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A kind of the Euler-Maruyama schemes in discrete forms for stochastic differential equations with variable and distributed delays is
proposed.The linear interpolationmethod is applied to deal with the values of the solutions at the delayed instants.The assumptions
of this paper on the coefficients and related parameters are somehow weaker than those imposed by the related past literature. The
error estimations for the Euler-Maruyama schemes are given, which are proved to be the same as those for the fundamental Euler-
Maruyama schemes.

1. Introduction

It is well known that most stochastic differential equations
(SDEs) arising inmany applications are nonlinear and cannot
be solved explicitly, so the construction of efficient com-
putational methods is of great importance. Hence, in the
past decades, the numerical approximation schemes for SDEs
have beenwidely investigated and a lot of fundamental results
have been obtained [1–6]. Among the proposedmethods, the
Euler-Maruyama scheme is one of the most typical schemes.
Thismethod has been generalized to some complex SDEs, for
example, SDEs with delays terms [7–14], the neutral terms
[15], the impulsive terms [16], the terms with Markovian
switching [17, 18], and the equations driven by Poisson’s
processes [19–21]. Of course, the approximation schemes for
SDEs have been generalized to the SDEs with variable delays
and some classical results have been obtained [22–24].

For the case with variable delays, the main difficulty in
the construction of the approximation schemes is how to
estimate the values of the solutions at the delayed instants.
To overcome this problem, [11, 22] proposed to use the
approximate values at the nearest grid points on the left of the
delayed arguments. That amounted to a simple interpolation
of the undetermined approximate values of the solutions at
nonmesh points by piecewise constant polynomials whose
values are taken at the left endpoints of the intervals contain-
ing the delayed arguments. Of course, by this method, some

variants of the Euler-Maruyama schemes for SDEs have been
obtained [12, 13, 18, 19, 21, 24].

In this paper, we consider the time-varying stochastic
models with both variable delays and distributed delays. To
approximate the values of the solutions at the delayed times,
we use an interpolation method. To find the approximate
values of the involved integrals, we use the rectangular
method or the trapezoidal method. It should be pointed out
that our model is a kind of time-varying one, we impose no
Hölder continuity for the initial data in this paper, and our
schemes are in the discrete forms, which are practical in real
applications.

2. Preliminaries

In the paper, let (Ω,F, {F
𝑡
}

𝑡≥0
,P) be a complete probability

space with a filtration {F
𝑡
}

𝑡≥0
satisfying the usual conditions;

that is, it is right continuous and F
0
contains all 𝑃-null

sets. Let 𝑊(𝑡) = [𝑊

1
(𝑡),𝑊

2
(𝑡), . . . ,𝑊

𝑚
(𝑡)]

𝑇 be an 𝑚-
dimensionalWiener process defined on the probability space
(Ω,F, {F

𝑡
}

𝑡≥0
,P). 𝜏will be a positive constant which stands

for the upper bound for the bounded delays involved in the
equations, and 𝐼

𝜏
= [−𝜏, 0]. 𝐶(𝐼

𝜏
, 𝑅

𝑛
) denotes the space

of continuous functions 𝜙 from 𝐼

𝜏
to 𝑅𝑛 with norm |𝜙| =

sup
𝜃∈𝐼
𝜏

‖𝜙(𝜃)‖, where ‖ ⋅ ‖ is any kind of norms for vectors. Let
𝑡

0
∈ 𝑅

+
= [0, +∞) and 𝑇 be two instants with 0 ≤ 𝑡

0
< 𝑇, 𝐼 =

[𝑡

0
−𝜏, 𝑇]. For a given function 𝑥(𝑡) ∈ 𝐶(𝐼, 𝑅𝑛), the associated
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function 𝑥
𝑡
∈ 𝐶(𝐼

𝜏
, 𝑅

𝑛
) is defined as 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃), 𝜃 ∈ 𝐼

𝜏
.

Denote 𝐸(𝑝, 𝑡
0
, 𝑇) = 𝐸{sup

𝑡
0
−𝜏≤𝑠≤𝑇

‖𝑥(𝑠, 𝑡

0
, 𝜙

0
)‖

𝑝
}.

For the general theory of functional differential equa-
tions, the readers are referred to [25], and for the general the-
ory of stochastic functional differential equations the read-
ers are referred to [6].

Given an Itô SDE with variable and distributed delays

d𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡)) , . . . , 𝑥 (𝑡 − 𝜏

𝑁
(𝑡)) ,

∫

0

−𝜏
𝐴
(𝑡)

𝐴 (𝑡, 𝜃) 𝑥 (𝑡 + 𝜃) d𝜃) d𝑡

+ 𝑔(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑥 (𝑡 − 𝜏

𝑁
(𝑡)) ,

∫

0

−𝜏
𝐹
(𝑡)

𝐹 (𝑡, 𝜃) 𝑥 (𝑡 + 𝜃) d𝜃) d𝑊(𝑡) ,

𝑥

𝑡
0

(𝜃) = 𝜙

0
(𝜃) , 𝜃 ∈ 𝐼

𝜏
,

(1)

where 𝑡 ∈ [𝑡

0
, 𝑇] and the state 𝑥 ∈ 𝑅

𝑛, the solution 𝑥
𝑡
is a

stochastic process in𝐶(𝐼
𝜏
, 𝑅

𝑛
), with the given initial data 𝜙

0
=

{𝜙

0
(𝜃) : 𝜃 ∈ 𝐼

𝜏
} ∈ 𝐶(𝐼

𝜏
, 𝑅

𝑛
). 𝑓 : 𝑅

+
× 𝑅

𝑛
× ⋅ ⋅ ⋅ × 𝑅

𝑛
→ 𝑅

𝑛

and 𝑔 : 𝑅+ × 𝑅𝑛 × ⋅ ⋅ ⋅ × 𝑅𝑛 → 𝑅

𝑛×𝑚 are continuous in their
arguments, 0 ≤ 𝜏

𝑖
(𝑡), 𝜏
𝐴
(𝑡), 𝜏
𝐹
(𝑡) ≤ 𝜏, 𝑖 = 1, 2, . . . , 𝑁. We have

that 𝐴(𝑡, 𝜃), 𝐹(𝑡, 𝜃) ∈ 𝑅𝑛×𝑛. Define 𝜏
0
(𝑡) = 0.

The numerical scheme of (1) has not been investigated
so far in the related literature; we will propose a kind of
numerical schemes for (1), with fewer assumptions for its
parameters, that is, the coefficients, the delays, and the initial
data, except the ordinary basic assumptions.

Assume that the coefficients 𝑓 and 𝑔 satisfy the local
Lipschitz condition and linear growth condition.

(H
1
) Local Lipschitz condition: for arbitrary given positive
number 𝛼, there is a related constant 𝐿

𝛼
> 0 such that

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

−𝑓 (𝑠, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

󵄩

󵄩

󵄩

󵄩

2

∨

󵄩

󵄩

󵄩

󵄩

𝑔 (𝑡, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

−𝑔(𝑠, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐿

𝛼
(|𝑡 − 𝑠|

2
+

𝑁+1

∑

𝑖=0

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖
− 𝑥

𝑖

󵄩

󵄩

󵄩

󵄩

2

) ,

(2)

for all 𝑡, 𝑠 > 0 and 𝑥
𝑖
, 𝑥

𝑖
∈ 𝑅

𝑛 with ‖𝑥
𝑖
‖ ∨ ‖𝑥

𝑖
‖ ≤ 𝛼,

𝑖 = 0, 1, 2, . . . , 𝑁 + 1.
(H
2
) Linear growth condition: there exists a positive con-
stant 𝐿 such that

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

󵄩

󵄩

󵄩

󵄩

2

∨

󵄩

󵄩

󵄩

󵄩

𝑔 (𝑡, 𝑥

0
, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑥

𝑁+1
)

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐿(1 +

𝑁+1

∑

𝑖=0

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖

󵄩

󵄩

󵄩

󵄩

2

) ,

(3)

for all 𝑡 > 0 and 𝑥
𝑖
∈ 𝑅

𝑛, 𝑖 = 0, 1, 2, . . . , 𝑁 + 1.

