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We obtain the necessary and sufficient conditions for an almost conservative matrix to define a compact operator. We also establish
some necessary and sufficient (or only sufficient) conditions for operators to be compact for matrix classes (𝑓,𝑋), where 𝑋 =
𝑐, 𝑐
0
, 𝑙
∞
. These results are achieved by applying the Hausdorff measure of noncompactness.

1. Introduction and Preliminaries

For some basic definitions and notations of this section
we refer to [1, 2]. Let 𝑤 denote the space of all complex
sequences 𝑥 = (𝑥

𝑘
), and let 𝜙 be the set of all sequences

that terminate in zeros. Let ℓ
∞
, 𝑐, and 𝑐

0
denote the spaces

of all bounded, convergent, and null sequences, respectively.
We will write 𝑐𝑠 and ℓ

1
for the spaces of all convergent

and absolutely convergent series, respectively. Further, we
will use the conventions that 𝑒 = (1, 1, 1, . . .) and 𝑒(𝑛) =
(0, 0, . . . , 1, 0, . . .) where 1 at the 𝑛th place for each 𝑛 ∈ N =

{1, 2, 3, . . .}.
For the sequence spaces𝑋 and 𝑌, we write

𝑀(𝑋,𝑌) = {𝑎 = (𝑎
𝑘
) ∈ 𝑤 : 𝑎𝑥 = (𝑎

𝑘
𝑥
𝑘
) ∈ 𝑌 ∀𝑥 = (𝑥

𝑘
) ∈ 𝑋}

(1)

which is called the multiplier space of 𝑋 and 𝑌. The 𝛼-, 𝛽-,
and 𝛾-duals of a sequence space 𝑋, which are respectively
denoted by𝑋𝛼,𝑋𝛽, and𝑋𝛾, are defined by

𝑋
𝛼
= 𝑀(𝑋, ℓ

1
) , 𝑋

𝛽
= 𝑀(𝑋, 𝑐𝑠) , 𝑋

𝛾
= 𝑀(𝑋, 𝑏𝑠) .

(2)

Throughout this paper, the matrices are infinite matrices
of complex numbers. If 𝐴 is an infinite matrix with complex
entries 𝑎

𝑛𝑘
(𝑛, 𝑘 ∈ N), then we write 𝐴 = (𝑎

𝑛𝑘
) instead of

𝐴 = (𝑎
𝑛𝑘
)
∞

𝑛,𝑘=1
. Also, we write 𝐴

𝑛
for the sequence in the 𝑛th

row of 𝐴; that is, 𝐴
𝑛
= (𝑎
𝑛𝑘
)
∞

𝑘=1
for every 𝑛 ∈ N. In addition,

if 𝑥 = (𝑥
𝑘
) ∈ 𝑤, then we define the 𝐴-transform of 𝑥 as the

sequence 𝐴𝑥 = (𝐴
𝑛
(𝑥))
∞

𝑛=1
, where

𝐴
𝑛 (𝑥) =

∞

∑
𝑘=1

𝑎
𝑛𝑘
𝑥
𝑘
; (𝑛 ∈ N) (3)

provided the series on the right converges for each 𝑛 ∈ N.
For arbitrary sequence spaces 𝑋 and 𝑌, we write (𝑋, 𝑌)

for the class of all infinite matrices that map 𝑋 into 𝑌. Thus
𝐴 ∈ (𝑋, 𝑌) if and only if 𝐴

𝑛
∈ 𝑋𝛽 for all 𝑛 ∈ N and 𝐴𝑥 ∈ 𝑌

for all 𝑥 ∈ 𝑋.
The theory of 𝐵𝐾 spaces is the most powerful tool in the

characterization ofmatrix transformations between sequence
spaces.

A sequence space 𝑋 is called a 𝐵𝐾 space if it is a Banach
space with continuous coordinates 𝑝

𝑛
: 𝑋 → C(𝑛 ∈ N),

where C denotes the complex field and 𝑝
𝑛
(𝑥) = 𝑥

𝑛
for all

𝑥 = (𝑥
𝑘
) ∈ 𝑋 and every 𝑛 ∈ N.

The sequence spaces 𝑐
0
, 𝑐, and ℓ

∞
are 𝐵𝐾 spaces with

the usual sup norm given by ‖𝑥‖
ℓ
∞

= sup
𝑘
|𝑥
𝑘
|, where the

supremum is taken over all 𝑘 ∈ N. Also, the space ℓ
1
is a 𝐵𝐾

space with the usual ℓ
1
-norm defined by ‖𝑥‖

ℓ
1

= ∑
∞

𝑘=1
|𝑥
𝑘
|.

