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This work introduces new functions based on the spherical harmonics and the solid harmonics which have been used to construct
a multipole development for the 3D Stokes problem in order to reduce the operations costs in the BEMmethod. We show that the
major properties of those functions are inherited from the solid harmonics. The contribution of this paper is the introduction of
new formulas that serve to calculate the multipole moments and the transfer functions that are necessary for the schemes of order
𝑂(𝑁log𝑁). Moreover, new translation formulas are introduced to obtain an 𝑂(𝑁) scheme. The error truncation of the resulting
scheme is discussed. In comparison to the BEM that attains a limit storage at 𝑂(10

4
), we present here a method based on FMM-

BEM that attains a storage at a limit of 𝑂(10
6
). The implementation of the method achieves a high accuracy level at a reasonable

cost.

1. Introduction

Thestudies of complex fluids, such as particulate suspensions,
emulsions, and sedimentation problem, remain a great chal-
lenge in spite of their omnipresence in many physical, chem-
ical, or biomedical processes and industrial applications.
This problem represents physically the creeping flow around
several solid particles moving in a viscous fluid. Due to the
size of the particles, this kind of problems is modelled by the
linear Stokes equation. This linearity allows the application
of the surface integral equation method or the boundary
elementmethod (BEM)whichmay bemore efficient than the
boundary value methods such as the finite element method
(FEM) or the finite difference method (FDM). Indeed, the
advantage of the BEM is that only the surface is discretized,
generating fewer elements than a volume discretization and
making the system matrix much smaller. However, the
integral equation method is a global approach; every point
is affected by the points of the entire system, giving a dense
matrix. Since there are efficient algorithms, that is, GMRES,
for solving the sparse matrix generated by FEM and FDM,
it was believed that BEM was more expensive to use than

FEM or FDM.The development of the fast multipole method
(FMM) with the aim of accelerating the product matrix
vector and reducing the complexity of such operations from
𝑂(𝑁
2
) to 𝑂(𝑁 log𝑁) or even to 𝑂(𝑁), and the memory

requirements to 𝑂(𝑁 log𝑁) or 𝑂(𝑁) [1–3], brought new life
to the classical BEM. Indeed such method approximates the
effect of the far field points of the entire system. Like in FEM,
only the terms in a certain band of the matrix are stored
in an exact way and all the others are approximated and
compressed.

We introduce in this paper new multipole moments and
transfer functions for 𝑂(𝑁 log𝑁) scheme and new formulas
for the translations frommultipole to multipole, multipole to
local, and local to local that are necessary to construct the
𝑂(𝑁) scheme for solving the 3D particulate Stokes problem.
The multipole and local expansions can be useful to develop
an efficient method based on the FMM to determine a real
time solution of the dynamics of rigid bodies in a 3D infinite
or semi-infinite viscous fluid. This solution is obtained by
determining the stresses exerted by the fluid on each body
and then the velocities of the bodies. These stresses are
represented by Stokeslets distributed over the surfaces of
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the bodies. We begin in the next section by presenting a
brief overview of the literature. In Section 3, we present
the principle of the fast multipole method. Section 4 presents
the two representations used in FMM formulas for the
Laplace problem: the first is based on spherical harmonic [2]
and the second on the solid harmonic [4]. We present also in
this section the new functions that will be used to represent
differently theGreen function of the Laplace equation. For the
sake of conciseness, clarity, and complexity of the algorithm,
we choose to work with this new representation with the
aim of developing the FMM formulas that permit solving the
Stokes problem in an𝑂(𝑁 log𝑁) scheme in the first step and
in 𝑂(𝑁) scheme in the final step. In Section 5, we present
a detailed description of the FMM formulas founded to be
applied to the Green function of the Stokes equation.We also
present a discrete algorithm as well as the study of the error
bound. Finally, in Section 6, we present, discuss, and interpret
the numerical results obtained from a cluster.

2. Overview

FMM reduces the cost of the product matrix vector from
𝑂(𝑁
2
) to 𝑂(𝑁 log𝑁) or even 𝑂(𝑁) by approximating the

calculation by handling numerical series. It uses a hierar-
chical subdivision of space into panels or clusters of sources
calculating the multipolar moment that are used in the
evaluation of the far field expansion, and it reduces the space
of storage from 𝑂(𝑁

2
) for the dense matrix of size 𝑁 to

𝑂(𝑁 log𝑁) or even to 𝑂(𝑁). From the algorithmic point of
view, the FMM works down and up the TREE constructed
by the recursive subdivision of the initial domain. FMM was
initially introduced by Rokhlin [5] as a fast solution method
for integral equations for two-dimensional Laplace equation.
Barnes and Hut [6] developed an 𝑂(𝑁 log𝑁) algorithm.The
FMM was then developed by Greengard and Rokhlin [1–3],
as a fast evaluation method for the pairwise force calculation
in multibody problems with Coulombic potential. FMM has
been applied to problems in various fields such as boundary
integral equation method (BIEM) and molecular dynamics
(MD). Rokhlin [7] and Coifman et al. [8] used the FMM to
solve the Helmholtz equation in 2D. Greengard et al. [9] and
Mammoli and Ingber [10, 11] applied the FMM to the Stokes
equations in fluid mechanic and Greengard and Helsing
[12] for the problem of elasticity. Nishimura et al. [13, 14]
studied this topic in order to apply fast multipole boundary
integral equation method (FM-BIEM) to practical problems
in fracture mechanics and earthquake engineering. Gumerov
and Duraiswami used the FMM to solve the biharmonic
equation [15]. In this paper, we discuss the applications of the
FMM-BIEM to the fundamental boundary value problems
in three dimensions given by Stokes equations and show its
efficiencies.