The other parameters 𝜏(𝑡), 𝐴(𝑡, 𝜃), and 𝐹(𝑡, 𝜃) satisfy the
following Lipschitz conditions.

(H
3
) For 𝑡, 𝑠 > 0, there exists a constant 𝜌 such that

󵄨

󵄨

󵄨

󵄨

𝜏

𝑖
(𝑡) − 𝜏

𝑖
(𝑠)

󵄨

󵄨

󵄨

󵄨

≤ 𝜌 |𝑡 − 𝑠| , 𝑖 = 1, 2, . . . , 𝑁. (4)

(H
4
) There exists a constant 𝜌󸀠 such that

󵄩

󵄩

󵄩

󵄩

𝐴 (𝑡

∗
, 𝜃

∗
) − 𝐴 (𝑡

∗
, 𝜃

∗
)

󵄩

󵄩

󵄩

󵄩

2

∨

󵄩

󵄩

󵄩

󵄩

𝐹 (𝑡

∗
, 𝜃

∗
) − 𝐹 (𝑡

∗
, 𝜃

∗
)

󵄩

󵄩

󵄩

󵄩

2

≤ 𝜌

󸀠
𝛽

2
,

(5)

for 𝑡∗, 𝑡
∗
> 0, 𝜃

∗
, 𝜃

∗
∈ 𝐼

𝜏
, with |𝑡∗−𝑡

∗
|∨|𝜃

∗
−𝜃

∗
| ≤ 𝛽.

Remark 1. In fact, if𝑓 and 𝑔 are such that𝑓(𝑡, 0, 0, 0, . . . , 0, 0)
and 𝑔(𝑡, 0, 0, 0, . . . , 0, 0) are bounded, the local Lipschitz
condition (H

1
) implies the linear growth condition (H

2
),

where

𝐿 = 2 sup
𝑡∈𝑅
+

{

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡, 0, 0, 0, . . . , 0, 0)

󵄩

󵄩

󵄩

󵄩

2

∨

󵄩

󵄩

󵄩

󵄩

𝑔 (𝑡, 0, 0, 0, . . . , 0, 0)

󵄩

󵄩

󵄩

󵄩

2

∨ 𝐿

𝛼
} .

(6)

It is known that [6], under assumptions (H
1
) and (H

2
),

there exists a unique continuous solution on 𝑡 ≥ 𝑡

0
− 𝜏 to

(1) for each initial datum (𝑡

0
, 𝜙

0
) ∈ 𝑅

+
× 𝐶(𝐼

𝜏
, 𝑅), which is

denoted by 𝑥(𝑡, 𝑡
0
, 𝜙

0
) in this paper, satisfying

𝐸{ sup
𝑡
0
−𝜏≤𝑠≤𝑡

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑠, 𝑡

0
, 𝜙

0
)

󵄩

󵄩

󵄩

󵄩

𝑝

} < +∞ on 𝑡 ≥ 𝑡

0
, (7)

for arbitrary constant 𝑝 > 0.

3. The Variant Euler-Maruyama
Approximation for SDEs with Variable and
Distributed Delays

Without loss of generality, let ℎ be the step sizewith 0 < ℎ ≤ 𝜏.
Let us take a partition for the existing interval 𝐼 = [𝑡

0
− 𝜏, 𝑇]

of the solution as

𝑡

𝑘
= 𝑡

0
+ 𝑘ℎ, 𝑘 = −𝑟

0
, . . . , −1, 0, 1, 2, . . . , 𝐾, (8)

where 𝑟
0
= [𝜏/ℎ] and [⋅] is the floor function. In this paper,

we take the partition as 𝑇 − 𝑡
0
= 𝐾ℎ.

For the interval [𝑡
𝑘
, 𝑡

𝑘+1
], by (1) we have

𝑥 (𝑡

𝑘+1
) = 𝑥 (𝑡

𝑘
) + ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓 (𝑠) d𝑠 + ∫
𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠) , (9)

where

̂

𝑓 (𝑠) = 𝑓(𝑠, 𝑥 (𝑠) , . . . , ∫

0

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃) ,

𝑔 (𝑠) = 𝑔(𝑠, 𝑥 (𝑠) , . . . , ∫

0

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃) .
(10)

For variable delay, the points 𝑡
𝑛
−𝜏

𝑡
𝑛

maynot hit a previous
time step. In consequence, there is no previously calculated
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approximate value of the solution available. To overcome this
problem, we propose to take the linear interpolation of values
of the function involved at the two endpoints of an interval
as the approximate value of the function at a point of the
interval.

With the above analytic derivation, denote

𝐾]
𝑘,𝑖

=

1

ℎ

((𝑘 − ]
𝑘,𝑖
) ℎ − 𝜏

𝑖
(𝑡

0
+ 𝑘ℎ)) ,

]
𝑘,𝑖
= [

1

ℎ

(𝑘ℎ − 𝜏

𝑖
(𝑡

0
+ 𝑘ℎ))] , 𝑖 = 1, 2, . . . , 𝑁,

𝐾

∗

𝑟
𝐴,𝑘

=

(𝑟

𝐴,𝑘
− 1) ℎ − 𝜏

𝐴
(𝑡

0
+ 𝑘ℎ)

ℎ

,

𝐾

∗

𝑟
𝐹,𝑘

=

(𝑟

𝐹,𝑘
− 1) ℎ − 𝜏

𝐹
(𝑡

0
+ 𝑘ℎ)

ℎ

,

𝑟

𝐴,𝑘
= [

1

ℎ

(𝜏

𝐴
(𝑡

0
+ 𝑘ℎ))] , 𝑟

𝐹,𝑘
= [

1

ℎ

(𝜏

𝐹
(𝑡

0
+ 𝑘ℎ))] .