If𝑋 ⊃ 𝜙 is a 𝐵𝐾 space and 𝑎 = (𝑎
𝑘
) ∈ 𝑤, then we write

‖𝑎‖
∗

𝑋
= sup
𝑥∈𝑆
𝑋



∞

∑
𝑘=1

𝑎
𝑘
𝑥
𝑘



(4)
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provided the expression on the right exists and is finite which
is the case whenever 𝑎 ∈ 𝑋𝛽, where 𝑆

𝑋
is the unit sphere in

𝑋; that is, 𝑆
𝑋
= {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}.

A sequence (𝑏
𝑘
)
∞

𝑘=0
in a linear metric space (𝑋, 𝑑) is called

a Schauder basis (or briefly basis) for 𝑋 if for every 𝑥 ∈ 𝑋
there exists a unique sequence (𝛼

𝑘
)
∞

𝑘=0
of scalars such that 𝑥 =

∑
∞

𝑘=1
𝛼
𝑘
𝑏
𝑘
; that is, 𝑑(𝑥, 𝑥[𝑛]) → 0 (𝑛 → ∞), where 𝑥[𝑛] =

∑
𝑛

𝑘=0
𝛼
𝑘
𝑏
𝑘
is known as the 𝑛-section of 𝑥. The series ∑

𝑘
𝛼
𝑘
𝑏
𝑘

which has the sum 𝑥 is called the expansion of 𝑥, and (𝛼
𝑘
) is

called the sequence of coefficients of 𝑥with respect to the basis
(𝑏
𝑘
).
Let 𝑋 and 𝑌 be Banach spaces. Then, we write B(𝑋, 𝑌)

for the set of all bounded linear operators 𝐿 : 𝑋 → 𝑌,
which is a Banach space with the operator norm given by
‖𝐿‖ = sup

𝑥∈𝑆
𝑋

‖𝐿(𝑥)‖
𝑌
for all 𝐿 ∈ B(𝑋, 𝑌). A linear operator

𝐿 : 𝑋 → 𝑌 is said to be compact if the domain of 𝐿 is all
of𝑋 and for every bounded sequence (𝑥

𝑛
) in𝑋, the sequence

(𝐿(𝑥
𝑛
)) has a subsequence which converges in𝑌. An operator

𝐿 ∈ B(𝑋, 𝑌) is said to be of finite rank if dim𝑅(𝐿) < ∞,
where𝑅(𝐿) denotes the range space of 𝐿. An operator of finite
rank is clearly compact. Further, we write C(𝑋, 𝑌) for the
class of all compact operators from 𝑋 to 𝑌. Let us remark
that every compact operator in C(𝑋, 𝑌) is bounded; that
is, C(𝑋, 𝑌) ⊂ B(𝑋, 𝑌). More precisely, the class C(𝑋, 𝑌)
is a closed subspace of the Banach space B(𝑋, 𝑌) with the
operator norm.

Finally, the following known results are fundamental for
our investigation.

Lemma 1. Let 𝑋 denote any of the spaces 𝑐
0
, 𝑐, or ℓ

∞
. Then,

one has 𝑋𝛽 = ℓ
1
and ‖𝑎‖∗

𝑋
= ‖𝑎‖
ℓ
1

for all 𝑎 ∈ ℓ
1
.

Lemma 2. Let𝑋 and 𝑌 be 𝐵𝐾 spaces. Then, one has (𝑋, 𝑌) ⊂
B(𝑋, 𝑌); that is, every matrix 𝐴 ∈ (𝑋, 𝑌) defines an operator
𝐿
𝐴
∈B(𝑋, 𝑌) by 𝐿

𝐴
(𝑥) = 𝐴𝑥 for all 𝑥 ∈ 𝑋.

