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A special predator-prey system is investigated in which the prey population exhibits herd behavior in order to provide a self-
defense against predators, while the predator is intermediate and its population shows individualistic behavior. Considering the
fact that there always exists a time delay in the conversion of the biomass of prey to that of predator in this system, we obtain a
delayed predator-prey model with square root functional response and quadratic mortality. For this model, we mainly investigate
the stability of positive equilibrium and the existence of Hopf bifurcation by choosing the time delay as a bifurcation parameter.

1. Introduction

During the last few decades, there has been great interest
in the construction and study of models for the population
dynamics of predator-prey systems. The classical predator-
prey model can be written in the generalized form (see [1])

𝑑𝑁

𝑑𝑡
= 𝐹 (𝑁)𝑁 − 𝜙 (𝑁, 𝑃) 𝑃,

𝑑𝑃

𝑑𝑡
= [𝑘𝜙 (𝑁, 𝑃) − 𝜇 (𝑃)] 𝑃,

𝑁 (0) ≥ 0, 𝑃 (0) ≥ 0,

(1)

where 𝑁 = 𝑁(𝑡), 𝑃 = 𝑃(𝑡) denote the number or density of
the prey and predator species at time 𝑡, respectively, 𝐹(𝑁) is
the relative growth function of prey species in the absence of
predator, 𝜇(𝑃) is the relative mortality function of predator
species in the absence of prey, 𝜙(𝑁, 𝑃) is the functional
response function of the predator to the prey which can
be interpreted as the change in the number of prey species
attached per unit time per predator as the prey number
changes, and 𝑘 is the biomass conversion or consumption
rate.

For system (1), the dynamic behavior is determined by
the three crucial components:𝐹(𝑁), 𝜇(𝑃), and 𝜙(𝑁, 𝑃). Chen
et al. in [1] summarized some types of 𝐹(𝑁) and 𝜇(𝑃)

which determine the species intrinsic population dynamics
(primary production and mortality, resp.). For example,

𝐹 (𝑁) = 𝑟 (1 −
𝑁

𝐾
) , 𝐹 (𝑁) = 𝑟

𝐾 − 𝑁

𝐾 + 𝜀𝑁
;

𝜇 (𝑃) ≡ 𝑠, 𝜇 (𝑃) =
𝑎

𝑏 + 𝑃
.

(2)

Functional response function 𝜙(𝑁, 𝑃) also can be classi-
fied into many different types: Holling I–IV types [2, 3],
Beddington-DeAngelis type [4, 5], Ivlev type [6], ratio-
dependent type [7], and themodified forms of these types [8–
18]. Over the years, the mathematical models with different
𝐹(𝑁), 𝜇(𝑃), and 𝜙(𝑁, 𝑃) have been constructed by many
researchers for describing different predator-prey systems;
see [2–18].

Recently, one kind of predator-prey system with herd
behavior is considered by some researchers [19–23]. In this
kind of systems, such as herbivores on the large savanna and
their large predators, the prey species join together in herds
in order to provide a self-defense against predators, and the
predator interacts with the prey along the outer corridor of
the herd of prey [20, 21]. Therefore, it is more appropriate to
model the response functions of prey in terms of the square
root of the number of prey species for this class of systems.
In [20], Braza considered a predator-prey system with square
root functional response and compared the dynamics of this
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system with the dynamics of predator-prey system that use a
typical Lotka-Volterra interaction term.

Moreover, there are some papers concerned with the
effects of the form of mortality terms for the dynamics
[23–26]. Brentnall et al. [24] pointed out that the mortality
term of predator is usually described by “linear form” or
“quadratic form” and the quadratic mortality is suited to
intermediate predator (such as piscivore). Recently, Yuan
et al. [23] studied a spatial predator-prey model with herd
behavior and concluded that the Turing pattern is induced
by quadratic mortality. Fulton et al. in [25] showed that, in
the large and interlinked webs used in ecosystem models,
model behavior is farmore sensitive to the formof the grazing
term than to that of the mortality terms that are close to the
modeled food web.

