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The incidence energy IE(𝐺), defined as the sum of the singular values of the incidence matrix of 𝐺, is a much studied quantity with
well known applications in chemical physics. In this paper, we derived the closed-form formulae expressing the incidence energy
of the 3.12.12 lattice, triangular kagomé lattice, and 𝑆(𝑚, 𝑛) lattice, respectively. Simultaneously, the explicit asymptotic values of the
incidence energy in these lattices are obtained by utilizing the applications of analysis method with the help of software calculation.

1. Introduction

A general problem of interest in physics, chemistry, and
mathematics is the calculations of the energy of graphs [1–
3], which has now become a popular topic of research;
however, almost all of literature deal with the energy of
the finite graphs. Yan and Zhang [4] first considered the
asymptotic energy of the infinite lattice graphs; they obtained
the asymptotic formulae for energies of various lattices.
Historically in lattice statistics, the hexagonal lattice, 3.12.12
lattice, triangular kagomé lattice, and 3

3 ⋅ 42 lattice have
attracted the most attention [4–9]. Ising spins and XXZ/Ising
spins on the TKL(𝑚, 𝑛) have been studied in [10, 11].

Let 𝐺 be a simple graph with 𝑛 vertices, let 𝐴(𝐺) be the
adjacency matrix, and let 𝐷(𝐺) be the diagonal matrix of
vertex degrees of 𝐺, respectively. The Laplacian eigenvalues
of 𝐺 are 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) and the signless Laplacian
matrix is𝑄(𝐺) = 𝐷(𝐺)+𝐴(𝐺).The characteristic polynomial
𝑃
𝐺
(𝑥) = det(𝑥𝐼

𝑛
− 𝐴(𝐺)) (resp., 𝐿

𝐺
(𝑥) = det(𝑥𝐼

𝑛
− 𝐿(𝐺)),

𝑄
𝐺
(𝑥) = det(𝑥𝐼

𝑛
− 𝑄(𝐺))) of 𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺))

is called the 𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺)) characteristic
polynomial or 𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺)) polynomial of
𝐺 and is denoted by 𝐴

𝐺
(𝑥) (resp., 𝐿

𝐺
(𝑥), 𝑄

𝐺
(𝑥)). The

spectrum of 𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺)) which consists of
the 𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺)) eigenvalues is also called the
𝐴(𝐺) (resp., 𝐿(𝐺), 𝑄(𝐺)))) spectrum of 𝐺, respectively. It

is well known that 𝐴(𝐺), 𝐿(𝐺), and 𝑄(𝐺) are symmetric
and positive semidefinite; then we denote the eigenvalues
of 𝐴(𝐺), 𝐿(𝐺), and 𝑄(𝐺) by 𝜆

1
(𝐺) ≥ 𝜆

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
(𝐺),

𝜇
1
(𝐺) ≥ 𝜇

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥ 𝜇

𝑛
(𝐺) = 0, and 𝑞

1
(𝐺) ≥ 𝑞

2
(𝐺) ≥ ⋅ ⋅ ⋅ ≥

𝑞
𝑛
(𝐺) ≥ 0, respectively. Details on its theory can be found in

recent papers [12–14] and the references cited therein.
The famous graph energy 𝐸(𝐺) for a simple graph 𝐺,

introduced by Gutman [1], is defined as 𝐸(𝐺) = ∑𝑛
𝑖=1

|𝜆
𝑖
|. The

quantity can be used to estimate the total 𝜋-electron energy
in conjugated hydrocarbons. As an analogue of 𝐸(𝐺), the
incidence energy IE(𝐺), is a novel topological index, inspired
by Nikiforov idea [2], Jooyandeh et al. [15] introduced the
concept IE(𝐺) of a graph 𝐺 as IE(𝐺) = ∑

𝑛

𝑖=1√𝑞𝑖, which is
the sum of the singular values of the incidence matrix 𝐵(𝐺).
The index has attracted extensive attention due to its wide
applications in physics, chemistry, graph theory, and so forth;
for more work on IE(𝐺), the readers are referred to papers
[15–18].