2. The Hausdorff Measure of Noncompactness

Most of the definitions, notations, and basic results of this
section are taken from [3].Throughout, we will writeM

𝑋
for

the collection of all bounded subsets of a metric space (𝑋, 𝑑).
If 𝑄 ∈ M

𝑋
, then the Hausdorff measure of noncompactness

of the set 𝑄, denoted by 𝜒(𝑄), is defined to be the infimum
of the set of all reals 𝜖 > 0 such that 𝑄 can be covered by a
finite number of balls of radii < 𝜖 and centers in 𝑋. This can
equivalently be redefined as follows:

𝜒 (𝑄) = inf {𝜖 > 0 : 𝑄 has a finite 𝜖 − net} . (5)

The function 𝜒 : M
𝑋
→ [0,∞) is called the Hausdorff

measure of noncompactness.
If𝑄,𝑄

1
, and𝑄

2
are bounded subsets of a metric space𝑋,

then we have

𝜒 (𝑄) = 0 if and only if 𝑄 is totally bounded,

𝑄
1
⊂ 𝑄
2

implies 𝜒 (𝑄
1
) ≤ 𝜒 (𝑄

2
) .

(6)

Further, if𝑋 is a normed space, then the function 𝜒 has some
additional properties connected with the linear structure; for
example,

𝜒 (𝑄
1
+ 𝑄
2
) ≤ 𝜒 (𝑄

1
) + 𝜒 (𝑄

2
) ,

𝜒 (𝛼𝑄) = |𝛼| 𝜒 (𝑄) ∀𝛼 ∈ C.
(7)

Let𝑋 and𝑌 be Banach spaces and 𝜒
1
and 𝜒
2
be theHausdorff

measures of noncompactness on 𝑋 and 𝑌, respectively. An
operator 𝐿 : 𝑋 → 𝑌 is said to be (𝜒

1
,𝜒
2
)-bounded if 𝐿(𝑄) ∈

M
𝑌
for all 𝑄 ∈ M

𝑋
and there exists a constant 𝐶 ≥ 0 such

that 𝜒
2
(𝐿(𝑄)) ≤ 𝐶𝜒

1
(𝑄) for all 𝑄 ∈ M

𝑋
. If an operator 𝐿 is

(𝜒
1
,𝜒
2
)-bounded then the number ‖𝐿‖

(𝜒
1
,𝜒
2
)
:= inf{𝐶 ≥ 0 :

𝜒
2
(𝐿(𝑄)) ≤ 𝐶𝜒

1
(𝑄) for all 𝑄 ∈ M

𝑋
} is called the (𝜒

1
, 𝜒
2
)-

measure of noncompactness of 𝐿. If 𝜒
1
= 𝜒
2
= 𝜒, then we

write ‖𝐿‖
(𝜒
1
,𝜒
2
)
= ‖𝐿‖

𝜒
.

Let 𝑋 and 𝑌 be Banach spaces and 𝐿 ∈ B(𝑋, 𝑌). Then,
the Hausdorff measure of noncompactness of 𝐿, denoted by
‖𝐿‖
𝜒
, can be determined by

‖𝐿‖𝜒 = 𝜒 (𝐿 (𝑆𝑋)) , (8)

and we have that

𝐿 is compact if and only if ‖𝐿‖𝜒 = 0. (9)

Furthermore, the function 𝜒 is more applicable when 𝑋 is a
Banach space. The most effective way in the characterization
of compact operators between the Banach spaces is by
applying the Hausdorff measure of noncompactness. The
following result of Goldenštein et al. [4, Theorem 1] gives
an estimate for the Hausdorff measure of noncompactness in
Banach spaces with Schauder bases.

Lemma 3. Let 𝑋 be a Banach space with a Schauder basis
(𝑏
𝑘
)
∞

𝑘=0
and 𝐸 ∈ M

𝑋
and 𝑃

𝑛
: 𝑋 → 𝑋 (𝑛 ∈ N) the projector

onto the linear span of {𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑛
}. Then, one has

1

𝑎
⋅ lim sup
𝑛→∞

(sup
𝑥∈𝑄

(𝐼 − 𝑃𝑛) (𝑥)
)

≤ 𝜒 (𝐸) ≤ lim sup
𝑛→∞

(sup
𝑥∈𝑄

(𝐼 − 𝑃𝑛) (𝑥)
) ,

(10)

where 𝑎 = lim sup
𝑛→∞

‖𝐼−𝑃
𝑛
‖ and the operator 𝑃

𝑟
: 𝑋 → 𝑋,

defined for each 𝑟 ∈ N by 𝑃
𝑟
(𝑥) = ∑

𝑟

𝑘=0
𝜙
𝑘
(𝑥)𝑏
𝑘
(𝑥 ∈ 𝑋),

is called the projector onto the linear span of {𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑟
}.