On the other hand, for most of the natural ecosystems,
every species does not respond instantaneously to changes
in the environment or the interactions with other species
within the community. Thus models with delay are much
more realistic [27–31], and many researchers paid a lot of
attention to the delayed predator-prey systems; see [32–40]
and the references cited therein. For example, Xiao and
Ruan [34] discussed a delayed predator-prey system with
nonmonotonic functional response and showed that there
is a B-T singularity for any time delay value and the system
can exhibit Hopf bifurcation as the time delay passes through
some critical values. Xu et al. in [36] proposed a delayed
periodic L-V type predator-prey system with prey dispersal
in two-patch environments and gave the sufficient conditions
of the existence, uniqueness, and global stability of positive
periodic solution.

Motivated by the above, in the present paper, we are
intended to consider a predator-prey system in which the
prey species exhibits herd behavior, the predator species is
intermediate, and there exists a time delay in the convention
of the biomass of prey to that of predator.

This paper is organized as follows. We first introduce
our working system in the next section. In Section 3, by
analyzing the characteristic equation, we discuss the local
stability of a positive equilibrium and study the existence of
Hopf bifurcations at the positive equilibrium. In Section 4,
using the normal form theory and centermanifold argument,
the explicit formulae are derived to determine the direction of
bifurcations and the properties of bifurcating periodic solu-
tions. Several numerical simulations and a simple discussion
are given in the last Section.

2. The Working System

Braza [20] proposed the basic predator-prey system with
logistic growth in the prey species, linear mortality in the
predator species, and a square root functional response
function. It is given by

𝑑𝑋

𝑑𝑡
= 𝑟𝑋(1 −

𝑋

𝐾
) −

𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

,

𝑑𝑌

𝑑𝑡
= −𝑠𝑌 +

𝑐𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

,

(3)

where 𝑋 = 𝑋(𝑡), 𝑌 = 𝑌(𝑡) denote the number of the prey
and predator species at time 𝑡, respectively. The parameter 𝑟
is the growth rate of prey species, 𝐾 is its carrying capacity, 𝑠
is the death rate of predator species in the absence of prey, 𝛼
is the search efficiency of predator for prey, 𝑐 is the biomass
conversion rate, and 𝑡ℎ is predator’s average handling time of
prey.

Following References [23] and [24], we choose the quad-
raticmortality for predator species in system (3). If we further
consider the delay fact, system (3) should be modified as the
following form:

𝑑𝑋

𝑑𝑡
= 𝑟𝑋(1 −

𝑋

𝐾
) −

𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

,

𝑑𝑌

𝑑𝑡
= −𝑠𝑌

2
+

𝑐𝛼√𝑋 (𝑡 − 𝜏)𝑌

1 + 𝑡ℎ𝛼√𝑋 (𝑡 − 𝜏)
,

(4)

where −𝑠𝑌2 represents the quadratic mortality of predator
species and 𝜏 is the time delay whichmeans the growth rate of
predator species to depend on the number of the prey species
𝜏 units of time earlier.

By the same way of [20, 23], we make some scaling and
assume that the average handling time is zero. Then the
working system is

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥) − √𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝑠𝑦

2
+ 𝑐√𝑥 (𝑡 − 𝜏)𝑦.

(5)

The initial conditions for system (5) take the form

𝑥0 (𝜃) = 𝜙 (𝜃) ≥ 0, 𝑦0 (𝜃) = 𝜓 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0) ,

𝑥0 (0) > 0, 𝑦0 (0) > 0,

(6)

where (𝜙(𝜃), 𝜓(𝜃)) ∈ 𝐶([−𝜏, 0],R
2

+
), R2
+
= {(𝑟1, 𝑟2) : 𝑟1 ≥

0, 𝑟2 ≥ 0}.
It is easy to verify that system (5) always has a trivial

equilibrium 𝐸0(0, 0) and a boundary equilibrium 𝐸1(1, 0) for
any feasible parameters. If we assume 𝑐 < 𝑠, then system (5)
has a unique positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
), where

𝑥
∗
= 1 −

𝑐

𝑠
, 𝑦

∗
=
𝑐

𝑠
√𝑥∗. (7)

3. Stability Analysis and Hopf Bifurcation

Due to biological interpretation of the system, we only con-
sider the positive equilibrium. In this section, by choosing 𝜏
as the bifurcation parameter and analyzing the corresponding
linearized system, we investigate the stability of the positive
equilibrium and the effects of the time delay on the dynamics
of system (5).
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To study the local stability of the positive equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
), we first use the linear transformation 𝑥1 = 𝑥−𝑥