(11)

Our variant Euler-Maruyama scheme for (1) with step size
ℎ is

𝑥

𝑘+1
= 𝑥

𝑘
+ 𝑓 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
) ℎ

+ 𝑔 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐹

𝑘
) Δ𝑊

𝑘
,

𝑘 = 0, 1, . . . , 𝐾 − 1,

(12)

where

𝑥

∗

𝑘,𝑖
= 𝑥]

𝑘,𝑖

+ 𝐾]
𝑘,𝑖

(𝑥]
𝑘,𝑖
+1
− 𝑥]

𝑘,𝑖

) ,

𝑥

∗

𝑘−𝑟
𝐴,𝑘

= 𝑥

𝑟
𝐴,𝑘
−1
+ 𝐾

∗

𝑟
𝐴,𝑘

(𝑥

𝑟
𝐴,𝑘

− 𝑥

𝑟
𝐴,𝑘
−1
) ,

𝑥

∗

𝑘−𝑟
𝐹,𝑘

= 𝑥

𝑟
𝐹,𝑘
−1
+ 𝐾

∗

𝑟
𝐹,𝑘

(𝑥

𝑟
𝐹,𝑘

− 𝑥

𝑟
𝐹,𝑘
−1
) ,

(13)

𝑋

𝐴

𝑘
= ℎ

𝑟
𝐴,𝑘
−1

∑

𝑗=1

𝐴 (𝑡

0
+ 𝑘ℎ, −𝑗ℎ) 𝑥

𝑘−𝑗

+

1

2

(𝐴 (𝑡

0
+ 𝑘ℎ, 0) 𝑥

𝑘
+ 𝐴 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐴,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐴,𝑘

) ℎ

+

1

2

(𝑟

𝐴,𝑘
ℎ − 𝜏

𝐴
(𝑡

0
+ 𝑘ℎ))

× (𝐴 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐴,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐴,𝑘

+ 𝐴 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐴
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐴,𝑘

) ,

𝑋

𝐹

𝑘
= ℎ

𝑟
𝐹,𝑘
−1

∑

𝑗=1

𝐹 (𝑡

0
+ 𝑘ℎ, −𝑗ℎ) 𝑥

𝑘−𝑗

+

1

2

(𝐹 (𝑡

0
+ 𝑘ℎ, 0) 𝑥

𝑘
+ 𝐹 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐹,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐹,𝑘

) ℎ

+

1

2

(𝑟

𝐹,𝑘
ℎ − 𝜏

𝐹
(𝑡

0
+ 𝑘ℎ))

× (𝐹 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐹,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐹,𝑘

+𝐹 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐹
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐹,𝑘

) .

(14)

𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
are determined by the linear interpolation

for function approximation as the approximate values of
𝑥(𝑡

𝑘
), 𝑥(𝑡

𝑘
− 𝜏

1
(𝑡

𝑘
)), . . . , 𝑥(𝑡

𝑘
− 𝜏

𝑁
(𝑡

𝑘
)), respectively, and

𝑋

𝐴

𝑘
and 𝑋

𝐹

𝑘
are determined by the trapezoidal method

or by the rectangular method as given in Remark 4, for
numerical integrals as the approximate values of the integrals
∫

0

−𝜏
𝐴
(𝑡
𝑘
)
𝐴(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+ 𝜃)d𝜃 and ∫

0

−𝜏
𝐹
(𝑡
𝑘
)
𝐹(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+ 𝜃)d𝜃,

respectively.

Remark 2. In real applications, one may take ℎ = 𝜏/𝑀

∗

simply, where𝑀∗ is an integer.

Remark 3. With the above notations, we have the following
facts:

(1) 𝑥
𝐾
is the approximation of 𝑥(𝑇);

(2) 𝑟
𝐴,𝑘

≤ (1/ℎ)𝜏

𝐴
(𝑡

0
+𝑘ℎ) ≤ 𝜏/ℎ, 𝑟

𝐹,𝑘
≤ (1/ℎ)𝜏

𝐹
(𝑡

0
+𝑘ℎ) ≤

𝜏/ℎ, and (𝑟
𝐴,𝑘

+ 1)ℎ ∨ (𝑟

𝐹,𝑘
+ 1)ℎ ≤ 𝜏 + ℎ ≤ 2𝜏;

(3) for 𝑗 = 1, 2, . . . , 𝑟

𝐴,𝑘
or 𝑗 = 1, 2, . . . , 𝑟

𝐹,𝑘
, we have (𝑗 +

2)ℎ = 𝑗ℎ+2ℎ ≤ 𝑟

𝐴,𝑘
ℎ+2ℎ ≤ 𝜏+2𝜏 = 3𝜏 and (𝑗+2)ℎ =

𝑗ℎ + 2ℎ ≤ 𝑟

𝐹,𝑘
ℎ + 2ℎ ≤ 𝜏 + 2𝜏 = 3𝜏, respectively;

(4) 𝑥∗
𝑘,𝑖
, 𝑥∗
𝑘−𝑟
𝐴,𝑘

, 𝑥∗
𝑘−𝑟
𝐹,𝑘

, and 𝑥]
𝑘,𝑖

are well defined because
𝜏

𝑖
(𝑡), 𝜏

𝐴
(𝑡), 𝜏

𝐹
(𝑡) ≤ 𝜏 or due to 𝑟

𝐴,𝑘
, 𝑟

𝐹,𝑘
≤ 𝑟

0
;

(5) ]
𝑘,𝑖
+ 1 ≤ 𝑘.

Remark 4. If we approximate the involved integrals by the
rectangular method, then

𝑋

𝐴

𝑘
= ℎ

𝑟
𝐴,𝑘

∑

𝑗=1

𝐴 (𝑡

0
+ 𝑘ℎ, −𝑗ℎ) 𝑥

𝑘−𝑗

+ (𝑟

𝐴,𝑘
ℎ − 𝜏

𝐴
(𝑡

0
+ 𝑘ℎ))

× 𝐴 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐴
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐴,𝑘

,

𝑋

𝐹

𝑘
= ℎ

𝑟
𝐹,𝑘

∑

𝑗=1

𝐹 (𝑡

0
+ 𝑘ℎ, −𝑗ℎ) 𝑥

𝑘−𝑗

+ (𝑟

𝐹,𝑘
ℎ − 𝜏

𝐹
(𝑡

0
+ 𝑘ℎ))

× 𝐹 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐹
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐹,𝑘

,

(15)

where 𝑥∗
𝑘−𝑟
𝐴,𝑘

and 𝑥∗
𝑘−𝑟
𝐹,𝑘

are the same as those defined in (13).

4. Mean Square Estimation for Truncation
Errors of the Euler-Maruyama Schemes

In this section, we analyze the local and global truncation
errors of the Euler-Maruyama schemes. For the sake of clarity,
we take the case that the integrals ∫0

−𝜏
𝐴
(𝑡
𝑘
)
𝐴(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+

𝜃)d𝜃 and ∫0
−𝜏
𝐹
(𝑡
𝑘
)
𝐹(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+ 𝜃)d𝜃 are approximated by the
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trapezoidal method. We describe the truncation errors in
mean square and analyze the errors directly by the discrete
schemes themselves.

4.1. Notations for Error Estimations. The notations proposed
here will stand for errors, parameters, and coefficients,
respectively, and the coefficients will be used to express the
error estimations and the parameters will be used to express
the coefficients.

(1) Firstly, as mentioned above, we have an estimation

𝐸‖𝑥(𝑡)‖

2
≤ 𝐸

𝑇
=: 𝐸 (2, 𝑡

0
, 𝑇) = constant,

for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑇] .

(16)

Define 𝑥∗
𝑘,𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and 𝑋𝐴

𝑘
, 𝑋

𝐹

𝑘
for the case 𝑘 =

−𝑟

0
, . . . , −1, 0 similarly to the cases for 𝑘 = 1, 2, . . . , 𝐾. By

the given initial data and the linear interpolation method, we
know that 𝑒𝑔

𝑘
(ℎ) = 𝐸‖𝑥

𝑘
− 𝑥(𝑡

𝑘
)‖

2
= 0, 𝑘 = −𝑟

0
, . . . , −1, 0,

and 𝐸‖𝑥
𝑘
‖

2
≤ 𝐸

𝑇
, 𝐸‖𝑥∗
𝑘,𝑖
‖

2
≤ 2𝐸

𝑇
, and 𝐸‖𝑋𝐴

𝑘
‖

2

∨ 𝐸‖𝑋

𝐹

𝑘
‖

2

≤

3(𝜏

2
+ 2ℎ

2
)𝐴

𝐹
𝐸

𝑇
≤ 9𝜏

2
𝐴

𝐹
𝐸

𝑇
, for 𝑘 = −𝑟

0
, . . . , −1, 0.