Besides, all operators 𝑃
𝑟
and 𝐼 − 𝑃

𝑟
are equibounded, where 𝐼

denotes the identity operator on𝑋.

In particular, the following result shows how to compute
the Hausdorff measure of noncompactness in the spaces 𝑐

0

and ℓ
𝑝
(1 ≤ 𝑝 < ∞) which are 𝐵𝐾-spaces with 𝐴𝐾.

Lemma 4. Let 𝐸 be a bounded subset of the normed space 𝑋,
where 𝑋 is ℓ

𝑝
for 1 ≤ 𝑝 < ∞ or 𝑐

0
. If 𝑃
𝑛
: 𝑋 → 𝑋 (𝑛 ∈ N) is

the operator defined by 𝑃
𝑛
(𝑥) = 𝑥[𝑛] = (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
, 0, 0, . . .)

for all 𝑥 = (𝑥
𝑘
)
∞

𝑘=0
∈ 𝑋, then one has

𝜒 (𝐸) = lim
𝑛→∞

(sup
𝑥∈𝑄

(𝐼 − 𝑃𝑛) (𝑥)
) . (11)
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It is easy to see that for 𝐸 ∈M
ℓ
𝑝

𝜒 (𝐸) = lim
𝑛→∞

(sup
𝑥∈𝑄

∑
𝑘≥𝑛

𝑥𝑘

𝑝
) . (12)

Also, it is known that (𝑒, 𝑒(0), 𝑒(1), . . .) is a Schauder basis for
the space 𝑐 and every sequence 𝑧 = (𝑧

𝑛
)
∞

𝑛=0
∈ 𝑐 has a unique

representation 𝑧 = 𝑧𝑒+∑∞
𝑛=0
(𝑧
𝑛
−𝑧)𝑒(𝑛), where 𝑧 = lim

𝑛→∞
𝑧
𝑛
.

Thus, one defines the projector 𝑃
𝑟
: 𝑐 → 𝑐 (𝑟 ∈ N), onto the

linear span of {𝑒, 𝑒(0), 𝑒(1), . . . , 𝑒(𝑟)}, by

𝑃
𝑟
(𝑧) = 𝑧𝑒 +

𝑟

∑
𝑛=0

(𝑧
𝑛
− 𝑧) 𝑒

(𝑛)
; (𝑟 ∈ N) (13)

for all 𝑧 = (𝑧
𝑛
) ∈ 𝑐 with 𝑧 = lim

𝑛→∞
𝑧
𝑛
. In this situation, one

has the following.

Lemma 5. Let 𝑄 ∈ M
𝑐
and 𝑃

𝑟
: 𝑐 → 𝑐 (𝑟 ∈ N) be the

projector onto the linear span of {𝑒, 𝑒(0), 𝑒(1), . . . , 𝑒(𝑟)}.Then, one
has

1

2
⋅ lim
𝑟→∞

(sup
𝑥∈𝑄

(𝐼 − 𝑃𝑟)(𝑥)
ℓ
∞

)

≤ 𝜒 (𝑄) ≤ lim
𝑟→∞

(sup
𝑥∈𝑄

(𝐼 − 𝑃𝑟)(𝑥)
ℓ
∞

) ,

(14)

where 𝐼 is the identity operator on 𝑐.

3. Almost Conservative Matrices

A continuous linear functional 𝐿 on ℓ
∞
is said to be a Banach

limit if it has the following properties: (i) 𝐿(𝑥) = 0 if 𝑥 =
0, (ii) 𝐿(𝑒) = 1, and (iii) 𝐿(𝑆𝑥) = 𝐿(𝑥); where 𝑆 is a shift
operator defined by (𝑆𝑥)

𝑛
= 𝑥
𝑛+1

.
A bounded sequence 𝑥 = (𝑥

𝑘
) is said to be almost

convergent (Lorentz [5]) to the value 𝑙 if all of its Banach limits
coincide; that is, 𝐿(𝑥) = 𝑙 for all Banach limits 𝐿.