3. The FMM Principles for the 3D
Stokes Problem

The FMMmethod replaces the classical product matrix vec-
tor by an operation called the multipole product that allows

Level 1

Level 2

Figure 1: Recursive subdivision of the initial cube.

obtaining, by a very fast algorithm, a good approximation
of the solution. The complexity is of 𝑂(𝑁 log𝑁) or 𝑂(𝑁) in
place of 𝑂(𝑁

2
) for the direct calculus. The basic idea of the

multipole method is the separation of the variables in the
Green function. This Green function is rewritten differently
in a new expression that determines the form of themoments
and the transfer functions. To develop the FMM method to
the kind of problems of our interest, we will consider the
integral equation of the problem to be solved for the unknown
values of the intensities of Stokeslets (see Pozrikidis [16])
located on the surfaces of the particles and will consider that
this equation has been already discretized by the boundary
elementmethod.The problem is then supposed to be reduced
to a linear system, of order𝑁, of the unknown values of stress
at the collocation points of the particles surfaces.𝑁 is related
to the number 𝑁

𝑝
of the particles by 𝑁 = 3𝑁

𝑝
𝑁
𝑇
, where

𝑁
𝑇
is the number of the triangles per particle. The linear

system is solved by an iterative method. At each iteration,
we start from a great imaginary cube containing the whole
collocations points. This cube constitutes level zero of the
subdivision.The 𝑛th subdivision is obtained from the (𝑛−1)th
one by subdividing each cube into 8 small cubes (cf. Figure 1).

The level of the constructed tree is chosen after fixing
a desired accuracy of computation 𝜀. The set of collocation
points is then distributed into several subdomains. For each
one a moment centered at the middle of the subdomain is
calculated as well as the transfer function for the far field
interaction. To evaluate the integral equation at a given point
𝑥using the𝑂(𝑁log𝑁) scheme,we have towork in a tree given
by the recursive subdivision of the cubic initial domain and
evaluate the far field interaction when necessary. The near
interactions are evaluated at the finest level. If we have to use
the 𝑂(𝑁), we must translate the moment of each box at each
level to the far field box and convert the information of the far
field subdomain at a local moment centered at the middle of
the box. Beginning at the coarsest level, these local moments
are shifted to the children level (cf. Figure 2).
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Figure 2: Transmission of the far field expansion to the boxes in its
interaction list and translation to the children.

To evaluate the integral at a given point 𝑥, we go directly
to the box containing this point at the finest level and calculate
the far field expansion due to all points outside the neighbors
boxes.The near interactions are evaluated directly in a similar
manner as in 𝑂(𝑁log𝑁) scheme.

4. The Harmonic Functions and
Laplace Equation

It is well known that the fundamental solution of the Laplace
equation referred to as the Green function of the Laplacian
operator can be written using the spherical harmonic 𝑌𝑚

𝑛
[2].

The potential field due to a source point 𝑞 located at 𝑦(𝜌, 𝛼, 𝛽)
and calculated at a point 𝑥(𝑟, 𝜃, 𝜙) is given by

Φ(𝑥, 𝑦) =
1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

𝑀
𝑚

𝑛

𝑟𝑛+1
𝑌
𝑚

𝑛
(𝜃, 𝜙) , (1)

where

𝑀
𝑚

𝑛
= 𝑞𝜌
𝑛
𝑌
−𝑚

𝑛
(𝛼, 𝛽) , (2)

𝑌
𝑚

𝑛
(𝜃, 𝜙) = √

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
𝑃
𝑚

𝑛
(cos (𝜃)) 𝑒𝑖𝑚𝜙. (3)

This potential can be written differently using the solid
harmonics 𝑅𝑚

𝑛
and 𝑆
𝑚

𝑛
[4]:

Φ(𝑥, 𝑦) =

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

𝑅𝑚
𝑛
(
󳨀→
𝑜𝑦)𝑆
𝑚

𝑛
(
󳨀→
𝑜𝑥)

=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

𝑅
𝑚

𝑛
(
󳨀→
𝑜𝑦) 𝑆𝑚
𝑛
(
󳨀→
𝑜𝑥).