In [4, 19] the energy 𝐸(𝐺) and Kirchhoff index Kf(𝐺)
of toroidal lattices were studied. It is an interesting problem
to study the incidence energy of some lattices with toroidal
boundary condition. Motivated by results above, we consider
the problemof computations of the IE(𝐺) of the 3.12.12 lattice,
triangular kagomé lattice, and 𝑆(𝑚, 𝑛) lattice with toroidal
condition in this paper.
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Figure 1: The 𝐽𝑡(𝑚, 𝑛) lattice with toroidal boundary condition [5].

2. Main Results

2.1. The 3.12.12 Lattice. The 3.12.12 lattice with toroidal
boundary condition by physicists [5], denoted by 𝐽𝑡(𝑚, 𝑛), is
illustrated in Figure 1.

Recently, the adjacency spectrum of 3.12.12 lattice has
been proposed in [5] as follows.

Theorem 1 (see [5]). Let 𝐽𝑡(𝑚, 𝑛) be the 3.12.12 lattice with
toroidal boundary condition. Then the adjacency spectrum is

Spec
𝐴
(𝐽𝑡 (𝑚, 𝑛))

= {−2, −2, . . . , −2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

, 0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

}

∪

{{{

{{{

{

1 ± √13 ± 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

2

}}}

}}}

}

,

(1)

where 𝛼
𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1), 𝑖 = 0, 1, . . . , 𝑚,

𝑗 = 0, 1, . . . , 𝑛.

The following result is an important relationship between
Spec
𝐴
(𝐺) and Spec

𝑄
(𝐺).

Consider that if 𝐺 is an 𝑟-regular graph of order 𝑛, then

𝐷 (𝐺) = 𝑟𝐼
𝑛
. (2)

Consequently,

𝑄 (𝐺) = 𝐷 (𝐺) + 𝐴 (𝐺) = 𝐷 (𝐺) + 𝑟𝐼
𝑛
. (3)

One can conclude that

𝑄
𝐺
(𝑥) = 𝑃

𝐺
(𝑥 − 𝑟) . (4)

Define the mapping 𝜑(𝜆
𝑖
) = 𝜆

𝑖
+ 𝑟 maps the eigenvalues of

𝐴(𝐺) to the eigenvalues of 𝑄(𝐺) and can be considered as an
isomorphism of the𝐴-spectrum to the corresponding the𝑄-
spectrum for regular graphs.

Suppose that 𝐺 is an 𝑟-regular graph with 𝑛 vertices and
Spec
𝐴
(𝐺) = {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
}. Then

Spec
𝑄 (𝐺) = {𝑟 + 𝜆1, 𝑟 + 𝜆2, . . . , 𝑟 + 𝜆𝑛} . (5)

Note that 𝐽𝑡(𝑚, 𝑛) is the line graph of the subdivision of
𝐻𝑡(𝑛,𝑚) which is a 3-regular graph with 2(𝑚 + 1)(𝑛 + 1)

vertices, and 𝐽𝑡(𝑚, 𝑛) has 6(𝑚 + 1)(𝑛 + 1) vertices. Hence, we
get the following theorem.

Theorem 2. Let 𝐽𝑡(𝑚, 𝑛) be the 3.12.12 lattice with toroidal
boundary condition and 𝛼

𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1),

𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 0, 1, . . . , 𝑛. Then the signless Laplacian
spectrum is

Spec
𝑄
(𝐽
𝑡
(𝑚, 𝑛))

= {1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

, 3, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

}

∪

{{{

{{{

{

7 ±√13± 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

2

}}}

}}}

}

.

(6)

By the definition of the incidence energy, we can easily get
the incidence energy of 𝐽𝑡(𝑚, 𝑛).