∗,
𝑥2 = 𝑦 − 𝑦

∗, for which system (5) can be written in the form

𝑑𝑥1

𝑑𝑡
= 𝑎11𝑥1 + 𝑎12𝑥2 + ∑

𝑖+𝑗≥2

𝑓
(1)

𝑖𝑗

𝑖!𝑗!
𝑥
𝑖

1
𝑥
𝑗

2
,

𝑑𝑥2

𝑑𝑡
= 𝑎21𝑥1 (𝑡 − 𝜏) + 𝑎22𝑥2 + ∑

𝑖+𝑗≥2

𝑓
(2)

𝑖𝑗

𝑖!𝑗!
𝑥
𝑖

1
(𝑡 − 𝜏) 𝑥

𝑗

2
,

(8)

where

𝑎11 =
3𝑐

2𝑠
− 1, 𝑎12 = −

√𝑥∗,

𝑎21 =
𝑐
2

2𝑠
, 𝑎22 = −𝑐

√𝑥∗,

𝑓
(1)

𝑖𝑗
=
𝜕
𝑖+𝑗
𝑓
(1)
(𝑥1, 𝑥2)

𝜕𝑥𝑖
1
𝜕𝑥
𝑗

2

(0,0)

, 𝑓
(2)

𝑖𝑗
=
𝜕
𝑖+𝑗
𝑓
(2)
(𝑥3, 𝑥2)

𝜕𝑥𝑖
3
𝜕𝑥
𝑗

2

(0,0)

,

𝑓
(1)
(𝑥1, 𝑥2) = (𝑥1 + 𝑥

∗
) (1 − 𝑥1 − 𝑥

∗
)

− √𝑥1 + 𝑥
∗ (𝑥2 + 𝑦

∗
) ,

𝑓
(2)
(𝑥3, 𝑥2) = −𝑠(𝑥2 + 𝑦

∗
)
2
+ 𝑐√𝑥3 + 𝑥

∗ (𝑥2 + 𝑦
∗
) .

(9)

Thus, the positive equilibrium of system (5) is transformed
into the zero equilibrium of system (8).

The linear equations corresponding to (8) are given by

𝑑𝑥1

𝑑𝑡
= 𝑎11𝑥1 + 𝑎12𝑥2,

𝑑𝑥2

𝑑𝑡
= 𝑎21𝑥1 (𝑡 − 𝜏) + 𝑎22𝑥2,

(10)

and its characteristic equation is

𝜆
2
− (𝑎11 + 𝑎22) 𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21𝑒

−𝜆𝜏
= 0. (11)

To study the stability of the zero equilibrium and the Hopf
bifurcation of system (8), we should analyze the distribution
of the roots of characteristic equation (11). A simple calcula-
tion shows that 𝑎11𝑎22 − 𝑎12𝑎21 = 𝑐(𝑥

∗
)
3/2

> 0; thus 𝜆 = 0 is
not a root of (11).

When there is no delay, that is, 𝜏 = 0, characteristic
equation (11) reduces to

𝜆
2
− (𝑎11 + 𝑎22) 𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0. (12)

If 𝑎11 +𝑎22 < 0, the two roots of (12) will have always negative
real parts. Thus, we can obtain the following result.

Lemma 1. Assume 𝑐 < 𝑠 and 𝑎11 + 𝑎22 < 0; then the two roots
of characteristic equation (11) with 𝜏 = 0 have always negative
real parts; that is, the zero equilibrium of system (8) with 𝜏 = 0
is locally asymptotically stable.

Now for 𝜏 > 0, let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (11); then 𝜔
satisfies the following equation:

− 𝜔
2
− (𝑎11 + 𝑎22) 𝜔𝑖 + 𝑎11𝑎22 − 𝑎12𝑎21 (cos𝜔𝜏 − 𝑖 sin𝜔𝜏)

= 0.