Lorentz established the following characterization.
A sequence 𝑥 = (𝑥

𝑘
) is almost convergent to the number

𝑙 if and only if 𝑡
𝑝𝑛
(𝑥) → 𝑙 as 𝑝 → ∞ uniformly in 𝑛, where

𝑡
𝑝𝑛
(𝑥) =

1

𝑝 + 1

𝑝

∑
𝑚=0

𝑥
𝑚+𝑛
; (𝑝, 𝑛 ∈ N) . (15)

The number 𝑙 is called the generalized limit of 𝑥, and we
write 𝑙 = 𝑓− lim𝑥. We denote the set of all almost convergent
sequences by 𝑓; that is,

𝑓 = {𝑥 ∈ ℓ
∞
: lim
𝑝→∞

𝑡
𝑝𝑛
(𝑥) = 𝐿 uniformly in 𝑛} . (16)

Remark 6. Note that 𝑐 ⊂ 𝑓 ⊂ ℓ
∞
and each inclusion is proper.

Remark 7. Since 𝑐 ⊂ 𝑓 ⊂ ℓ
∞
, we have ℓ

1
= ℓ𝛽
∞
⊂ 𝑓𝛽 ⊂ 𝑐𝛽 = ℓ

1

and hence𝑓𝛽 = ℓ
1
.Therefore, it is natural by (4) and Lemma 1

that ‖𝑎‖∗
𝑓
= ‖𝑎‖
ℓ
1

for all 𝑎 ∈ ℓ
1
.

Remark 8 (see [6]). 𝑓 is a BK-space with ‖ ⋅ ‖
∞
.

Remark 9 (see [6]). 𝑓 is a nonseparable closed subspace of
(ℓ
∞
, ‖ ⋅ ‖
∞
).

Using the idea of almost convergence, King [7] defined
and characterized the almost conservative and almost regular
matrices.

An infinite matrix 𝐴 = (𝑎
𝑛𝑘
)
∞

𝑛,𝑘=1
is said to be almost

conservative if 𝐴𝑥 ∈ 𝑓 for all 𝑥 ∈ 𝑐, and we denote it by
𝐴 ∈ (𝑐, 𝑓). If in addition 𝑓 − lim𝐴𝑥 = lim𝑥, then 𝐴 is called
almost regular.

Remark 10 (see [7, Theorem 1]). A matrix 𝐴 = (𝑎
𝑛𝑘
)
∞

𝑛,𝑘=1
is

almost conservative if and only if

(i) ‖𝐴‖ = sup
𝑛
(∑
∞

𝑘=1
|𝑎
𝑛𝑘
|) < ∞,

(ii) 𝑎
(𝑘)
= (𝑎
𝑛𝑘
)
∞

𝑛=1
∈ 𝑓 for each 𝑘 ∈ N,

(iii) 𝑎 = (∑∞
𝑘=1
𝑎
𝑛𝑘
)
∞

𝑛=1
∈ 𝑓.

Now, we prove the following.

Theorem 11. Let 𝐴 = (𝑎
𝑛𝑘
) be an almost conservative matrix.

Then, one has

0 ≤
𝐿𝐴
𝜒 ≤ lim sup

𝑛→∞

(

∞

∑
𝑘=1

𝑎𝑛𝑘
) , (17)

𝐿
𝐴
𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑖𝑓 lim

𝑛→∞
(

∞

∑
𝑘=1

𝑎𝑛𝑘
) = 0. (18)

Proof. Let us remark that the expression on the right of (17)
exists and is finite by Remark 10(i). We write 𝑆 = 𝑆

𝑐
, for short.

Since𝐴 ∈ (𝑐, 𝑓), we have by Lemma 2 that𝐿
𝐴
(𝑆) = 𝐴𝑆 ∈M

𝑓
.

Thus, we obtain by (8) that

𝐿𝐴
𝜒 = 𝜒 (𝐴𝑆) . (19)

We define the operators 𝑃
𝑟
: 𝑓 → 𝑓 (𝑟 ∈ N) by 𝑃

𝑟
(𝑥) =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟
, 0, 0, . . .) for all 𝑥 = (𝑥

𝑛
)
∞

𝑛=1
∈ 𝑓. Then, we have

𝐴𝑆 ⊂ 𝑃
𝑟
(𝐴𝑆) + (𝐼 − 𝑃

𝑟
) (𝐴𝑆) ; (𝑟 ∈ N) , (20)

where 𝐼 is the identity operator on 𝑓. Thus, it follows by the
elementary properties of the function 𝜒 that

0 ≤ 𝜒 (𝐴𝑆) ≤ 𝜒 (𝑃
𝑟
(𝐴𝑆)) + 𝜒 ((𝐼 − 𝑃

𝑟
) (𝐴𝑆))