Theorem 3. Let 𝛼
𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1),

𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 0, 1, . . . , 𝑛. Then the incidence energy of
𝐽
𝑡
(𝑚, 𝑛) can be expressed as

IE (𝐽 (𝑚, 𝑛))

= (√3 + 1) (𝑚 + 1) (𝑛 + 1)

+
1

2

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

√
7 − √13 − 4√3 + 2 cos𝛼𝑖 + 2 cos𝛽𝑗 + 2 cos (𝛼𝑖 + 𝛽𝑗)

+
1

2

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

√
7 − √13 + 4√3 + 2 cos𝛼𝑖 + 2 cos𝛽𝑗 + 2 cos (𝛼𝑖 + 𝛽𝑗)

+
1

2

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

√
7 + √13 − 4√3 + 2 cos𝛼𝑖 + 2 cos𝛽𝑗 + 2 cos (𝛼𝑖 + 𝛽𝑗)

+
1

2

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

√
7 + √13 + 4√3 + 2 cos𝛼𝑖 + 2 cos𝛽𝑗 + 2 cos (𝛼𝑖 + 𝛽𝑗).

(7)
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From theorem above, we consider that

lim
𝑚→∞

lim
𝑛→∞

IE (𝐽𝑡 (𝑚, 𝑛))
6 (𝑚 + 1) (𝑛 + 1)

= lim
𝑚→∞

lim
𝑛→∞

1

12 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√7 − √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

12 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√7 − √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

12 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√7 + √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

12 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√7 + √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+
√3 + 1

6
.

(8)

Consequently, one can easily arrive to the asymptotic value of
incidence energy

lim
𝑚→∞

lim
𝑛→∞

𝐼𝐸 (𝐽
𝑡

(𝑚, 𝑛))

6 (𝑚 + 1) (𝑛 + 1)

=
1

12
∫

1

0

∫

1

0

√
7 − √13 − 4√3 + 2 cos𝛼

𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
1

12
∫

1

0

∫

1

0

√
7 − √13 + 4√3 + 2 cos𝛼

𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
1

12
∫

1

0

∫

1

0

√
7 + √13 − 4√3 + 2 cos𝛼

𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
1

12
∫

1

0

∫

1

0

√
7 + √13 + 4√3 + 2 cos𝛼

𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
√3 + 1

6
≈ 1.3040.

(9)

The numerical integration value in last line is calculated
with MATLAB software calculation.
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Figure 2: The TKL𝑡(𝑚, 𝑛) lattice with toroidal boundary condition
[5].

Hence 𝐽𝑡(𝑚, 𝑛) has the asymptotic incidence energy
IE(𝐽𝑡(𝑚, 𝑛)) ≈ 7.8240(𝑚 + 1)(𝑛 + 1).

2.2. The Triangular Kagomé Lattice. The triangular kagomé
lattice [5] with toroidal boundary condition, denoted by
TKL𝑡(𝑚, 𝑛), is depicted in Figure 2.

In order to obtain the IE(𝐺) of toroidal boundary condi-
tion, we recall the spectrum and the Laplacian spectrum of
TKL𝑡(𝑚, 𝑛).

Theorem 4 (see [5]). The spectrum and the Laplacian spec-
trum of TKL 𝑡(𝑚, 𝑛) are

Spec
𝐴
(TKL𝑡 (𝑚, 𝑛))

= {−2, −2, . . . , −2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3(𝑚+1)(𝑛+1)

, −1, −1, . . . , −1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

, 1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

}

∪

{{{

{{{

{

3 ±√13 ± 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+𝛽
𝑗
)

2

}}}

}}}

}

,

Spec
𝐿
(TKL𝑡 (𝑚, 𝑛))

= {6, 6, . . . , 6⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3(𝑚+1)(𝑛+1)

, 3, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

, 5, 5, . . . , 5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

}

∪

{{{

{{{

{

5 ±√13 ± 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+2 cos (𝛼

𝑖
+𝛽
𝑗
)

2

}}}

}}}

}

,

(10)

where 𝛼
𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1), 𝑖 = 0, 1, . . . , 𝑚,

𝑗 = 0, 1, . . . , 𝑛.