(13)

Separating the real and imaginary parts, we have

−𝜔
2
+ 𝑎11𝑎22 − 𝑎12𝑎21 cos𝜔𝜏 = 0,

− (𝑎11 + 𝑎22) 𝜔 + 𝑎12𝑎21 sin𝜔𝜏 = 0,
(14)

which imply that

𝜔
4
+ (𝑎
2

11
+ 𝑎
2

22
) 𝜔
2
+ 𝑎
2

11
𝑎
2

22
− 𝑎
2

12
𝑎
2

21
= 0. (15)

Notice 𝑎11𝑎22−𝑎12𝑎21 > 0; we can find that (15) has no positive
roots if 𝑎11𝑎22+𝑎12𝑎21 ≥ 0 and has a positive root𝜔+ if 𝑎11𝑎22+
𝑎12𝑎21 < 0, where

𝜔+ =
√− (𝑎

2

11
+ 𝑎
2

22
) + √(𝑎2

11
− 𝑎2
22
)
2
+ 4𝑎2
12
𝑎2
21

2
.

(16)

Defining

𝜏𝑗 =
1

𝜔+

(arccos
−(𝜔+)

2
+ 𝑎11𝑎22

𝑎12𝑎21

+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . ,

(17)

we have the following result.

Lemma 2. Assume 𝑐 < 𝑠 and 𝑎11 + 𝑎22 < 0; then the following
statements are true.

(1) If 𝑎11𝑎22 + 𝑎12𝑎21 ≥ 0, the roots of (11) have always
negative real parts for all 𝜏 ≥ 0.

(2) If 𝑎11𝑎22+𝑎12𝑎21 < 0, (11) has a pair of purely imaginary
roots ±𝑖𝜔+ for 𝜏 = 𝜏𝑗.

Next, under the condition of Lemma 2(2), we will investi-
gate whether the transversality condition is satisfied. Denote
by 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝜔(𝜏) the root of (11) near 𝜏 = 𝜏𝑗 satisfying
𝛼(𝜏𝑗) = 0, 𝜔(𝜏𝑗) = 𝜔+, 𝑗 = 0, 1, 2, . . .. Differentiating the two
sides of (11) with respect to 𝜏, we get

2𝜆
𝑑𝜆

𝑑𝜏
− (𝑎11 + 𝑎22)

𝑑𝜆

𝑑𝜏
+ 𝑎12𝑎21𝑒

−𝜆𝜏
(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏
) = 0; (18)

that is

(
𝑑𝜆

𝑑𝜏
)

−1

=
2𝜆 − 𝑎11 − 𝑎22

−𝑎12𝑎21𝜆
𝑒
𝜆𝜏
−
𝜏

𝜆
. (19)
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We can further get

sign (𝑑𝛼(𝜏)
𝑑𝜏

)

−1𝜏=𝜏𝑗

= sign Re(𝑑𝜆
𝑑𝜏
)

−1𝜏=𝜏𝑗

= sign Re(𝑎11 + 𝑎22 − 2𝜆
𝑎12𝑎21𝜆

𝑒
𝜆𝜏
−
𝜏

𝜆
)

𝜏=𝜏𝑗

= sign Re(
𝑎11 + 𝑎22 − 2𝑖𝜔+

𝑎12𝑎21𝑖𝜔+

(cos𝜔+𝜏𝑗 + 𝑖 sin𝜔+𝜏𝑗))

= sign Re(
2 (𝜔
2

+
− 𝑎11𝑎22)

𝑎2
12
𝑎2
21

+
(𝑎11 + 𝑎22)

2

𝑎2
12
𝑎2
21

)

= sign Re(
2𝜔
2

+
+ 𝑎
2

11
+ 𝑎
2

22

𝑎2
12
𝑎2
21

) > 0.

(20)

Then we have the following conclusion.

Lemma3. Assume 𝑐 < 𝑠, 𝑎11+𝑎22 < 0, and 𝑎11𝑎22+𝑎12𝑎21 < 0;
then the transversality conditions are satisfied; that is,

𝑑𝛼(𝜏)

𝑑𝜏

𝜏=𝜏𝑗

> 0, 𝑗 = 0, 1, 2, . . . . (21)

Summarizing the above three lemmas, we can obtain the
following theoremon stability andHopf bifurcation of system
(5).

Theorem 4. Assume 𝑐 < 𝑠 and 𝑎11 + 𝑎22 < 0. For system (5),
the following results are true.

(1) If 𝑎11𝑎22 + 𝑎12𝑎21 ≥ 0, the positive equilibrium 𝐸
∗ is

locally asymptotically stable for all 𝜏 ≥ 0.