(4)

In this paper, we will use new functions that we define from
spherical harmonic as follows:

𝑆𝑦
𝑚

𝑛
= 𝛼
𝑚

𝑛

1

𝑟𝑛+1
𝑌
𝑚

𝑛
(𝜃, 𝜙) , 𝑅𝑦

𝑚

𝑛
=

1

𝛼𝑚
𝑛

𝜌
𝑛
𝑌
𝑚

𝑛
(𝛼, 𝛽) ,

(5)

where

𝛼
𝑚

𝑛
= √(𝑛 + |𝑚|)! (𝑛 − |𝑚|)!. (6)

From (3) and (5), we obtain the following expression for the
functions introduced above:

𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥) = (𝑛 − |𝑚|)!𝑃

|𝑚|

𝑛
(cos 𝜃) 𝑒𝑖𝑚𝜃 1

𝑟𝑛+1
,

𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑦) =

1

(𝑛 + |𝑚|)!
𝑃
|𝑚|

𝑛
(cos𝛼) 𝑒𝑖𝑚𝛽𝜌𝑛.

(7)

Here, the special functions 𝑃
𝑚

𝑛
are the associated Legendre

functions, defined in [17] as

𝑃
𝑚

𝑛
(𝑥) = (−1)

𝑚
(1 − 𝑥

2
)
𝑚/2 𝑑
𝑚

𝑑𝑥𝑚
𝑃
𝑛
(𝑥) , (8)

where 𝑃
𝑛
(𝑥) denotes the Legendre polynomial of degree 𝑛,

defined by Rodrigues formula [17].
The first function coincides with solid harmonic 𝑆

𝑚

𝑛
for

𝑚 ≥ 0, and the second one coincides with solid harmonic 𝑆𝑚
𝑛

for𝑚 ≥ 0.
For the negative values of 𝑚, we have the following

propriety:

𝑆
−𝑚

𝑛
(
󳨀→
𝑜𝑥) = (−1)

𝑚
𝑆𝑚
𝑛
(
󳨀→
𝑜𝑥);

𝑅
−𝑚

𝑛
(
󳨀→
𝑜𝑥) = (−1)

𝑚
𝑅𝑚
𝑛
(
󳨀→
𝑜𝑥),

𝑆𝑦
−𝑚

𝑛
(
󳨀→
𝑜𝑥) = 𝑆𝑦𝑚

𝑛
(
󳨀→
𝑜𝑥);

𝑅𝑦
−𝑚

𝑛
(
󳨀→
𝑜𝑥) = 𝑅𝑦𝑚

𝑛
(
󳨀→
𝑜𝑥)

𝑆𝑦
−𝑚

𝑛
(
󳨀→
𝑜𝑥) = (−1)

𝑚
𝑆
−𝑚

𝑛
(
󳨀→
𝑜𝑥) ;

𝑅𝑦
−𝑚

𝑛
(
󳨀→
𝑜𝑦) = (−1)

𝑚
𝑅
−𝑚

𝑛
(
󳨀→
𝑜𝑦) ;

𝑚 > 0.

(9)

4.1. Representation of the LaplacianKernel. Like in (1)we have
the following new representation of the Green function of the
Laplace equation:

Φ(𝑥, 𝑦) =

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

𝑅𝑦𝑚
𝑛
(
󳨀→
𝑜𝑦)𝑆𝑦

𝑚

𝑛
(
󳨀→
𝑜𝑥)

=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑦) 𝑆𝑦𝑚

𝑛
(
󳨀→
𝑜𝑥).

(10)

Let us suppose that the point 𝑦 is located inside a sphere 𝐷

of radius 𝑎 with center 𝑜 and 𝑥 is outside the sphere 𝐷. If we
approachΦ by a finite sum obtained from (10) at the order 𝑝,
we obtain an error bound which is the same error obtained
by truncating the sums in (1) and (4):

𝐸
𝑝
=

1

𝑟 − 𝑎
(
𝑎

𝑟
)

𝑝+1

. (11)

The major advantage of this new representation is that we
only have to work with positive index𝑚, which decreases the
complexity of the algorithms in a remarkable way.



4 Abstract and Applied Analysis

5. The Schemes for 3D Stokes Problem

We will develop here the two numerical schemes of the
𝑁 log(𝑁) and the 𝑁 order multipole expansion associated
with the problem of several solid arbitrarily shaped particles
moving in a creeping flow, which are based on a suitable
translation formulas of 𝑆𝑦𝑚

𝑛
and 𝑅𝑦

𝑚

𝑛
.

The fundamental solution or the Green function of the
free-space Stokes problem [18] is

𝐺
𝑗

𝑘
(𝑥, 𝑦) = −

1

8𝜋]
[

𝛿
𝑗

𝑘

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

+

(𝑥
𝑗
− 𝑦
𝑗
) (𝑥
𝑘
− 𝑦
𝑘
)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

3
] . (12)

Except for the multiplicative constant, the Green function
may be written as follows:

𝐺
𝑗

𝑘
(𝑥, 𝑦) = [𝛿

𝑗

𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

− (
󳨀→
𝑜𝑥)
𝑘

𝜕

𝜕𝑥
𝑗

(
1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

)