Define an upper bound sequence {𝐵
𝑘
} by the iteration

𝐵

𝑘+1
= 3 (1 + 𝐿 (1 + (1 + 2𝑁 + 9𝜏

2
𝐴

𝐹
)) ℎ (1 + ℎ)) 𝐵

𝑘
,

𝐵

0
= 𝐸

𝑇
.

(17)

It is obvious that 𝐵
𝑘
= 𝜆

𝑘
(ℎ)𝐸

𝑇
, where 𝜆(ℎ) = 3(1 + 𝐿(1 +

(1+2𝑁+9𝜏

2
𝐴

𝐹
))ℎ(1+ℎ)), and the sequence {𝐵

𝑘
} is increasing,

𝐸

𝑇
≤ 𝐵

𝑘
≤ 𝐵

𝑇
, 𝑘 = 0, 1, . . . , 𝐾.

Denote 𝐵
𝑇
= 𝐵

𝐾
.

Based on these, we also have the following sets of
notations.

(2) Truncation errors of the schemes: consider

𝑒

𝑔

𝑘
(ℎ) = 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

,

𝑒

𝑔

𝑘
(ℎ) = max

1≤𝑞≤𝑘

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑞
− 𝑥(𝑡

𝑞
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

,

𝑒

∗

𝑘,𝑖
(𝑠) = 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘𝑖
− 𝑥(𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

2

, 𝑖 = 1, 2, . . . , 𝑁,

𝑒

𝐴,𝑘
(𝑠) = 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘
− ∫

0

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

,

𝑠 ∈ [𝑡

𝑘
, 𝑡

𝑘
+ ℎ] ,

𝑒

𝐹,𝑘
(𝑠) = 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐹

𝑘
− ∫

0

−𝜏
𝐹
(𝑠)

𝐹 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

,

𝑠 ∈ [𝑡

𝑘
, 𝑡

𝑘
+ ℎ] ,

(18)

for 𝑘 = 1, 2, . . . , 𝐾. Obviously, 𝑒𝑔
𝑘
(ℎ) corresponds to the

analytic truncation error 𝑅(ℎ; 𝑡, 𝑡
0
, 𝑥

𝑡
).

By the way, at the end of this paper, we will give an
estimation for the local truncation error of the schemes,
which will be denoted by 𝑒𝑙

𝑘
(ℎ), for the case that the integrals

involving distributed delays are approximately computed by
the trapezoidal method.

(3) Parameters: consider

𝐹

𝑇
= 𝐿 (1 + (1 + 2𝑁 + 9𝜏

2
𝐴

𝐹
) 𝐵

𝑇
) ,

𝐴

𝐹
= sup
𝑡∈𝐼,𝜃∈𝐼

𝜏

{‖𝐴 (𝑡, 𝜃)‖

2
∨ ‖𝐹 (𝑡, 𝜃)‖

2
} ,

𝑀 = 1 + 30 (1 + 2𝜏) 𝐿

𝛼
(𝑁 + 1) + (1 + 2𝜏) 𝐿

𝛼
𝜏

2
𝐴

2

𝐹
,

𝑀

󸀠
= 2 (1 + 2𝜏) (𝜏 + 10 (𝑁 + 1) (3 + 𝜌) (1 + 𝜏) 𝐹

𝑇

+4𝜏

3
𝜌

󸀠
𝐸

𝑇
+ 16 (1 + 2𝜏) 𝜏

2
𝐴

2

𝐹
𝐹

𝑇
) 𝐿

𝛼
.

(19)

4.2. Lemmas. To obtain mean square estimation for global
truncation errors and local truncation errors of the Euler-
Maruyama schemes, we need the following lemma.

Lemma 5. For the schemes (11)–(14), one has the following
estimation:

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐵

𝑘
, 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2𝐵

𝑘
,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

∨ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐹

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 9𝜏

2
𝐴

𝐹
𝐵

𝑘
, 𝑘 = 0, 1, . . . , 𝐾.

(20)

Proof. We prove the conclusion by induction. By the above
analysis, the conclusion is true for 𝑘 = 0.

Assume that the conclusion is true for some 𝑘 > 0.
By the computation scheme and the Markov property of

the solutions of the Itô stochastic differential equations, we
have

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘+1

󵄩

󵄩

󵄩

󵄩

2

≤ 3 (𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘

󵄩

󵄩

󵄩

󵄩

2

ℎ

2
+ 𝐸

󵄩

󵄩

󵄩

󵄩

𝑔

𝑘

󵄩

󵄩

󵄩

󵄩

2

ℎ) . (21)

By the computation scheme, one can easily show that, if
𝐸‖𝑥

𝑞
‖

2
≤ 𝐵

𝑘
for −𝑟

0
≤ 𝑞 ≤ 𝑘, then we have 𝐸‖𝑥∗

𝑘,𝑖
‖

2
≤ 2𝐵

𝑘
,

𝐸‖𝑋

𝐴

𝑘
‖

2

≤ 9𝜏

2
𝐴

𝐹
𝐵

𝑘
, and 𝐸‖𝑋

𝐹

𝑘
‖

2

≤ 9𝜏

2
𝐴

𝐹
𝐵

𝑘
. Based on

these, we have

𝐸

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐿(1 + 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘

󵄩

󵄩

󵄩

󵄩

2

+

𝑁

∑

𝑖=1

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘𝑖

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

)

≤ 𝐿 (1 + (1 + 2𝑁 + 9𝜏

2
𝐴

𝐹
) 𝐵

𝑘
) ,

𝐸

󵄩

󵄩

󵄩

󵄩

𝑔

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐿 (1 + (1 + 2𝑁 + 9𝜏

2
𝐴

𝐹
) 𝐵

𝑘
) ,

(22)

and then

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘+1

󵄩

󵄩

󵄩

󵄩

2

≤ 3 (1 + 𝐿 (1 + (1 + 2𝑁 + 9𝜏

2
𝐴

𝐹
)) ℎ (1 + ℎ)) 𝐵

𝑘

= 𝐵

𝑘+1
.

(23)

By induction, the conclusion of the theorem is true: that
is, we have the estimation 𝐸‖𝑥

𝑘
‖

2
≤ 𝐵

𝐾
≤ 𝐵

𝑇
for 𝑘 =

1, 2, . . . , 𝐾.
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Remark 6. Of course, at the same time, we have the following
estimation:

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2𝐵

𝑘
≤ 2𝐵

𝑇
,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

∨ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐹

𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 9𝜏

2
𝐴

𝐹
𝐵

𝑘
≤ 9𝜏

2
𝐴

𝐹
𝐵

𝑇
,

𝑘 = 0, 1, . . . , 𝐾.

(24)

Remark 7. By (H
4
), for 𝑠 ∈ [𝑡

𝑘
, 𝑡

𝑘
+ℎ], 𝑘 = 1, 2, . . . , 𝐾, we have

𝐸 {

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
)

− 𝑓 (𝑠, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

∨

󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐹

𝑘
)

−𝑔(𝑠, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐹

𝑘
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

}

≤ 𝐿ℎ

2
.

(25)

4.3. Mean Square Estimation for Global Truncation Errors.
Now we can state mean square estimation for global trunca-
tion errors of the Euler-Maruyama schemes and the order of
the Euler-Maruyama schemes.