(2) If 𝑎11𝑎22 + 𝑎12𝑎21 < 0, then 𝐸∗ is locally asymptotically
stable when 𝜏 ∈ [0, 𝜏0) and unstable when 𝜏 > 𝜏0 and
system (5)undergoes aHopf bifurcation at𝐸∗ when 𝜏 =
𝜏𝑗, 𝑗 = 0, 1, 2, . . ..

4. Direction and Stability of
the Hopf Bifurcation

In the previous section, we have obtained the conditions
under which a family of periodic solutions bifurcate from
the positive equilibrium 𝐸

∗ as 𝜏 crosses through the critical
values 𝜏𝑗. In this section, we will study the direction of Hopf
bifurcation and the stability and period of the bifurcating
periodic solutions by applying the normal form theory and
the center manifold theorem from Hassard et al. [41]. Since
the methods used are standard, we omit the detailed process
and only give the main results. The readers can see [41] for
more details on the derivation process.

Assume that system (5) undergoes Hopf bifurcations at
𝐸
∗
(𝑥
∗
, 𝑦
∗
) for 𝜏 = 𝜏𝑗, and then ±𝑖𝜔+ are the corresponding

purely imaginary roots of characteristic equation (11). Let

𝑞 (𝜃) = (1, 𝛼)
𝑇
𝑒
𝑖𝜔+𝜏𝑗𝜃, 𝑞

∗
(𝜗) = 𝐷 (1, 𝛼

∗
) 𝑒
𝑖𝜔+𝜏𝑗𝜗

for 𝜃, 𝜗 ∈ [−1, 0] .
(22)

We can choose

𝛼 =
𝑖𝜔+ − 𝑎11

𝑎21

, 𝛼
∗
=
−𝑖𝜔+ − 𝑎11

𝑎21

𝑒
𝑖𝜔+ ,

𝐷 =
1

1 + 𝛼∗𝛼 + 𝜏𝑗𝛼
∗𝑎21𝑒
𝑖𝜔+𝜏𝑗

,

(23)

such that 𝑞(𝜃) is the eigenvector of operator𝐴 corresponding
to 𝑖𝜔+𝜏𝑗, 𝑞

∗
(𝜗) is the eigenvector of operator 𝐴∗ correspond-

ing to −𝑖𝜔+𝜏𝑗, and

⟨𝑞
∗
(𝜗) , 𝑞 (𝜃)⟩ = 1, ⟨𝑞

∗
(𝜗) , 𝑞 (𝜃)⟩ = 0. (24)

Thus, we can compute

𝑔20 = 𝐷𝜏𝑗 [(𝑓
(1)

20
+ 2𝛼𝑓

(1)

11
)

+𝛼
∗
(𝑒
−2𝑖𝜔+𝜏𝑗𝑓

(2)

20
+ 2𝛼𝑒

−𝑖𝜔+𝜏𝑗𝑓
(2)

11
+ 𝛼
2
𝑓
(2)

02
)] ,

𝑔11 = 𝐷𝜏𝑗 [(𝑓
(1)

20
+ (𝛼 + 𝛼) 𝑓

(1)

11
)

+ 𝛼
∗
(𝑓
(2)

20
+ (𝛼𝑒
𝑖𝜔+𝜏𝑗 + 𝛼𝑒

−𝑖𝜔+𝜏𝑗) 𝑓
(2)

11
+ 𝛼𝛼𝑓

(2)

02
)] ,

𝑔02 = 𝐷𝜏𝑗 [(𝑓
(1)

20
+ 2𝛼𝑓

(1)

11
)

+𝛼
∗
(𝑒
2𝑖𝜔+𝜏𝑗𝑓

(2)

20
+ 2𝛼𝑒

𝑖𝜔+𝜏𝑗𝑓
(2)

11
+ 𝛼
2
𝑓
(2)

02
)] ,

𝑔21 = 𝐷𝜏𝑗 (𝑤1 + 𝛼
∗
𝑤2) ,

(25)

where

𝑤1 = (2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0)) 𝑓

(1)

20
+ 𝑓
(1)

30
+ (2𝛼 + 𝛼) 𝑓

(1)