+(
󳨀→
𝑜𝑦)
𝑘

𝜕

𝜕𝑥
𝑗

(
1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

)] ,

(13)

and the integral equation for the velocity on a surface 𝑆
𝑙
of a

particle 𝑙 is

V
𝑘
(𝑥) = ∫

𝑆

𝐺
𝑗

𝑘
(𝑥, 𝑦) 𝑞

𝑗
(𝑦) 𝑑𝑠; 𝑥 ∈ 𝑆

𝑙
, (14)

where 𝑆 = ∪
𝑁𝑝

𝑖=1
𝑆
𝑖
, 𝑁
𝑝
is the number of particles, 𝑆

𝑖
is the

surface of the 𝑖th particle, and 𝑞
𝑗
(𝑦) is 𝑗th component of the

surface stress.
The discrete problem associated with (14) is presented as

follows:

V
𝑘
(𝑥
𝑙
󸀠
,𝑠
󸀠

𝐺
) =

𝑁𝑝

∑

𝑙=1

𝑁𝑡

∑

𝑠=1

(∫
𝑇
𝑙
𝑠

𝐺
𝑗

𝑘
(𝑥
𝑙
󸀠
,𝑠
󸀠

𝐺
, 𝑦) 𝑑𝑠 (𝑦)) 𝑞

𝑠,𝑙

𝑗
, (15)

where 𝑇𝑙
𝑠
is the surface element, 𝑥𝑙

󸀠
,𝑠
󸀠

𝐺
is the gravity center of a

given surface,𝑁
𝑝
and𝑁

𝑡
denote, respectively, the number of

particle and surface element per particle, and 𝑞
𝑠,𝑙

𝑗
is the stress

applied on the surface element. Since we are interested here in
the far field calculus, the treatment of the singularity problem
will not be considered.

5.1.𝑂(𝑁logN) Scheme. Let us suppose that we have uniform
distribution points on a certain surface 𝑆 located inside a
sphere 𝐷 of radius 𝑎 with center 𝑜. From (10) and (13), the
velocity at a point 𝑥 outside the sphere 𝐷 distant of 𝑟 from 𝑜

is given by the following equation:

V
𝑘
(𝑥) = ∫

𝑆

𝐺
𝑗

𝑘
(𝑥, 𝑦) 𝑞

𝑗
(𝑦) 𝑑𝑠

=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

[ 𝐹𝑦
𝑗𝑘

𝑛𝑚 (
󳨀→
𝑜𝑥)𝑀

𝑚(1)

𝑛,𝑗
(𝑜)

+𝐻𝑦
𝑗

𝑛𝑚 (
󳨀→
𝑜𝑥)𝑀

𝑚,𝑘(2)

𝑛,𝑗
(𝑜)] ,

(16)

where

𝑀
𝑚,(1)

𝑛,𝑗
(𝑜) = ∫

𝑠

𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑦) 𝑞
𝑗
(𝑦) 𝑑𝑠,

𝑀
𝑚,𝑘(2)

𝑛,𝑗
(𝑜) = ∫

𝑠

(
󳨀→
𝑜𝑦
𝑘
) 𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑦) 𝑞
𝑗
(𝑦) 𝑑𝑠,

𝐹𝑦
𝑗𝑘

𝑛𝑚
(
󳨀→
𝑜𝑥) = 𝛿

𝑗

𝑘
𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥) − (

󳨀→
𝑜𝑥)
𝑘

𝜕

𝜕𝑥
𝑗

(𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥)) ,

𝐻𝑦
𝑗

𝑛,𝑚

󳨀→
𝑜𝑥 =

𝜕

𝜕𝑥
𝑗

(𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥)) .

(17)

One can notice that, for a given pair of 𝑛 and𝑚,𝑀
𝑚,𝑘(2)

𝑛,𝑗
(𝑜) has

9 components and𝑀
𝑚(1)

𝑛,𝑗
(𝑜) has 3 components, and therefore

the number of multipole moments in this formulation is
12. The derivatives that appear in the relations above are
calculated in an exact way using the following formulas.

5.1.1. Derivatives Formulas. According to the relation be-
tween Cartesian coordinates and polar coordinates and some
chain rules [19], the derivatives of 𝑆𝑦𝑚

𝑛
can be obtained as

follows:

𝜕

𝜕𝑥
1

(𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥))

=

{{{{{

{{{{{

{

1

2
(𝑆𝑦
𝑚−1

𝑛+1
(
󳨀→
𝑜𝑥) − 𝑆𝑦

𝑚+1

𝑛+1
(
󳨀→
𝑜𝑥)) , if 𝑚 > 0;

−Real (𝑆𝑦1
𝑛+1

(
󳨀→
𝑜𝑥)) , if 𝑚 = 0;

𝜕

𝜕𝑥
1

(𝑆𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), if 𝑚 < 0,

𝜕

𝜕𝑥
2

(𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥))

=

{{{{{

{{{{{

{

𝑖

2
(𝑆𝑦
𝑚−1

𝑛+1
(
󳨀→
𝑜𝑥) + 𝑆𝑦

𝑚+1

𝑛+1
(
󳨀→
𝑜𝑥)) , if 𝑚 > 0;

𝑖 Imag (𝑆𝑦1
𝑛+1

(
󳨀→
𝑜𝑥)) , if 𝑚 = 0;