Note that the triangular kagomé lattice is the line graph
of the 3.12.12 lattice and TKL𝑡(𝑚, 𝑛) is a 4-regular graph with
9(𝑚 + 1)(𝑛 + 1) vertices.
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Consequently, we can easily get the signless Laplacian
spectrum of TKL𝑡(𝑚, 𝑛):

Spec
𝑄
(TKL𝑡 (𝑚, 𝑛))

= {2, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3(𝑚+1)(𝑛+1)

, 3, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

, 5, 5, . . . , 5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚+1)(𝑛+1)

}

∪

{{{

{{{

{

11±√13± 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+2 cos (𝛼

𝑖
+𝛽
𝑗
)

2

}}}

}}}

}

,

(11)

where 𝛼
𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1), 𝑖 = 0, 1, . . . , 𝑚,

𝑗 = 0, 1, . . . , 𝑛.

Theorem 5. Let 𝛼
𝑖
= 2𝜋𝑖/(𝑚 + 1), 𝛽

𝑗
= 2𝜋𝑗/(𝑛 + 1),

𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 0, 1, . . . , 𝑛. Then the incidence energy of
TKL 𝑡(𝑚, 𝑛) can be expressed as

IE (TKL𝑡 (𝑚, 𝑛))

= 3√2 (𝑚 + 1) (𝑛 + 1) + (√3 + √5) (𝑚 + 1) (𝑛 + 1)

+
1

2

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 − √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+
1

2

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 − √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+
1

2

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 + √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+
1

2

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 + √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
).

(12)

Hence,

lim
𝑚→∞

lim
𝑛→∞

IE (TKL𝑡 (𝑚, 𝑛))
9 (𝑚 + 1) (𝑛 + 1)

= lim
𝑚→∞

lim
𝑛→∞

1

18 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 − √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

18 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 − √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

18 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 + √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+ lim
𝑚→∞

lim
𝑛→∞

1

18 (𝑚 + 1) (𝑛 + 1)

×

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

√11 + √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
)

+
√3 + √5

9
+
√2

3

=
1

18
∫
1

0

∫
1

0

√11 − √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦
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+
1

18
∫
1

0

∫
1

0

√11 − √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
1

18
∫
1

0

∫
1

0

√11 + √13 − 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
1

18
∫
1

0

∫
1

0

√11 + √13 + 4√3 + 2 cos𝛼
𝑖
+ 2 cos𝛽

𝑗
+ 2 cos (𝛼

𝑖
+ 𝛽
𝑗
) 𝑑𝑥 𝑑𝑦

+
√3 + √5

9
+
√2

3
≈ 1.6390.

(13)

The above numerical integration value implies
that TKL𝑡(𝑚, 𝑛) has the asymptotic incidence energy
IE(TKL𝑡(𝑚, 𝑛)) ≈ 14.7510(𝑚 + 1)(𝑛 + 1).

Remark 6. In comparison to [5], the authors have derived the
formulae of the number of spanning trees, the energy, and the
Kirchhoff index of the triangular kagomé lattice with toroidal
boundary condition in [5], while we have handled the IE(𝐺)
of the 3.12.12 lattice, triangular kagomé lattice, which enriches
and extends the earlier results by Liu and Yan [5].

2.3.The 𝑆𝑡(𝑚,𝑛) Lattice. The 𝑆𝑡(𝑚, 𝑛) lattice [20]with toroidal
boundary condition, denoted by 𝑆𝑡(𝑚, 𝑛), can be constructed
by starting with an 𝑚 × 𝑛 square lattice and adding two
diagonal edges to each square, which are illustrated in
Figure 3.

The eigenvalues of𝐴(𝑆𝑡(𝑚, 𝑛))have been obtained in [20].