Theorem 8. If the step size ℎ is taken such that 0 < ℎ ≤

𝜏, then one has global truncation error estimation 𝑒

𝑔

𝑘
(ℎ) =

𝐸‖𝑥

𝑘
− 𝑥(𝑡

𝑘
)‖

2
≤ ℎ(𝑀/𝑀

󸀠
)(𝐸

𝑀𝑇
− 1) or say 𝑒𝑔

𝑘
(ℎ) ≤ ℎ(𝑀/

𝑀

󸀠
)(𝐸

𝑀𝑇
− 1), 𝑘 = 1, 2, . . . , 𝐾; that is, the order of the scheme

is 1/2.

Proof. The proof of the theorem is a little more difficult than
those reported in the related past literature for error analysis,
due to the appearance of the argument 𝑡 in coefficients 𝑓 and
𝑔, as well as the error of the schemes for numerical com-
putations of the involved integrals ∫0

−𝜏
𝐴
(𝑡
𝑘
)
𝐴(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+ 𝜃)d𝜃

and ∫0
−𝜏
𝐹
(𝑡
𝑘
)
𝐹(𝑡

𝑘
, 𝜃)𝑥(𝑡

𝑘
+𝜃)d𝜃.We prove the conclusion of the

theorem by induction.
Firstly, for 𝑘 = −𝑟

0
, . . . , −1, 0, we have 𝑒𝑔

𝑘
(ℎ) = 0; that is,

the conclusion of the theorem is true for 𝑘 = −𝑟
0
, . . . , −1, 0.

Secondly, for the terms 𝐸‖𝑥]
𝑘,𝑖
+1
− 𝑥(𝑡]

𝑘,𝑖
+1
)‖

2, 𝐸‖𝑥(𝑡]
𝑘,𝑖

)−

𝑥]
𝑘,𝑖

‖

2, 𝐸‖𝑥(𝑡]
𝑘,𝑖
+1
) − 𝑥(𝑡]

𝑘,𝑖

)‖

2, and 𝐸‖𝑥(𝑡]
𝑘,𝑖

) − 𝑥(𝑠 − 𝜏

𝑖
(𝑠))‖

2,
we have, respectively,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡]
𝑘,𝑖

) − 𝑥]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 𝑒

𝑔

𝑘
(ℎ) ,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥]
𝑘,𝑖
+1
− 𝑥(𝑡]

𝑘,𝑖
+1
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 𝑒

𝑔

𝑘
(ℎ) ,

(26)

due to ]
𝑘,𝑖
+ 1 ≤ 𝑘.

Denote

𝑓

𝑘
= 𝑓 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
) ,

𝑔

𝑘
= 𝑔 (𝑡

𝑘
, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐹

𝑘
) .

(27)

By the definition of 𝑒𝑔
𝑘
(ℎ), we have

𝑒

𝑔

𝑘+1
(ℎ) = 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘+1
− 𝑥(𝑡

𝑘+1
)

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓(𝑠)d𝑠
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔(𝑠)d𝑊(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 2𝐸 (𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)) (𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓 (𝑠) d𝑠)

+ 2𝐸(𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓 (𝑠) d𝑠)

× (𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠))

+ 2𝐸 (𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
))

× (𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠)) .

(28)

By computations, we have

2𝐸 (𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)) (𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓 (𝑠) d𝑠)

= 𝐸∫

𝑡
𝑘+1

𝑡
𝑘

2 (𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)) (𝑓

𝑘
−

̂

𝑓 (𝑠)) d𝑠

≤ 𝐸∫

𝑡
𝑘+1

𝑡
𝑘

((𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
))

2

+ (𝑓

𝑘
−

̂

𝑓 (𝑠))

2

) d𝑠

= ℎ𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸∫

𝑡
𝑘+1

𝑡
𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
−

̂

𝑓(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

d𝑠,

𝐸 (𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)) (𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠))

= 𝐸∫

𝑡
𝑘+1

𝑡
𝑘

(𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)) (𝑔

𝑘
− 𝑔 (𝑠)) d𝑊(𝑠) = 0,

(29)

and similarly

𝐸(𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓 (𝑠) d𝑠)(𝑔
𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠)) = 0.

(30)

Inserting (29) and (30) into (28), then we have

𝑒

𝑔

𝑘+1
(ℎ) = 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘+1
− 𝑥 (𝑡

𝑘+1
)

󵄩

󵄩

󵄩

󵄩

2

≤ (1 + ℎ) 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ 2𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓(𝑠)d𝑠
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔 (𝑠) d𝑊(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

.

(31)
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By the above notations and the given Lipschitz condition,
we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
−

̂

𝑓(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2𝐸 (

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
− 𝑓(𝑠, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓(𝑠, 𝑥

𝑘
, 𝑥

∗

𝑘,1
, 𝑥

∗

𝑘,2
, . . . , 𝑥

∗

𝑘,𝑁
, 𝑋

𝐴

𝑘
) −

̂

𝑓(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

)

≤ 2𝐿

𝛼
ℎ

2
+ 2𝐿

𝛼

𝑁

∑

𝑗=0

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘𝑗
− 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 2𝐿

𝛼
𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘
− ∫

0

−𝜏
𝐴
(𝑠)

𝐴(𝑠, 𝜃)𝑥(𝑠 + 𝜃)d𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

.

(32)

Let 𝑖 = 0, 1, . . . , 𝑁, 𝑠 ∈ [𝑡
𝑘
, 𝑡

𝑘+1
]; we have

𝑥

∗

𝑘,𝑖
− 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

= 𝑥]
𝑘,𝑖

+ 𝐾]
𝑘,𝑖

(𝑥]
𝑘,𝑖
+1
− 𝑥]

𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

= 𝐾]
𝑘,𝑖

(𝑥]
𝑘,𝑖
+1
− 𝑥]

𝑘,𝑖

) + (𝑥]
𝑘,𝑖

− 𝑥 (𝑡]
𝑘,𝑖

))

− (𝑥 (𝑠 − 𝜏

𝑖
(𝑠)) − 𝑥 (𝑡]

𝑘,𝑖

))

= 𝐾]
𝑘,𝑖

((𝑥]
𝑘,𝑖
+1
− 𝑥 (𝑡]

𝑘,𝑖
+1
))

+ (𝑥 (𝑡]
𝑘,𝑖
+1
) − 𝑥 (𝑡]

𝑘,𝑖

)) + (𝑥 (𝑡]
𝑘,𝑖

) − 𝑥]
𝑘,𝑖

))

+ (𝑥]
𝑘,𝑖

− 𝑥 (𝑡]
𝑘,𝑖

)) + (𝑥 (𝑡]
𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠)))

≤ ( (𝑥]
𝑘,𝑖
+1
− 𝑥 (𝑡]

𝑘,𝑖
+1
))

+ (𝑥 (𝑡]
𝑘,𝑖
+1
) − 𝑥 (𝑡]

𝑘,𝑖

)) + (𝑥 (𝑡]
𝑘,𝑖

) − 𝑥]
𝑘,𝑖

))

+ (𝑥]
𝑘,𝑖

− 𝑥 (𝑡]
𝑘,𝑖

)) + (𝑥 (𝑡]
𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))) ,

(33)

and thus we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘,𝑖
− 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 5 (𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥]
𝑘,𝑖
+1
− 𝑥 (𝑡]

𝑘,𝑖
+1
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖
+1
) − 𝑥 (𝑡]

𝑘,𝑖

)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖

) − 𝑥]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

+𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥]
𝑘,𝑖

− 𝑥 (𝑡]
𝑘,𝑖

)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

)