𝜕

𝜕𝑥
2

(𝑆𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), if 𝑚 < 0,

𝜕

𝜕𝑥
3

(𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥)) =

{{

{{

{

−𝑆𝑦
𝑚

𝑛+1
(
󳨀→
𝑜𝑥) , if 𝑚 > 0;

𝜕

𝜕𝑥
3

(𝑆𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), else,

(18)

In a similar manner, we can obtain the derivatives formulas
of 𝑅𝑦𝑚
𝑛
for 𝑛 ≥ 1 as follows:

𝜕

𝜕𝑥
1

(𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥))

=

{{{{{

{{{{{

{

1

2
(𝑅𝑦
𝑚−1

𝑛+1
(
󳨀→
𝑜𝑥) − 𝑅𝑦

𝑚+1

𝑛+1
(
󳨀→
𝑜𝑥)) , if 𝑚 > 0;

−Real (𝑅𝑦1
𝑛+1

(
󳨀→
𝑜𝑥)) , if 𝑚 = 0;

𝜕

𝜕𝑥
1

(𝑅𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), if 𝑚 < 0,
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𝜕

𝜕𝑥
2

(𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥))

=

{{{{{

{{{{{

{

𝑖

2
(𝑅𝑦
𝑚−1

𝑛+1
(
󳨀→
𝑜𝑥) + 𝑅𝑦

𝑚+1

𝑛+1
(
󳨀→
𝑜𝑥)) , if 𝑚 > 0;

𝑖 Imag (𝑅𝑦1
𝑛+1

(
󳨀→
𝑜𝑥)) , if 𝑚 = 0;

𝜕

𝜕𝑥
2

(𝑅𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), if 𝑚 < 0,

𝜕

𝜕𝑥
3

(𝑅𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥)) =

{{

{{

{

−𝑅𝑦
𝑚

𝑛+1
(
󳨀→
𝑜𝑥) , if 𝑚 > 0;

𝜕

𝜕𝑥
3

(𝑅𝑦−𝑚
𝑛

(
󳨀→
𝑜𝑥)), else,

(19)

where 𝑖2 = −1. It should be noted that (𝜕/𝜕𝑥
𝑗
)(𝑅𝑦
0

0
(
󳨀→
𝑜𝑥)) = 0

for all 𝑗 ∈ {1, 2, 3}.

5.1.2. Error Bound. By truncating (16) at the order 𝑝, and
basing on the error given by (11), the error bound is given by

𝐸
󸀠

𝑝
= 𝐶(

𝛿
𝑘

𝑗

𝑟 − 𝑎
+

1

𝑟 − 𝑎
+

𝑎

𝑟2 − 𝑟𝑎
)(

𝑎

𝑟
)

𝑝+1

, (20)

where 𝐶 = ∫
𝑆
|𝑞(𝑦)|𝑑𝑠.

5.2. 𝑂(𝑁) Scheme. To develop a scheme of order 𝑁, we
introduce three basic translations adequate to the functions
𝑆𝑦
𝑚

𝑛
and 𝑅𝑦

𝑚

𝑛
which will be useful to build the formulas of

translationsmultipole tomultipole (M2M),multipole to local
(M2L), and local to local (L2L). For the rest of the paper, we
will take 𝑘 = inf(𝑚, 𝑛

󸀠
).

5.2.1. Relations Formulas between 𝑆𝑦
𝑚

𝑛
and 𝑅𝑦

𝑚

𝑛
. Under the

condition |
󳨀→
𝑜𝑦| < |

󳨀󳨀→

𝑜𝑜
󸀠
|, the function 𝑅𝑦

𝑚

𝑛
satisfies a relation-

ship of the following form:

𝑅𝑦
𝑚

𝑛
(

󳨀󳨀→

𝑜
󸀠
𝑦)

=

𝑛

∑

𝑛
󸀠
=0

{

{

{

𝑘

∑

𝑚
󸀠
=0

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑅𝑦

𝑚−𝑚
󸀠

𝑛−𝑛
󸀠 (

󳨀→
𝑜𝑦)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑚
󸀠
−𝑚

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑅𝑦

𝑚
󸀠
−𝑚

𝑛−𝑛
󸀠 (

󳨀→
𝑜𝑦)

+

𝑛
󸀠

∑

𝑚
󸀠
=0

(−1)
𝑚
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑅𝑦
𝑚+𝑚
󸀠

𝑛−𝑛
󸀠 (

󳨀→
𝑜𝑦)

}

}

}

(21)

which allows a pole shift that will permit us to construct the
multipolar to multipolar translation.

Moreover, and under the condition |
󳨀󳨀→
𝑥
0
𝑥| < |

󳨀󳨀→
𝑜𝑥
0
|, the

function 𝑆𝑦
𝑚

𝑛
can be further expressed in the following form

that will be used later to construct the conversion multipolar
to local moment:

𝑆𝑦
𝑚

𝑛
(
󳨀→
𝑜𝑥)

=

∞

∑

𝑛
󸀠
=0

{

{

{

𝑛
󸀠

∑

𝑚
󸀠
=0

(−1)
𝑛
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
0
𝑥) 𝑆𝑦
𝑚+𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑘

∑

𝑚
󸀠
=0

(−1)
𝑛
󸀠
+𝑚
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
0
𝑥)𝑆𝑦
𝑚−𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑛+2𝑚

󸀠
−𝑚

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
0
𝑥)𝑆𝑦
𝑚
󸀠
−𝑚

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)
}

}

}

.

