions. Preparatory condi-
tions for this calibration method are quite simple, which
include only the installation of the measuring tips on both
robots and dimensions input of the measuring tip for each
robot.

After commencing of the calibration command, move
one robot to an arbitrary position. Align the tool center
point of the other robot to tool center point of the first
robot by independent robot motion. The two robots form
a handclasp configuration and the first measurement com-
mences. Register the position as 𝑃

1
. Repeat this handclasp

manipulation process three more times and register 𝑃
2
,

𝑃
3
, and 𝑃

4
in the same manner as 𝑃

1
. Both robots are

to be moved independently during the calibration pro-
cedure. After 𝑃

1
, 𝑃
2
, 𝑃
3
, and 𝑃

4
are registered, substitute

these points information into corresponding calibration
equations. For calibration of floor mounted robot relative
to floor mounted robot, the calibration equations are (11)
and (12). For calibration of floor mounted robot relative to
wall mounted robot, the calibration equations are (17) and
(12). For calibration of floor mounted robot relative to ceiling
mounted robot, the calibration equations are (30) and (12).
Figure 7 shows the calibration procedure of our proposed
method.

In order to optimize the calibration results, the handclasp
points selected should be as far apart as possible.The standard
distance between 𝑃

1
and 𝑃

2
, 𝑃
2
and 𝑃

3
, and 𝑃

3
and 𝑃

4

should be 1m or more. Typical selection of these 4 points
is shown in Figure 8. As shown in Figure 8, teach 𝑃

1
, 𝑃
2
,

and 𝑃
3
so that a triangle, not a straight line, is formed.

Teach 𝑃
4
far apart from planar 𝑃

1
𝑃
2
𝑃
3
so that a triangular

pyramid is formed. Otherwise, inaccurate calibration will
result.

After the calibration procedure, a check should be made
to see if the two robot base frames are correctly calibrated.
Jog the two robots in a coupled synchronous motion [11] and
move one of them to see if the other can follow the motion
of the first robot. If yes, base frames of the two robots are
correctly calibrated.

4. Experiment Result

In order to validate the above-proposed calibration method
for typical installed robot, representative experiments have
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Start

Execute robot calibration

Select number of robot calibration

Select robot combination of calibration

Select a position to be taught

Move the robot to handclasp 
configuration by axis motion

Register TCP (tool center point) 
coordinate for each robot

Calibration result calculation

End

k = k + 1

k ≤ 4

k = 1

Y

N

Figure 7: Calibration procedure of this method.

been carried out in our lab. The testbed is composed of
two industrial robots, Motoman VA1400 and HP20, which
are produced by YASKAWA Electronic Corporation, Japan.
An external PC, DELL Optiplex 780, is used as a top layer
controller to implement all the control logic and calculations.
This external PC is connected to the robot controller DX100
by Ethernet cable. The communication software MotoCom
SDK, which is also provided by YASKAWA Electronic Cor-
poration, is installed on the PC to help transfer robot data
and job files between the PC and DX100 robot controller.
Figure 9 shows the experimental testbed we used here in our
lab.

By the communication software MotoCom SDK, user
applications can be developed and executed on a PC plat-
form. MotoCom SDK provides users with the function to
obtain coordinate of robot tool center point in its base
frame, which forms the source data of calibration in the
following analysis. Coordinate of robot tool center point
in its base frame can be directly read out from the robot
controller DX100 by function BscIsRobotPos( ), which is
one of the member functions provided by MotoCom SDK,
whereas MotoCom SDK only provides a 6-dimensional
vector (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓) ∈ R6 to represent position and ori-
entation of the robot end-effector, 3-dimension (𝑥, 𝑦, 𝑧)

for tool center point position and 3-dimensional Euler
angles (𝜙, 𝜃, 𝜓) for tool orientation. The variables 𝑥, 𝑦, and
𝑧 have a unit of millimetre (mm) while variables 𝜙, 𝜃,
and 𝜓 have a unit of degree (

∘

). These coordinate values
can also be found on the teaching pendant of the robot
controller.

For consistency and coherence, transformations between
Euler angle representation and a rotation matrix are pre-
sented here. In [12], successive rotations with angle 𝜙, 𝜃, 𝜓

relative to axis 𝑍,𝑌, 𝑍 will lead to a rotation matrix R
represented in (31) as follows:

Euler (𝜙, 𝜃, 𝜓)

= Rot (𝑍, 𝜙)Rot (𝑌, 𝜃)Rot (𝑍, 𝜓)

= [

[

cos𝜙 cos 𝜃 cos𝜓 − sin𝜙 sin𝜓 − cos𝜙 cos 𝜃 sin𝜓 − sin𝜙 cos𝜓 cos𝜙 sin 𝜃

sin𝜙 cos 𝜃 cos𝜓 + cos𝜙 sin𝜓 − sin𝜙 cos 𝜃 sin𝜓 + cos𝜙 cos𝜓 sin𝜙 sin 𝜃

− sin 𝜃 cos𝜓 sin 𝜃 sin𝜓 cos 𝜃
]

]

= R.

(31)

Conversely, a rotationmatrixR can be decomposed into three
successive rotations with 𝜙, 𝜃, 𝜓 relative to axes 𝑍, 𝑌, 𝑍,

Rot (𝑍, 𝜙)Rot (𝑌, 𝜃)Rot (𝑍, 𝜓) = [

[

𝑛
𝑥

𝑜
𝑥

𝑎
𝑥

𝑛
𝑦

𝑜
𝑦

𝑎
𝑦

𝑛
𝑧

𝑜
𝑧

𝑎
𝑧

]

]

,

𝜙 = atan2 (𝑎
𝑦
, 𝑎
𝑥
) ,

𝜃 = atan2 (sin𝜙𝑎
𝑦
+ cos𝜙𝑎

𝑥
, 𝑎
𝑧
) ,

𝜓 = atan2 (− sin𝜙𝑛
𝑥
+ cos𝜙𝑛

𝑦
, − sin𝜙𝑜

𝑥
+ cos𝜙𝑜

𝑦
) .