Lemma 7. The eigenvalues of 𝐴(𝑆𝑡(𝑚, 𝑛)) are

2 cos 2𝜋𝑖
𝑚

+ 2 cos
2𝜋𝑗

𝑛
+ 4 cos 2𝜋𝑖

𝑚
cos

2𝜋𝑗

𝑛
,

𝑖 = 0, 1, . . . , 𝑚 − 1; 𝑗 = 0, 1, . . . , 𝑛 − 1.

(14)

Notice that 𝑆𝑡(𝑚, 𝑛) is a 8-regular graph. Let 𝑄(𝑆𝑡(𝑚, 𝑛))
be the signless Laplacian matrix of 𝑆𝑡(𝑚, 𝑛), and then the
signless Laplacian eigenvalues of 𝑆𝑡(𝑚, 𝑛) are

8 + 2 cos 2𝜋𝑖
𝑚

+ 2 cos
2𝜋𝑗

𝑛
+ 4 cos 2𝜋𝑖

𝑚
cos

2𝜋𝑗

𝑛
,

𝑖 = 0, 1, . . . , 𝑚 − 1; 𝑗 = 0, 1, . . . , 𝑛 − 1.

(15)

Based on Lemma 7 and the definition of the incidence
energy, it is easy to deduce the following.

Theorem 8. Let 𝛼
𝑖
= 2𝜋𝑖/𝑚, 𝛽

𝑗
= 2𝜋𝑗/𝑛, 𝑖 = 0, 1, . . . , 𝑚 − 1,

𝑗 = 0, 1, . . . , 𝑛 − 1, and then the incidence energy of 𝑆𝑡(𝑚, 𝑛)
can be expressed as

IE (𝑆
𝑡
(𝑚, 𝑛))

=

𝑚−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

√8 + 2 cos 2𝜋𝑖
𝑚

+ 2 cos
2𝜋𝑗

𝑛
+ 4 cos 2𝜋𝑖

𝑚
cos

2𝜋𝑗

𝑛
.

(16)

Similarly, one can readily derive that

lim
𝑚→∞

lim
𝑛→∞

IE (𝑆𝑡 (𝑚, 𝑛))
𝑚𝑛

= lim
𝑚→∞

lim
𝑛→∞

1

𝑚𝑛

𝑚−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

√8 + 2 cos 2𝜋𝑖
𝑚

+ 2 cos
2𝜋𝑗

𝑛
+ 4 cos 2𝜋𝑖

𝑚
cos

2𝜋𝑗

𝑛

= ∫
1

0

∫
1

0

√8 + 2 cos 2𝜋𝑥 + 2 cos 2𝜋𝑦 + 4 cos 2𝜋𝑥 cos 2𝜋𝑦 𝑑𝑥 𝑑𝑦

=
1

4𝜋2
∫
2𝜋

0

∫
2𝜋

0

√8 + 2 cos𝑥 + 2 cos𝑦 + 4 cos𝑥 cos𝑦𝑑𝑥𝑑𝑦

≈ 2.7883.

(17)
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Figure 3:The 𝑆𝑡(𝑚, 𝑛) lattice with toroidal boundary condition [20].

The above numerical integration value implies that 𝑆𝑡(𝑚, 𝑛)
has the asymptotic incidence energy IE(𝑆𝑡(𝑚, 𝑛)) ≈

2.7883𝑚𝑛. Summing up, we complete the proof.

3. Remarking Conclusions

In this paper, we deduced the formulae and asymptotic
formulae expressing the incidence energy of the 3.12.12 lattice,
triangular kagomé lattice, and 𝑆(𝑚, 𝑛) lattice with toroidal
boundary condition, respectively.

It is well known that dealing with the problem of the
asymptotic incidence energy of various lattices with the free
boundary is not an easy task; however, we can convert the
more difficult problems to relatively simple ones via the appli-
cations of analysis approach with the help of calculational
software. In fact, our approach can be used widely to handle
the asymptotic behavior of other lattices and can obtain some
useful results simultaneously.
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