(22)

Just like the first relation, under the condition |
󳨀󳨀→
𝑥
0
𝑥| < |

󳨀󳨀󳨀→
𝑥
0
𝑥
1
|,

we have a third equation that satisfies a pole relationship that
will be used later to construct the local to local translation:

𝑅𝑦
𝑚

𝑛
(
󳨀󳨀→
𝑥
0
𝑥)

=

∞

∑

𝑛
󸀠
=𝑛

{

{

{

𝑘

∑

𝑚
󸀠
=0

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
1
𝑥)𝑅𝑦

𝑚−𝑚
󸀠

𝑛−𝑛
󸀠 (

󳨀󳨀󳨀→
𝑥
0
𝑥
1
)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑚
󸀠
−𝑚

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
1
𝑥)𝑅𝑦

𝑚
󸀠
−𝑚

𝑛−𝑛
󸀠 (

󳨀󳨀󳨀→
𝑥
0
𝑥
1
)

+

𝑛
󸀠

∑

𝑚
󸀠
=0

(−1)
𝑚
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→
𝑥
1
𝑥)𝑅𝑦
𝑚+𝑚
󸀠

𝑛−𝑛
󸀠 (

󳨀󳨀󳨀→
𝑥
0
𝑥
1
)
}

}

}

.

(23)

5.2.2. Translation of a Multipole Expansion. Let us suppose
that the surface 𝑆 contains uniform distribution points
included inside a sphere𝐷 of radius 𝑎 centered at a point 𝑜 at
a distance 𝜌 from the origin 𝑜

󸀠 with 𝜌 > (𝑐+1)𝑎 and 𝑐 > 1.The
integral equation is given by the multipole expansion (16):

V
𝑘
(𝑥) =

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

[ 𝐹𝑦
𝑗𝑘

𝑛𝑚 (
󳨀→
𝑜𝑥)𝑀

𝑚(1)

𝑛,𝑗
(𝑜)

+𝐻𝑦
𝑗

𝑛𝑚 (
󳨀→
𝑜𝑥)𝑀

𝑚,𝑘(2)

𝑗,𝑚
(𝑜)] .

(24)

If the point 𝑥 is outside the sphere𝐷
0
of radius 𝑎+𝜌, then the

integral equation takes the following form:

V
𝑘
(𝑥) =

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

[𝐹𝑦
𝑗𝑘

𝑛𝑚 (

󳨀󳨀→

𝑜
󸀠
𝑥)𝑀
𝑚(1)

𝑛,𝑗
(𝑜
󸀠
)

+𝐻𝑦
𝑗

𝑛𝑚 (

󳨀󳨀→

𝑜
󸀠
𝑥)𝑀
𝑚,𝑘(2)

𝑗,𝑚
(𝑜
󸀠
)] ,

(25)
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Figure 3: Initial configuration.

where

𝑀
𝑚(1)

𝑛,𝑗
(𝑜
󸀠
)

=

𝑛

∑

𝑛
󸀠
=0

{

{

{

𝑘

∑

𝑚
󸀠
=0

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚−𝑚
󸀠
(1)

𝑛−𝑛
󸀠
,𝑗

(𝑜)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑚
󸀠
−𝑚

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚
󸀠
−𝑚(1)

𝑛−𝑛
󸀠
,𝑗

(𝑜)

+

𝑛
󸀠

∑

𝑚
󸀠
=1

(−1)
𝑚
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚+𝑚
󸀠
(1)

𝑛−𝑛
󸀠
,𝑗

(𝑜)
}

}

}

,

𝑀
𝑚,𝑘(2)

𝑛,𝑗
(𝑜
󸀠
)

= (

󳨀󳨀→

𝑜
󸀠
𝑜)

𝑘

𝑀
𝑚(1)

𝑛,𝑗
(𝑜
󸀠
)

+

𝑛

∑

𝑛
󸀠
=0

{

{

{

𝑘

∑

𝑚
󸀠
=0

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚−𝑚
󸀠
,𝑘(2)

𝑛−𝑛
󸀠
,𝑗

(𝑜)

𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑏𝑟𝑒𝑎𝑘

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑚
󸀠
−𝑚

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚
󸀠
−𝑚,𝑘(2)

𝑛−𝑛
󸀠
,𝑗

(𝑜)

+

𝑛
󸀠

∑

𝑚
󸀠
=1

(−1)
𝑚
󸀠

𝑅𝑦
𝑚
󸀠

𝑛
󸀠 (

󳨀󳨀→

𝑜
󸀠
𝑜)𝑀
𝑚+𝑚
󸀠
,𝑘(2)

𝑛−𝑛
󸀠
,𝑗

(𝑜)
}

}

}

.