21

+ (2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0) + 𝛼𝑊

(1)

20
(0) + 2𝛼𝑊

(1)

11
(0)) 𝑓

(1)

11
,

𝑤2 = (2𝑒
−𝑖𝜔+𝜏𝑗𝑊

(1)

11
(−1) + 𝑒

𝑖𝜔+𝜏𝑗𝑊
(1)

20
(−1)) 𝑓

(2)

20

+ (2𝛼𝑊
(2)

11
(0) + 𝛼𝑊

(2)

20
(0)) 𝑓

(2)

02

+ (2𝛼𝑊
(1)

11
(−1) + 𝛼𝑊

(1)

20
(−1) + 𝑒

𝑖𝜔+𝜏𝑗𝑊
(2)

20
(0)

+2𝑒
−𝑖𝜔+𝜏𝑗𝑊

(2)

11
(0)) 𝑓

(2)

11

+ (2𝛼 + 𝛼𝑒
−2𝑖𝜔+𝜏𝑗) 𝑓

(2)

21
+ 𝑓
(2)

30
𝑒
−𝑖𝜔+𝜏𝑗 ,
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Figure 1: The phase portraits of system (5). Initial values 𝑥0 = 0.4, 𝑦0 = 0.39. Parameters 𝑠 = 1, 𝑐 = 0.4. Delay values (a) 𝜏 = 0, (b) 𝜏 = 5, (c)
𝜏 = 10, and (d) 𝜏 = 15.

𝑊20 (𝜃) = (

𝑊
(1)

20
(𝜃)

𝑊
(2)

20
(𝜃)
)

=
𝑖𝑔20

𝜔+𝜏𝑗

𝑞 (0) 𝑒
𝑖𝜔+𝜏𝑗𝜃 +

𝑖𝑔
20

3𝜔+𝜏𝑗

𝑞 (0) 𝑒
−𝑖𝜔+𝜏𝑗𝜃 + 𝐸1𝑒

2𝑖𝜔+𝜏𝑗𝜃,

𝑊11 (𝜃) = (

𝑊
(1)

11
(𝜃)

𝑊
(2)

11
(𝜃)
)

= −
𝑖𝑔11

𝜔+𝜏𝑗

𝑞 (0) 𝑒
𝑖𝜔+𝜏𝑗𝜃 +

𝑖𝑔
11

𝜔+𝜏𝑗

𝑞 (0) 𝑒
−𝑖𝜔+𝜏𝑗𝜃 + 𝐸2,

𝐸1 = (

2𝑖𝜔+ − 𝑎11 −𝑎12

−𝑎21𝑒
−2𝑖𝜔+ 2𝑖𝜔+ − 𝑎22

)

−1

× (

𝑓
(1)

20
+ 2𝛼𝑓

(1)

11

𝑒
−2𝑖𝜔+𝜏𝑗𝑓

(2)

20
+ 2𝛼𝑒

−𝑖𝜔+𝜏𝑗𝑓
(2)

11
+ 𝛼
2
𝑓
(2)

02

) ,

𝐸2 = −(
𝑎11 𝑎12
𝑎21 𝑎22

)

−1

× (

𝑓
(1)

20
+ (𝛼 + 𝛼) 𝑓

(1)

11

𝑓
(2)

20
+ (𝛼𝑒
𝑖𝜔+𝜏𝑗 + 𝛼𝑒

−𝑖𝜔+𝜏𝑗) 𝑓
(2)

11
+ 𝛼𝛼𝑓

(2)

02

) .

(26)

Now, let

𝑐1 (0) =
𝑖

2𝜔+𝜏𝑗

(𝑔20𝑔11 − 2
𝑔11


2
−

𝑔02

2

3
) +

𝑔21

2
, (27)

which can be determined by the parameters in system (5).
Defining

𝜇2 = −
Re {𝑐1 (0)}
Re {𝜆 (𝜏𝑗)}

,
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Figure 2:The trajectories and phase portrait of system (5). Initial values 𝑥0 = 0.4, 𝑦0 = 0.39. Parameters 𝑠 = 1, 𝑐 = 0.6. Delay value 𝜏 = 5.248.