(32)

Equation (32) will encounter degeneracy when 𝜙 = 0
∘ or

180
∘. However, when 𝜙 = 0

∘ or 180∘, it means 𝑎
𝑥
= 0 and

𝑎
𝑦
= 0. In such a case, we arbitrarily assume 𝜙 = 0

∘. When
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P1

P2

P4

P3

Figure 8: Example of 4 handclasp manipulations for two cooperative robots.

Measuring
Tip

DX100 robot
controller

Robot 1 Robot 2

3D CMM 
Actiris350

b2
Fb1

F

HP20VA1400

External PC

Figure 9: Testbed of calibration experiments in our lab.

𝜃 = 0
∘ or 180∘, we assume 𝜃 = 0

∘. Under this assumption, (32)
is qualified for the rotation error assessment.

The 6-dimensional vector formation (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓) ∈

R6 is also adopted to represent the relative translation and
rotation between based frames of the two robots. The afore-
mentioned 3-dimension vector (𝑥, 𝑦, 𝑧) indicates relative
translation and 3-dimensional vector Euler angles (𝜙, 𝜃, 𝜓)

indicate relative rotation. The variables 𝑥, 𝑦, and 𝑧 also have
a unit of millimeter (mm) while variables 𝜙, 𝜃, and 𝜓 have a
unit of degree (∘).

For accuracy assessment, the calibration error for relative
rotation between the two robots can be defined as

𝑒rot =

Euler ( b1Rtru

b2 ) − Euler ( b1R∗b2)
∞

(33)

in which Euler( b1Rtru
b2 ) is true values of the Euler form

rotation between the two robots and 𝑒rot is the error. The
error 𝑒rot with a unit of degree (∘) has a definite meaning that
represents the maximum error between Euler angle forms
of the calibrated rotation matrix and its true value. The
calibration error for the translation vector can be defined as

𝑒tran =


b1Ttru
b2 −

b1T∗b2
∞

(34)

in which b1Ttru
b2 is true values of translation vector between

the two robots and 𝑒tran is the error.The error 𝑒tran has a unit of
millimeter (mm), whose meaning represents the maximum
error between calibrated translation vector and its true value.

True values for relative rotation Euler( b1Rtru
b2 ) and trans-

lation b1Ttru
b2 between base frames of the two robots are

calibrated by an external sensor Actiris350. The Actiris350
system is a 3D coordinate measuring machine manufactured
by ActCM Corporation, France. Actiris350 system has a
precision of±15𝜇mfor single point according to ISO 10360-2;
repeatability is ±25 𝜇m, acquisition speed is 15 measurements
per second max, and measuring volume is 3.5m3. Figure 10
shows the 3D coordinate measuring machine Actiris350 we
used.

Table 1 presents the robot base calibration results and
comparisons with other methods. Data in column Htru
are the true values of the relative rotation and translation
between base frames of Motoman VA1400 and HP20, which
are acquired by Actiris350, Htru = [

b1Ttru
b2 ,Euler(

b1Rtru
b2 )].

Data in column Hcalib2 are the calibrated results by
our proposed method, Hcalib2 = [

b1T∗b2,Euler(
b1R∗b2)].
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Figure 10: 3D coordinate measuring machine Actiris350.
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Figure 11: Translation error of calibration result.

The columns 𝑒tran 2 obtained by (34) and 𝑒rot 2 obtained by
(33) are the calibration errors of robot base frame translation
and rotation, respectively, for this method. Data in column
Hcalib1 are calibration results by the method proposed in
[8]. The columns 𝑒tran 1 obtained as 𝑒tran 2 and 𝑒rot 1 obtained
as 𝑒rot 2 are their calibration errors for robot base frame
translation and rotation, respectively. Figure 11 shows the
calibration error 𝑒tran 1 and 𝑒tran 2 for relative translation
between the two robots. Figure 12 shows the calibration
errors 𝑒rot 1 and 𝑒rot 2 for relative rotation between the two
robots.

As shown in Figures 11 and 12, it is clear that the cal-
ibration accuracy by our proposed method is no more than
8mm for relative translation and 1

∘ for relative rotation,
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Figure 12: Rotation error of calibration result.

which indicates that calibration errors are relatively small.
This precision level is quite satisfactory that can meet the
requirement for most rough robot tasks, such as spraying,
arc welding, or material transportation. So far, it can be
concluded that the calibrationmethod proposed in this paper
is quite effective to solve the problemof base frame calibration
for two cooperative robots.

5. Conclusion

A simple but effective method for calibrating the relative
rotation and translation between base frames of two cooper-
ative robots is presented in this paper. Greatest advantage of
this method lies in its simple calibration setup and no other
measuring apparatus required, which makes it quite feasible
for applications in manufacturing works. The calibration
procedure is based on a series of handclasp manipulations.
Robot base installation angles are adopted to refine the
preliminary calibration result.

Experimental testbed of base frame calibration with two
cooperative industrial robots Motoman VA1400 and HP20
is presented here. Calibration results are quite satisfactory
which asserts the validity and effectiveness of this method.
The only defect of this calibration method may lie in that
the handclasp manipulation for cooperative robots is driven
by human operator. If the tool center point of each robot
cannot be exactly driven to one same point, error will expand
in the calibration result, whereas as long as the human
operator drive the robot carefully and make the handclasp
manipulation as accurate as possible, the calibration error can
be reduced to relatively small.
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