= 𝜒 ((𝐼 − 𝑃
𝑟
) (𝐴𝑆))

≤ sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟)(𝐴𝑥)
ℓ
∞

(21)

for all 𝑟 ∈ N. Further, we have for every 𝑟 ∈ N that
‖(𝐼 − 𝑃

𝑟
)(𝐴𝑥)‖

ℓ
∞

= sup
𝑛>𝑟
|𝐴
𝑛
(𝑥)| for all 𝑥 ∈ 𝑐. Therefore,

by using (3), (4), and Lemma 2, we derive that

sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟)(𝐴𝑥)
ℓ
∞

= sup
𝑛>𝑟

𝐴𝑛

∗

𝑐
= sup
𝑛>𝑟

𝐴𝑛
ℓ
1

; (𝑟 ∈ N) .

(22)
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Thus, we obtain that
0 ≤ 𝜒 (𝐴𝑆) ≤ sup

𝑛>𝑟

𝐴𝑛
ℓ
1

; (𝑟 ∈ N) (23)

and hence

0 ≤ 𝜒 (𝐴𝑆) ≤ lim
𝑟→∞

(sup
𝑛>𝑟

𝐴𝑛
ℓ
1

)

= lim sup
𝑛→∞

𝐴𝑛
ℓ
1

.

(24)

This and (19) yield (17). Finally, we get (18) from (9) and (17).
This completes the proof.

It is worth mentioning that the condition in (18) is only
a sufficient condition for the operator 𝐿

𝐴
to be compact,

where𝐴 is an almost conservative matrix. More precisely, the
following example will show that it is possible for 𝐿

𝐴
to be

compact while lim
𝑛→∞

(∑
∞

𝑘=1
|𝑎
𝑛𝑘
|) ̸= 0. Hence, in general, we

have just “if ” in (18) of Theorem 11.

Example 12. Define the matrix 𝐴 = (𝑎
𝑛𝑘
) by 𝑎

𝑛1
= 1 and

𝑎
𝑛𝑘
= 0 for 𝑘 > 1 (𝑛 ∈ N). Then, we have 𝐴𝑥 = 𝑥

1
𝑒 ∈ 𝑓

for all 𝑥 = (𝑥
𝑘
)
∞

𝑘=1
∈ 𝑐 and hence 𝐴 ∈ (𝑐, 𝑓); that is, 𝐴 is

almost conservative. Also, it is obvious that 𝐿
𝐴
is of finite

rank and so 𝐿
𝐴
is compact. On the other hand, we have

𝐴
𝑛
= 𝑒(1) and hence ‖𝐴

𝑛
‖
ℓ
1

= 1 for all 𝑛 ∈ N. This implies
that lim

𝑛→∞
‖𝐴
𝑛
‖
ℓ
1

= 1.

4. Compact Operators for Strongly
Conservative Matrices

An infinite matrix 𝐴 = (𝑎
𝑛𝑘
)
∞

𝑛,𝑘=1
is said to be strongly

conservative if 𝐴𝑥 ∈ 𝑐 for all 𝑥 ∈ 𝑓, and we denote it by
𝐴 ∈ (𝑓, 𝑐). If in addition 𝑓 − lim𝑥 = lim𝐴𝑥, then 𝐴 is called
strongly regular (cf. [5]).

In this final section, we establish some necessary and
sufficient (or only sufficient) conditions for operators to be
compact for matrix classes (𝑓,𝑋), where𝑋 = 𝑐, 𝑐

0
, ℓ
∞
.

We may begin with the following lemmas which will be
needed in the sequel.

Lemma 13. If the matrix𝐴 is in any of the classes (𝑓, 𝑐
0
), (𝑓, 𝑐),

or (𝑓, ℓ
∞
), then

sup
𝑛

(

∞

∑
𝑘=1

𝑎𝑛𝑘
) < ∞. (25)

Proof. This can be seen from the class (𝑓, 𝑐) characterized by
Lorentz [5] and by using the fact that (𝑓, 𝑐

0
) ⊂ (𝑐, 𝑐

0
), (𝑓, 𝑐) ⊂

(𝑐, 𝑐), and (𝑓, ℓ
∞
) ⊂ (𝑐, ℓ

∞
).

This completes the proof of the theorem.