𝛽2 = 2Re {𝑐1 (0)} ,

𝑇2 = −
Im {𝑐1 (0)} + 𝜇2 Im {𝜆


(𝜏𝑗)}

𝜔+𝜏𝑗

,

(28)

we have the following result.

Theorem 5. The direction of the Hopf bifurcation is deter-
mined by 𝜇2: if 𝜇2 > 0 (𝜇2 < 0), then the Hopf bifurcation is
supercritical (subcritical) and the bifurcating periodic solutions
exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0); 𝛽2 determines the stability of the
bifurcating periodic solutions: the bifurcating periodic solutions
are stable (unstable) if 𝛽2 < 0 (𝛽2 > 0); and 𝑇2 determines the
period of the bifurcating periodic solutions: the period increases
(decreases) if 𝑇2 > 0 (𝑇2 < 0).

5. Numerical Simulations and Discussions

In this section, we present some numerical simulations to
verify our theoretical results proved in previous sections by
usingMATLABDDE solver. We simulate the system (5) with
the initial value (𝑥0, 𝑦0) = (0.4, 0.39). In Figures 1–3 the initial
point (𝑥0, 𝑦0) and the positive equilibrium𝐸

∗ are represented
by green star and red star, respectively.

First, we choose parameters 𝑠 = 1, 𝑐 = 0.4. In this
case, system (5) has only one positive equilibrium 𝐸

∗
=

(0.6, 0.3098). Simple calculations show that 𝑎11 + 𝑎22 =

−0.7098 < 0, 𝑎11𝑎22 + 𝑎12𝑎21 = 0.062 > 0, which satisfy

the conditions of Theorem 4(1). By Theorem 4(1), we expect
that 𝐸∗ is stable for any delay value. We further choose four
different delay values: 𝜏𝑎 = 0, 𝜏𝑏 = 5, 𝜏𝑐 = 10, and 𝜏𝑑 =
15. The computation simulations are depicted in Figure 1.
Obviously, the computation simulations can support the
result of Theorem 4(1).

Next, we choose parameters 𝑠 = 1, 𝑐 = 0.6. The positive
equilibrium of system (5) is 𝐸∗ = (0.4, 0.3795). It is easy to
show that 𝑎11+𝑎22 = −0.4795 < 0, 𝑎11𝑎22+𝑎12𝑎21 = −0.0759 <
0, which satisfy the conditions of Theorem 4(2). From the
formulae in the previous section, we can compute the values
of 𝜏0, 𝜇2, 𝛽2, and 𝑇2 as

𝜏0 = 6.048, 𝜇2 = 130888,

𝛽2 = −503.3349, 𝑇2 = 681.8543,

(29)

from which we conclude that 𝐸∗ is asymptotically stable for
𝜏 < 𝜏0 and the Hopf bifurcation of system (5) occurring
at the critical value 𝜏0 is supercritical and the bifurcating
periodic solution exists when 𝜏 crosses 𝜏0 to the right; also
the bifurcating periodic solution is stable. By taking 𝜏 =

5.248 < 𝜏0 and 𝜏 = 6.049 > 𝜏0, we can show the computation
simulations in Figures 2 and 3, respectively. It is easy to
see that the computation simulations support the results of
Theorem 4(2) andTheorem 5.

In the present paper, we have considered a delayed
predator-prey system in which the prey species exhibits herd
behavior and the predator species with quadratic mortal-
ity. Our research shows that, for system (5), the positive
equilibrium 𝐸

∗ is always asymptotically stable under certain
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Figure 3:The trajectories and phase portrait of system (5). Initial values 𝑥0 = 0.4, 𝑦0 = 0.39. Parameters 𝑠 = 1, 𝑐 = 0.6. Delay value 𝜏 = 6.049.

conditions (see Theorem 4(1)). In other words, under such
conditions, the dynamics behavior of the correspondingODE
system is robust with respect to the time delay. But, under
some other conditions (see Theorem 4(2)), 𝐸∗ will lose its
stability and Hopf bifurcations occur when the delay 𝜏 passes
through some critical values. In this case, the time delay has
an important effect for the system dynamics.

Our results may enrich the dynamics in the predator-
prey system and help us to better understand the interaction
of predator with prey in a real ecosystem. Further studies
are necessary to analyze the dynamics of more realistic but
complex systems, such as delayed diffusive predator-prey
system with herd behavior.
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