= 5 (𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥]
𝑘,𝑖
+1
− 𝑥 (𝑡]

𝑘,𝑖
+1
)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖
+1
) − 𝑥 (𝑡]

𝑘,𝑖

)

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 2𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖

) − 𝑥]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

2

+𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

) ,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡]
𝑘,𝑖
+1
) − 𝑥(𝑡]

𝑘,𝑖

)

󵄩

󵄩

󵄩

󵄩

󵄩

2

= 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

̂

𝑓(𝜇)d𝜇 + ∫
𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

𝑔(𝜇)d𝑊(𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2𝐸(

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

̂

𝑓 (𝜇) d𝜇
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

𝑔 (𝜇) d𝑊(𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

)

≤ 2𝐸(ℎ∫

𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝑓 (𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

2

d𝜇 + ∫
𝑡]
𝑘,𝑖
+ℎ

𝑡]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

𝑔 (𝜇)

󵄩

󵄩

󵄩

󵄩

2d𝜇)

≤ 2 (1 + ℎ) ℎ𝐹

𝑇
,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡]
𝑘,𝑖

) − 𝑥 (𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

= 𝐸(∫

𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

̂

𝑓(𝜇)d𝜇 + ∫
𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

𝑔(𝜇)d𝑊(𝜇))

2

≤ 2𝐸(

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

̂

𝑓 (𝜇) d𝜇
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

𝑔 (𝜇) d𝑊(𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

)

≤ 2𝐸(ℎ∫

𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝑓 (𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

2

d𝜇 + ∫
𝑠−𝜏
𝑖
(𝑠)

𝑡]
𝑘,𝑖

󵄩

󵄩

󵄩

󵄩

𝑔 (𝜇)

󵄩

󵄩

󵄩

󵄩

2d𝜇)

≤ 2 (2 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
,

(34)

due to |𝑡]
𝑘,𝑖

− (𝑠 − 𝜏

𝑖
(𝑠))| ≤ |𝑡]

𝑘,𝑖

− (𝑡

𝑘
− 𝜏

𝑖
(𝑡

𝑘
))| + |(𝑡

𝑘
− 𝜏

𝑖
(𝑡

𝑘
)) −

(𝑠 − 𝜏

𝑖
(𝑠))| ≤ ℎ+ℎ+𝜌ℎ = (2+𝜌)ℎ; by (34) then it follows that

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘,𝑖
− 𝑥(𝑠 − 𝜏

𝑖
(𝑠))

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 5 (3𝑒

𝑔

𝑘
(ℎ) + 2 (3 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
) .

(35)

At the same time, by the computationmethod for𝑋𝐴
𝑘
and

𝑋

𝐹

𝑘
, that is, the trapezoidal method, we have decomposition

𝑋

𝐴

𝑘
− ∫

0

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃 =
𝑟
𝐴,𝑘
+1

∑

𝑗=1

𝑌

𝑘

𝑗
(𝑠) ,

𝑋

𝐹

𝑘
− ∫

0

−𝜏
𝐹
(𝑠)

𝐹 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃 =
𝑟
𝐹,𝑘
+1

∑

𝑗=1

𝑍

𝑘

𝑗
(𝑠) ,

(36)

where

𝑌

𝑘

𝑗
(𝑠) =

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) 𝑥

𝑘−𝑗
+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥

𝑘−𝑗+1
)

− ∫

−(𝑗−1)ℎ

−𝑗ℎ

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃,

𝑗 = 1, 2, . . . , 𝑟

𝐴,𝑘
,
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𝑍

𝑘

𝑗
(𝑠) =

1

2

ℎ (𝐹 (𝑡

𝑘
, −𝑗ℎ) 𝑥

𝑘−𝑗
+ 𝐹 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥

𝑘−𝑗+1
)

− ∫

−(𝑗−1)ℎ

−𝑗ℎ

𝐹 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃,

𝑗 = 1, 2, . . . , 𝑟

𝐹,𝑘
,

𝑌

𝑘

𝑟
𝐴,𝑘
+1
(𝑠) =

1

2

(𝑟

𝐴,𝑘
ℎ − 𝜏

𝐴
(𝑡

0
+ 𝑘ℎ))

× (𝐴 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐴,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐴,𝑘

+𝐴 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐴
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐴,𝑘

)

− ∫

−𝑟
𝐴,𝑘
ℎ

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃,

𝑍

𝑘

𝑟
𝐹,𝑘
+1
(𝑠) =

1

2

(𝑟

𝐹,𝑘
ℎ − 𝜏

𝐹
(𝑡

0
+ 𝑘ℎ))

× (𝐹 (𝑡

0
+ 𝑘ℎ, −𝑟

𝐹,𝑘
ℎ) 𝑥

𝑘−𝑟
𝐹,𝑘

+𝐹 (𝑡

0
+ 𝑘ℎ, −𝜏

𝐹
(𝑡

0
+ 𝑘ℎ)) 𝑥

∗

𝑘−𝑟
𝐹,𝑘

)

− ∫

−𝑟
𝐹,𝑘
ℎ

−𝜏
𝐹
(𝑠)

𝐹 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃.

(37)

For 𝑗 = 1, 2, . . . , 𝑟
𝐴,𝑘

, we have

𝑌

𝑘

𝑗
(𝑠) =

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) 𝑥

𝑘−𝑗
+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥

𝑘−𝑗+1
)

− ∫

−(𝑗−1)ℎ

−𝑗ℎ

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃

=

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) (𝑥

𝑘−𝑗
− 𝑥 (𝑡

𝑘−𝑗
))

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) (𝑥

𝑘−𝑗+1
− 𝑥 (𝑡

𝑘−𝑗+1
)))

+

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) 𝑥 (𝑡

𝑘−𝑗
)

+𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥 (𝑡

𝑘−𝑗+1
))

− ∫

−(𝑗−1)ℎ

−𝑗ℎ

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃

=

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) (𝑥

𝑘−𝑗
− 𝑥 (𝑡

𝑘−𝑗
))

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) (𝑥

𝑘−𝑗+1
− 𝑥 (𝑡

𝑘−𝑗+1
)))

+ ∫

−(𝑗−1)ℎ

−𝑗ℎ

(

1

2

(𝐴 (𝑡

𝑘
, −𝑗ℎ) 𝑥 (𝑡

𝑘−𝑗
)

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥 (𝑡

𝑘−𝑗+1
))

−𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) ) d𝜃

=

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) (𝑥

𝑘−𝑗
− 𝑥 (𝑡

𝑘−𝑗
))

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) (𝑥

𝑘−𝑗+1
− 𝑥 (𝑡

𝑘−𝑗+1
)))

+

1

2

∫

−(𝑗−1)ℎ

−𝑗ℎ

( (𝐴 (𝑡

𝑘
, −𝑗ℎ) 𝑥 (𝑡

𝑘−𝑗
)

+𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) 𝑥 (𝑡

𝑘−𝑗+1
))

−𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗
) + 𝑥 (𝑡

𝑘−𝑗+1
))) d𝜃

+

1

2

∫

−(𝑗−1)ℎ

−𝑗ℎ

(𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗
) + 𝑥 (𝑡

𝑘−𝑗+1
))

−2𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) ) d𝜃

=

1

2

ℎ (𝐴 (𝑡

𝑘
, −𝑗ℎ) (𝑥

𝑘−𝑗
− 𝑥 (𝑡

𝑘−𝑗
))

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) (𝑥

𝑘−𝑗+1
− 𝑥 (𝑡

𝑘−𝑗+1
)))

+

1

2

∫

−(𝑗−1)ℎ

−𝑗ℎ

((𝐴 (𝑡

𝑘
, −𝑗ℎ) − 𝐴 (𝑠, 𝜃)) 𝑥 (𝑡

𝑘−𝑗
)

+ (𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ) − 𝐴 (𝑠, 𝜃))

× 𝑥 (𝑡

𝑘−𝑗+1
)) d𝜃

+

1

2

∫

−(𝑗−1)ℎ

−𝑗ℎ

(𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗
) − 𝑥 (𝑠 + 𝜃))

+𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗+1
) − 𝑥 (𝑠 + 𝜃))) d𝜃.