(26)

5.2.3. Conversion of a Multipole Expansion into a Local
Expansion. Let a surface 𝑆 containing uniform distribution
points included inside a sphere 𝐷 of radius 𝑎 centered at a
point 𝑜 at a distance 𝜌 from a given point 𝑥

0
with 𝜌 > (𝑐+1)𝑎

and 𝑐 > 1. The corresponding multipole expansion (16)

converges for any points 𝑥 inside the sphere 𝐷
0
of radius 𝑎

centered at 𝑥
0
. The velocity is given by

V
𝑘
(𝑥) = ∫

𝑆

𝐺
𝑗

𝑘
(𝑥, 𝑦) 𝑞

𝑗
(𝑦) 𝑑𝑠

=

∞

∑

𝑛=0

𝑛

∑

𝑚=−𝑛

[ 𝐹𝑦𝑅
𝑗𝑘

𝑛𝑚 (
󳨀󳨀→
𝑥
0
𝑥)𝐿
𝑚(1)

𝑛,𝑗
(𝑥
0
)

+𝐻𝑦𝑅
𝑗

𝑛𝑚 (
󳨀󳨀→
𝑥
0
𝑥)𝐿
𝑚,𝑘(2)

𝑛,𝑗
(𝑥
0
)] ,

(27)

where

𝐿
𝑚(1)

𝑛,𝑗
(𝑥
0
)

=

∞

∑

𝑛
󸀠
=0

{

{

{

𝑛
󸀠

∑

𝑚
󸀠
=0

(−1)
𝑛
𝑀
𝑚
󸀠
(1)

𝑛
󸀠
,𝑗

(𝑜) 𝑆𝑦
𝑚+𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑘

∑

𝑚
󸀠
=1

(−1)
𝑛+𝑚
󸀠

𝑀
𝑚
󸀠
(1)

𝑛
󸀠
,𝑗

(𝑜) 𝑆𝑦
𝑚−𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑛−𝑚

𝑀
𝑚
󸀠
(1)

𝑛
󸀠
,𝑗

(𝑜)𝑆𝑦
𝑚
󸀠
−𝑚

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)
}

}

}

,

𝐿
𝑚,𝑘(2)

𝑛,𝑗
(𝑥
0
)

= −(
󳨀󳨀→
𝑜𝑥
0
)
𝑘
𝐿
𝑚(1)

𝑛,𝑗
(𝑥
0
)

+

∞

∑

𝑛
󸀠
=0

{

{

{

𝑛
󸀠

∑

𝑚
󸀠
=0

(−1)
𝑛
𝑀
𝑚
󸀠
,𝑘(2)

𝑛
󸀠
,𝑗

(𝑜) 𝑆𝑦
𝑚+𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑘

∑

𝑚
󸀠
=1

(−1)
𝑛+𝑚
󸀠

𝑀
𝑚
󸀠
,𝑘(2)

𝑛
󸀠
,𝑗

(𝑜) 𝑆𝑦
𝑚−𝑚
󸀠

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)

+

𝑛
󸀠

∑

𝑚
󸀠
=𝑘+1

(−1)
𝑛−𝑚

𝑀
𝑚
󸀠
,𝑘(2)

𝑛
󸀠
,𝑗

(𝑜)𝑆𝑦
𝑚
󸀠
−𝑚

𝑛+𝑛
󸀠 (

󳨀󳨀→
𝑜𝑥
0
)
}

}

}

,
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Figure 4: Sphere triangulation.
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5.2.4. Translation of a Local Expansion. Suppose that V(𝑥) can
be written as in (29), and suppose that 𝑥

1
∈ 𝐷
0
; then for

any point 𝑥 ∈ 𝐷
0
, V(𝑥) can be written according to the local

moment centered at 𝑥
1
as follows:
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(30)

5.2.5. Error Bound. With a similar reasoning as in the
error bound of the 𝑂(𝑁log𝑁) scheme and under the same
hypothesis of the representation (29), the evaluation of the
velocity V(𝑥) at an order𝑝 generates an error bound expressed
as follows:

𝐸
󸀠󸀠

𝑝
= 𝐶(

𝛿
𝑘

𝑗

𝜌 − 𝑟
) + (

1

𝜌 − 𝑟
) + (

𝑟

𝜌2 − 𝜌𝑟
)(

𝑟

𝜌
)

𝑝+1

, (31)

where 𝐶 = ∫
𝐶
|𝑞(𝑦)|𝑑𝑠.

6. Numerical Results

Wepresent here some numerical results given by applying the
FMM-BEM to the Stokes problem. The method uses several
parameters on which depend the speed and the precision
of the calculation, that is, the size of the cells, the level
number of the grids, the order of truncation of the multipole
series expansion, and so forth. The optimal values to obtain
a good equilibrium between effectiveness and precision are
given for the mono- and multilevel approaches. Theoretical

complexities are checked numerically. Problems of size 𝑁 =

𝑂(10
6
) are solved in about two hours by iterations on a PC

Pentium 4, 3.2GHZ with 4Go-RAM.