Lemma 14. If 𝐴 ∈ (𝑓, 𝑐), then one has

𝛼
𝑘
= lim
𝑛→∞

𝑎
𝑛𝑘
𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑘 ∈ N, (26)

𝛼 = (𝛼
𝑘
)
∞

𝑘=1
∈ ℓ
1
, (27)

sup
𝑛

(

∞

∑
𝑘=1

𝑎𝑛𝑘 − 𝛼𝑘
) < ∞. (28)

Proof. It is trivial that (26) holds, since 𝑒(𝑘) ∈ 𝑓 for all 𝑘 ∈ N.
Further, by combining (26) and Lemma 13, we have for every
𝑚 ∈ N that ∑𝑚

𝑘=1
|𝛼
𝑘
| ≤ sup

𝑛
(∑
∞

𝑘=1
|𝑎
𝑛𝑘
|) < ∞ which implies

that (27) holds. Finally, it follows by (27) and Lemma 13 that
(28) holds.

This completes the proof of the theorem.

Now, we prove the following result on the Hausdorff
measure of noncompactness.

Theorem 15. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, one

has the following.

(i) If 𝐴 ∈ (𝑓, 𝑐
0
), then

𝐿𝐴
𝜒 = lim sup

𝑛→∞

(

∞

∑
𝑘=1

𝑎𝑛𝑘
) . (29)

(ii) If 𝐴 ∈ (𝑓, 𝑐), then

1

2
⋅ lim sup
𝑛→∞

(

∞

∑
𝑘=1

𝑎𝑛𝑘 − 𝛼𝑘
)

≤
𝐿𝐴
𝜒 ≤ lim sup

𝑛→∞

(

∞

∑
𝑘=1

𝑎𝑛𝑘 − 𝛼𝑘
) ,

(30)

where 𝛼
𝑘
= lim
𝑛→∞

𝑎
𝑛𝑘
for all 𝑘 ∈ N.

(iii) If 𝐴 ∈ (𝑓, ℓ
∞
), then

0 ≤
𝐿𝐴
𝜒 ≤ lim sup

𝑛→∞

(

∞

∑
𝑘=1

𝑎𝑛𝑘
) . (31)

Proof. Let us remark that the expressions in (29), (30), and
(31) exist by Lemmas 13 and 14.

We write 𝑆 = 𝑆
𝑓
. Then, we obtain by (8) and Lemma 2

that
𝐿𝐴
𝜒 = 𝜒 (𝐴𝑆) . (32)

For (i), we have 𝐴𝑆 ∈ M
𝑐
0

. Thus, it follows by applying
Lemma 3 that

𝜒 (𝐴𝑆) = lim
𝑟→∞

(sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟) (𝐴𝑥)
ℓ
∞

) , (33)

where 𝑃
𝑟
: 𝑐
0
→ 𝑐
0
(𝑟 ∈ N) is the operator defined by

𝑃
𝑟
(𝑥) = 𝑥[𝑟] for all 𝑥 ∈ 𝑐

0
. This yields that ‖(𝐼 − 𝑃

𝑟
)(𝐴𝑥)‖

ℓ
∞

=

sup
𝑛>𝑟
|𝐴
𝑛
(𝑥)| for all 𝑥 ∈ 𝑓 and every 𝑟 ∈ N. Therefore, by

using (3), (4), and Remark 7, we have for every 𝑟 ∈ N that

sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟)(𝐴𝑥)
ℓ
∞

= sup
𝑛>𝑟

𝐴𝑛

∗

𝑓
= sup
𝑛>𝑟

𝐴𝑛
ℓ
1

. (34)

This and (33) imply that

𝜒 (𝐴𝑆) = lim
𝑟→∞

(sup
𝑛>𝑟

𝐴𝑛
ℓ
1

) = lim sup
𝑛→∞

𝐴𝑛
ℓ
1

. (35)

Hence, we get (29) by (32).
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To prove (ii), we have 𝐴𝑆 ∈ M
𝑐
. Thus, we are going to

apply Lemma 4 to get an estimate for the value of 𝜒(𝐴𝑆) in
(32). For this, let𝑃

𝑟
: 𝑐 → 𝑐 (𝑟 ∈ N) be the projectors defined

by (13). Then, we have for every 𝑟 ∈ N
0
that (𝐼 − 𝑃

𝑟
)(𝑧) =

∑
∞

𝑛=𝑟+1
(𝑧
𝑛
− 𝑧)𝑒(𝑛) and hence

(𝐼 − 𝑃𝑟)(𝑧)
ℓ
∞

= sup
𝑛>𝑟

𝑧𝑛 − 𝑧
 (36)

for all 𝑧 = (𝑧
𝑛
) ∈ 𝑐 and every 𝑟 ∈ N

0
, where 𝑧 = lim

𝑛→∞
𝑧
𝑛

and 𝐼 is the identity operator on 𝑐.
Now, by using (32), we obtain by applying Lemma 5 that