(38)

By the given equation, for 𝑠 ∈ [𝑡
𝑘
, 𝑡

𝑘+1
] and 𝑗 = 1, 2, . . . ,

𝑟

𝐴,𝑘
, we have

𝑥 (𝑡

𝑘−𝑗
) − 𝑥 (𝑠 + 𝜃)

= ∫

𝑡
𝑘−𝑗

𝑠+𝜃

̂

𝑓 (𝜇) d𝜇 + ∫
𝑡
𝑘−𝑗

𝑠+𝜃

𝑔 (𝜇) d𝑊(𝜇) ,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘−𝑗
) − 𝑥(𝑠 + 𝜃)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑡

𝑘−𝑗
− 𝑠 − 𝜃

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡
𝑘−𝑗

𝑠+𝜃

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝑓 (𝜇)

󵄩

󵄩

󵄩

󵄩

󵄩

2

d𝜇
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡
𝑘−𝑗

𝑠+𝜃

𝐸

󵄩

󵄩

󵄩

󵄩

𝑔 (𝜇)

󵄩

󵄩

󵄩

󵄩

2d𝜇
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

) ,

(39)

and then we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

𝑘−𝑗
) − 𝑥 (𝑠 + 𝜃)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2 (((𝑗 + 1) ℎ + 𝜏)

2

𝐹

𝑇
+ ((𝑗 + 1) ℎ + 𝜏) 𝐹

𝑇
)

≤ 4ℎ (2ℎ + 1) 𝐹

𝑇
,

(40)
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due to |𝑡
𝑘−𝑗

− 𝑠 − 𝜃| ≤ 2ℎ. Similarly we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

𝑘−𝑗+1
) − 𝑥 (𝑠 + 𝜃)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2 ((𝑗ℎ + 𝜏)

2

𝐹

𝑇
+ (𝑗ℎ + 𝜏) 𝐹

𝑇
)

≤ 4ℎ (2ℎ + 1) 𝐹

𝑇
.

(41)

Inserting (40) and (41) into (38), we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

𝑘

𝑗
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤

3

4

𝐸( (ℎ

2
(𝐴 (𝑡

𝑘
, −𝑗ℎ) (𝑥

𝑘−𝑗
− 𝑥 (𝑡

𝑘−𝑗
))

+ 𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ)

× 𝑥

𝑘−𝑗+1
− 𝑥 (𝑡

𝑘−𝑗+1
)))

2

+ ℎ∫

−(𝑗−1)ℎ

−𝑗ℎ

( (𝐴 (𝑡

𝑘
, −𝑗ℎ) − 𝐴 (𝑠, 𝜃))

× 𝑥 (𝑡

𝑘−𝑗
)

+ (𝐴 (𝑡

𝑘
, − (𝑗 − 1) ℎ)

−𝐴 (𝑠, 𝜃) ) 𝑥 (𝑡

𝑘−𝑗+1
) )

2

d𝜃

+ ℎ∫

−(𝑗−1)ℎ

−𝑗ℎ

(𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗
) − 𝑥 (𝑠 + 𝜃))

+ 𝐴 (𝑠, 𝜃) (𝑥 (𝑡

𝑘−𝑗+1
)

−𝑥 (𝑠 + 𝜃) ))

2

d𝜃)

≤

3

4

(4ℎ

2
𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 4ℎ

2
𝜌

󸀠
ℎ

2
𝐸

𝑇

+16ℎ

3
(2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

= (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) ℎ

2
,

(42)

and similarly we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑍

𝑘

𝑗
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) ℎ

2
.

(43)

For the same reasons, we have

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

𝑘

𝑟
𝐴,𝑘
+1
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

∨ 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑍

𝑘

𝑟
𝐹,𝑘
+1
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) ℎ

2
.

(44)

Consequently we have

𝑒

𝐴,𝑘
(𝑠) = 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐴

𝑘
− ∫

0

−𝜏
𝐴
(𝑠)

𝐴 (𝑠, 𝜃) 𝑥 (𝑠 + 𝜃) d𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝑟

𝐴,𝑘
+ 1)

𝑟
𝐴,𝑘
+1

∑

𝑗=1

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

𝑘

𝑗
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝑟

𝐴,𝑘
+ 1)

2

× (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) ℎ

2
,

𝑒

𝐹,𝑘
(𝑠) = 𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑋

𝐹

𝑘
− ∫

0

−𝜏
𝐹
(𝑠)

𝐹(𝑠, 𝜃)𝑥(𝑠 + 𝜃)d𝜃
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝑟

𝐹,𝑘
+ 1)

𝑟
𝐹,𝑘
+1

∑

𝑗=1

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

𝑍

𝑘

𝑗
(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ (𝑟

𝐹,𝑘
+ 1)

2

× (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) ℎ

2
.

(45)

In fact, since (𝑟
𝐴,𝑘
+1)ℎ∨(𝑟

𝐹,𝑘
+1)ℎ ≤ 𝜏+ℎ ≤ 2𝜏, asmentioned

above, we have

𝑒

𝐴,𝑘
(𝑠) ∨ 𝑒

𝐹,𝑘
(𝑠)

≤ 4𝜏

2
(𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) .

(46)

With the above estimations, for every 𝑘, we have a com-
mon estimation

𝐸(𝑓

𝑘
−

̂

𝑓 (𝑠))

2

≤ 𝛾

𝑇
(ℎ) .

(47)

Similarly we have

𝐸(𝑔

𝑘
− 𝑔 (𝑠))

2

≤ 𝛾

𝑇
(ℎ) ,

(48)

and then we obtain

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑘
ℎ − ∫

𝑡
𝑘+1

𝑡
𝑘

̂

𝑓(𝑠)d𝑠
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ ℎ

2
𝛾

𝑇
(ℎ) ,

𝐸

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑔

𝑘
Δ𝑊

𝑘
− ∫

𝑡
𝑘+1

𝑡
𝑘

𝑔(𝑠)d𝑊(𝑠)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ ℎ𝛾

𝑇
(ℎ) ,

(49)

where

𝛾

𝑇
(ℎ) = 2𝐿

𝛼
ℎ

2
+ 10𝐿

𝛼
(𝑁 + 1)

× (3𝑒

𝑔

𝑘
(ℎ) + 2 (3 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
)

+ 8𝐿

𝛼
𝜏

2
(𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
) .