6.1. Configuration Test

6.1.1. Sphere Triangulation. The starting point is to generate
a grid of many spheres that we put in a cube that represents
the initial domain at the initial level of the tree (cf. Figure 3).
To generate the collocation points on the spheres, we used
a simple technique, presented by Pozrikidis [16] for the
discretization of a sphere. Beginning from an octahedron,
we developed a triangulation by subdividing recursively each
triangle into four subtriangles until obtaining the desired
level of discretisation. At each step, the triangle is projected
on the surface of the sphere (cf. Figure 4).

6.1.2. Numerical Parameters. For the numerical considera-
tion, we considered that two boxes are far away if they are
separated by a third box. In addition, we took 𝑟 > 3𝑎 for the
𝑂(𝑁log𝑁) scheme and 𝜌 > 3𝑟 for the 𝑂(𝑁) scheme. The
error given by (20) is thus controlled by (3𝐶/2𝐿)2

𝑙
(1/3)
𝑝+1,

where 𝑙 is the level of the tree on which one approximates the
far field interactions, and 𝐿 represents the dispatcher of the
initial cube. In the results of the tests presented below,we took
𝑝 = 12 andweworked on a tree of depth equal to 5 which give
a plug of error equal to 𝑂(10

6
). We obtained the same thing

for the error given by (31).

6.2. Presentation and Interpretation of the Results. It is worth
to be pointed out that the maximum value of the error
obtained in the different tests is about 10−6.These tests permit
us to validate the method and show its precision. We remark
from the calculation that the error introduced by the FMM
compared to the traditional BEM does not have a practical
incidence on the quality of the result.

6.2.1. 𝑂(𝑁logN). We present here the results obtained with
the 𝑂(𝑁log𝑁) scheme. Figure 5 that represents the CPU
time versus the number 𝑁

𝑐
of collocation point at different

levels (𝑁
𝑐

= 2(𝑁𝑡 + 1)) shows that the method FMM
in the case of the scheme 𝑂(𝑁log𝑁) is useful not only
to minimize the memory storage of the matrix due to the
compression carrying out but also to enable us to gain in
terms of computing time. This method appears to be much
better than the direct calculation for the large values of
𝑁 where 𝑁 = 3𝑁𝑝(𝑁2𝑐1). Indeed we can see that the
effectiveness of this method appears from a certain number
𝑁
𝑐
evaluated by the results between 10

4 and 3 × 10
4. For

𝑁
𝑐
≤ 9202 the method FMM does not have any influence

from the computing times point of view and from 𝑁
𝑐

=

27702 the efficiency of the FMM method becomes to be
visible; see Figures 5 and 8. To be more precise, we consider
two boxes, shown, respectively, in Figures 6 and 7, that are
obtained from Figure 5 by zooming on the regions that seem
to be interesting for the interpretation. For 𝑁

𝑐
= 27702 the

efficiency of the method starts from level 2 (see Figure 6) and
then for 𝑁

𝑐
= 351918 the efficiency becomes to be visible
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from level 3 (see Figure 7).We can also see from Figure 7 that
level 4 becomes better than level 2 from a certain number 𝑁
evaluated to be between 2.75 × 10

5 and 3 × 10
5. Thus, as a

general rule about the potential of the FMMmethod, we can
conclude that the more the size of the problem 𝑁 increases,
the more we have to work down in the hierarchical tree of the
code.
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𝑐
for level =

3.

6.2.2. 𝑂(𝑁). The interpretation of the results found for the
𝑂(𝑁) scheme is similar to that obtained for the 𝑂(𝑁log𝑁)

one. The same remarks given from all figures for the
𝑂(𝑁log(𝑁)) schememay be reproduced here from Figures 9,
10, 11, and 12 which correspond to the𝑂(𝑁). The comparison
of the results of the two schemes 𝑂(𝑁log𝑁) and 𝑂(𝑁) is
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illustrated in Figures 13, 14, 15, and 16. It should be noted that
the𝑂(𝑁) scheme becomesmore efficient than the𝑂(𝑁log𝑁)

scheme after a certain number𝑁; see Figure 16. However, one
has to work under a certain depth of the tree; otherwise, the
𝑂(𝑁log𝑁) becomes more efficient from the CPU time point
of view; see Figure 15.

7. Concluding Remarks

We presented in this work the fast multipole method applied
to the Stokes problem in a 3D infinite viscous fluid in the
presence of several rigid bodies. The formulas obtained for
both schemes 𝑂(𝑁 log𝑁) and 𝑂(𝑁), where 𝑁 is the size of
the matrix obtained from the discretization of the problem,

are implemented numerically.The numerical results obtained
are very satisfactory and incite us to use the method in the
future in a traditional IBEM code that will allow for an
efficient resolution of the linear system by iterative methods
such as GMRES.This work makes it possible to investigate in
future works more complex and realistic configurations such
as the sedimentation of dilute suspensions composed by a
great number of particles or the movements of deformable
particles. Such configurations could enable us to compare
between the numerical results and the experimental ones. For
the case of deformable bodies, the integral equationmust take
into account the double potential layer. The development of
an adequate FMM-BEM based on formulae given previously
constitutes an interesting perspective for a future area of
research.
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