1

2
⋅ lim
𝑟→∞

(sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟) (𝐴𝑥)
ℓ
∞

)

≤
𝐿𝐴
𝜒 ≤ lim
𝑟→∞

(sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟) (𝐴𝑥)
ℓ
∞

) .

(37)

Further, since 𝐴 ∈ (𝑓, 𝑐), we have by combining Lemmas
13 and 14 that 𝛼 = (𝛼

𝑘
) ∈ ℓ
1
and lim

𝑛→∞
𝐴
𝑛
(𝑥) = ∑

∞

𝑘=1
𝛼
𝑘
𝑥
𝑘

for all 𝑥 = (𝑥
𝑘
) ∈ 𝑓. Consequently, we derive from (36) that

(𝐼 − 𝑃𝑟)(𝐴𝑥)
ℓ
∞

= sup
𝑛>𝑟



𝐴
𝑛 (𝑥) −

∞

∑
𝑘=1

𝛼
𝑘
𝑥
𝑘



= sup
𝑛>𝑟



∞

∑
𝑘=1

(𝑎
𝑛𝑘
− 𝛼
𝑘
) 𝑥
𝑘



(38)

for all 𝑥 = (𝑥
𝑘
) ∈ 𝑓 and every 𝑟 ∈ N

0
. Therefore, it follows by

(4) that

sup
𝑥∈𝑆

(𝐼 − 𝑃𝑟)(𝐴𝑥)
ℓ
∞

= sup
𝑛>𝑟

𝐴𝑛 − 𝛼

∗

𝑓

= sup
𝑛>𝑟

𝐴𝑛 − 𝛼
ℓ
1

; (𝑟 ∈ N
0
) .

(39)

Hence, from (37) we get (30).
For (iii), we have 𝐴𝑆 ∈M

ℓ
∞

. Thus, we define 𝑃
𝑟
: ℓ
∞
→

ℓ
∞
(𝑟 ∈ N) by 𝑃

𝑟
(𝑥) = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑟
, 0, 0, . . .) for all 𝑥 =

(𝑥
𝑘
) ∈ ℓ
∞
. Then, the proof can be achieved similarly as the

proof of Theorem 11.
This completes the proof of the theorem.

Finally, we conclude our work by the following corollary.

Corollary 16. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, one

has the following.

(i) If 𝐴 ∈ (𝑓, 𝑐
0
), then

𝐿
𝐴
𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 lim

𝑛→∞
(

∞

∑
𝑘=1

𝑎𝑛𝑘
) = 0. (40)

(ii) If 𝐴 ∈ (𝑓, 𝑐), then

𝐿
𝐴
𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 lim

𝑛→∞
(

∞

∑
𝑘=1

𝑎𝑛𝑘 − 𝛼𝑘
) = 0,

(41)

where 𝛼
𝑘
= lim
𝑛→∞

𝑎
𝑛𝑘
for all 𝑘 ∈ N.

(iii) If 𝐴 ∈ (𝑓, ℓ
∞
), then

𝐿
𝐴
𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑖𝑓 lim

𝑛→∞
(

∞

∑
𝑘=1

𝑎𝑛𝑘
) = 0. (42)

Proof. This result follows fromTheorem 15 by using (9).

Remark 17. As in our Example 12, it can be shown similarly
that the equivalence in (42) of Corollary 16 does not hold.

Remark 18. Sincematrixmappings between BK spaces define
bounded linear operators between these spaces which are
Banach spaces, it is natural to use the Hausdorff measure
of noncompactness to obtain necessary and sufficient condi-
tions for matrix operators between BK spaces to be compact
operators. This technique has recently been used by several
authors in many research papers (cf. [8–14]). Further the
technique ofmeasures of noncompactness has also been used
in solving the infinite system of differential equations in some
sequence spaces (see [15–17]).
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theory of sequence spaces and measures of noncompactness,”
Zbornik Radova, vol. 9, no. 17, pp. 143–234, 2000.
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