(50)
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By iterating and observing that ℎ(𝑘 + 1) = 𝑡

𝑘+1
≤ 𝑇, we

have

𝑒

𝑔

𝑘+1
(ℎ) ≤ (1 + ℎ) 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥 (𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ ℎ (1 + 2ℎ) 𝛾

𝑇
(ℎ)

≤ (1 + ℎ) 𝑒

𝑔

𝑘
(ℎ) + 2ℎ (1 + 2ℎ) 𝐿

𝛼
ℎ

2

+ 10ℎ (1 + 2ℎ) 𝐿

𝛼

× (𝑁 + 1) (3𝑒

𝑔

𝑘
(ℎ) + 2 (3 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
)

+ 8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2

× (𝐴

2

𝐹
𝑒

𝑔

𝑘
(ℎ) + 𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

≤ (1 + ℎ + 30ℎ (1 + 2ℎ) 𝐿

𝛼
(𝑁 + 1)

+8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
𝐴

2

𝐹
) 𝑒

𝑔

𝑘
(ℎ)

+ 2ℎ (1 + 2ℎ) 𝐿

𝛼
ℎ

2
+ 20ℎ

2

× (1 + 2ℎ) 𝐿

𝛼
(𝑁 + 1) (3 + 𝜌) (1 + ℎ) 𝐹

𝑇

+ 8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
(𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

= (1 + ℎ (1 + 30 (1 + 2ℎ) 𝐿

𝛼
(𝑁 + 1)

+ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
𝐴

2

𝐹
)) 𝑒

𝑔

𝑘
(ℎ)

+ 2ℎ (1 + 2ℎ) 𝐿

𝛼
ℎ

2
+ 20ℎ

2
(1 + 2ℎ)

× 𝐿

𝛼
(𝑁 + 1) (3 + 𝜌) (1 + ℎ) 𝐹

𝑇

+ 8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
(𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

≤ (1 + ℎ (1 + 30 (1 + 2𝜏) 𝐿

𝛼
(𝑁 + 1)

+ (1 + 2𝜏) 𝐿

𝛼
𝜏

2
𝐴

2

𝐹
)) 𝑒

𝑔

𝑘
(ℎ)

+ 2ℎ (1 + 2ℎ) 𝐿

𝛼
ℎ

2
+ 20ℎ

2

× (1 + 2ℎ) 𝐿

𝛼
(𝑁 + 1) (3 + 𝜌) (1 + ℎ) 𝐹

𝑇

+ 8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
(𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

≤ (1 + ℎ (1 + 30 (1 + 2𝜏) 𝐿

𝛼
(𝑁 + 1)

+ (1 + 2𝜏) 𝐿

𝛼
𝜏

2
𝐴

2

𝐹
)) 𝑒

𝑔

𝑘
(ℎ)

+ 2ℎ

2
𝐿

𝛼
(1 + 2𝜏)

× (𝜏 + 10 (𝑁 + 1) (3 + 𝜌) (1 + 𝜏) 𝐹

𝑇

+4𝜏

3
𝜌

󸀠
𝐸

𝑇
+ 16 (1 + 2𝜏) 𝜏

2
𝐴

2

𝐹
𝐹

𝑇
)

= (1 + ℎ𝑀) 𝑒

𝑔

𝑘
(ℎ) + ℎ

2
𝑀

󸀠

= (1 + ℎ𝑀)

𝑘+1
𝑒

𝑔

0
(ℎ) + ℎ

2
𝑀

󸀠

𝑘

∑

𝑖=0

(1 + ℎ𝑀)

𝑖

= ℎ

2
𝑀

󸀠

𝑘

∑

𝑖=0

(1 + ℎ𝑀)

𝑖

= ℎ

2
𝑀

󸀠 (1 + ℎ𝑀)

𝑘+1
− 1

ℎ𝑀

≤ ℎ

𝑀

󸀠

𝑀

(𝐸

𝑀𝑇
− 1) .

(51)

The proof is complete.

Remark 9. Besides, by the above derivation, we also have
estimations for 𝐸‖𝑥

𝑘
‖

2 and 𝐸‖𝑥∗
𝑘𝑖
‖

2 in another form:

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 2 (𝐸

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

)

≤ ℎ

𝑀

𝑀

󸀠
(𝐸

𝑀𝑇
− 1) + 𝐸

𝑇
≤ 𝜏

𝑀

𝑀

󸀠
(𝐸

𝑀𝑇
− 1) + 𝐸

𝑇
,

𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘𝑖

󵄩

󵄩

󵄩

󵄩

2

≤ 2 (𝐸

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

𝑘
− 𝜏

𝑖
(𝑡

𝑘
))

󵄩

󵄩

󵄩

󵄩

2

+ 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

∗

𝑘𝑖
− 𝑥 (𝑡

𝑘
− 𝜏

𝑖
(𝑡

𝑘
))

󵄩

󵄩

󵄩

󵄩

2

)

≤ 2 (5 (3ℎ

𝑀

𝑀

󸀠
(𝐸

𝑀𝑇
− 1) + 2 (3 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
)

+𝐸

𝑇
)

≤ 2 (5 (3𝜏

𝑀

𝑀

󸀠
(𝐸

𝑀𝑇
− 1) + 2 (3 + 𝜌) 𝜏 (1 + 𝜏) 𝐹

𝑇
)

+𝐸

𝑇
) .

(52)

4.4. Mean Square Estimation for Local Truncation Errors.
With the above derivation, by the way, we can get the local
truncation error for the Euler-Maruyama schemes. In fact,
replacing the term 𝐶

𝑔

𝑘
(ℎ) by 0 in the derivation, we just get

an estimation for the local truncation error:
𝑒

𝑔

𝑘+1
(ℎ) ≤ (1 + ℎ) 𝐸

󵄩

󵄩

󵄩

󵄩

𝑥

𝑘
− 𝑥 (𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

+ ℎ (1 + 2ℎ) 𝛾

𝑇
(ℎ)

≤ 2ℎ (1 + 2ℎ) 𝐿

𝛼
ℎ

2
+ 10ℎ (1 + 2ℎ)

× 𝐿

𝛼
(𝑁 + 1) (2 (3 + 𝜌) ℎ (1 + ℎ) 𝐹

𝑇
)

+ 8ℎ (1 + 2ℎ) 𝐿

𝛼
𝜏

2
(𝜌

󸀠
ℎ

2
𝐸

𝑇
+ 4ℎ (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)

= 𝐶

𝑙
(ℎ) ℎ

2
,

(53)

where
𝐶

𝑙
(ℎ) = 2 (1 + 2ℎ) (ℎ + 10 (𝑁 + 1) (3 + 𝜌) (1 + ℎ) 𝐹

𝑇

+4𝜏

2
(𝜌

󸀠
ℎ𝐸

𝑇
+ 4 (2ℎ + 1)𝐴

2

𝐹
𝐹

𝑇
)) 𝐿

𝛼
.

(54)
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5. Conclusion

As is pointed out above, one of the most important purposes
for numerical computation of stochastic systems is obviously
to simulate the dynamic behavior of the solutions of the
systems. To this end, we have proposed a kind of the Euler-
Maruyama schemes, coming from the rectangularmethod for
numerical integrals.

In this paper, we have approximated the integrals involv-
ing distributed delays by either the rectangularmethod or the
trapezoidal method and established corresponding compu-
tation schemes. We have weakened some of the conditions
applied in the related past literature; that is, in this paper, we
have desired neither the Lipschitz assumption for the variable
delays nor the Hölder continuity for the initial data. Under
our weaker assumptions, the order for the global truncation
error of the Euler-Maruyama schemes is proved to be 1/2 in
the meaning of strong convergence.

Of course, for further investigation, the integrals involv-
ing distributed delays can be generalized to the form
∫

0

−𝜏
[d
𝜃
𝜂(𝑡, 𝜃)]𝑥

𝑡
(𝜃) and we can derive similar computation

schemes and obtain the same order global truncation errors
for the schemes.
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