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Copyright © 2014 İncı M. Erhan.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a general class of 𝛼-admissible contractions on partial metric spaces is introduced. Fixed point theorems for these
contractions on partial metric spaces and their consequences are stated and proved. Illustrative example is presented.

1. Introduction and Preliminaries

A rapid progress in the fixed point theory has been observed
in the last few decades. This is a consequence of the fact that
fixed point theory is amajor tool in nonlinear analysis and has
application in almost all branches ofmathematics and natural
sciences.

In 1992 Matthews ([1, 2]) introduced a new type of a
metric called partial metric and a corresponding space called
partial metric space (PMS), which have been defined due
to a need in computer sciences. Partial metric spaces have
been studied extensively since then; see [3–11] and references
therein.

Improvement and generalization of the contractive con-
ditions on the mappings are main concerns of most of the
studies in fixed point theory. Such improvements and gen-
eralizations are usually done by means of auxiliary functions.
Altering distance functions defined by Khan et al. [12] have
been widely used for this reason both alone and combined
with other functions.

In what follows, we employ two types of functions to
define a class of contractions on partial metric spaces and
investigate the existence and uniqueness of fixed points for
these maps.

First, we introduce some basic concepts and notations
to be used throughout the paper. We will denote by N =

{1, 2, 3, . . .} the set of natural numbers, denote by N
0

=

{0, 1, 2, . . .} the set of nonnegative integers, and denote by
R+ = [0,∞) the set of nonnegative real numbers.

Definition 1 (see [12]). An altering distance function is a
function 𝜓 : R+ → R+ which satisfies the following.

(1) 𝜓 is continuous and nondecreasing.
(2) 𝜓(𝑡) = 0 ⇔ 𝑡 = 0.

Partial metric space has been defined by Matthews as
follows (See [1]).

Definition 2. Let 𝑋 be a nonempty set and let 𝑝 : 𝑋 × 𝑋 →

R+ satisfy

(PM1) 𝑥 = 𝑦 ⇐⇒ 𝑝 (𝑥, 𝑥) = 𝑝 (𝑦, 𝑦) = 𝑝 (𝑥, 𝑦)

(PM2) 𝑝 (𝑥, 𝑥) ≤ 𝑝 (𝑥, 𝑦)

(PM3) 𝑝 (𝑥, 𝑦) = 𝑝 (𝑦, 𝑥)

(PM4) 𝑝 (𝑥, 𝑦) ≤ 𝑝 (𝑥, 𝑧) + 𝑝 (𝑧, 𝑦) − 𝑝 (𝑧, 𝑧) ,

(1)

for all 𝑥, 𝑦, and 𝑧 ∈ 𝑋. Then the pair (𝑋, 𝑝) is called a partial
metric space and 𝑝 is called a partial metric on𝑋.

One can easily see that the function 𝑑
𝑝
: 𝑋 × 𝑋 → R+,

defined by

𝑑
𝑝
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) , (2)

is a metric on 𝑋. Moreover, every partial metric 𝑝 on 𝑋

generates a 𝑇
0
topology 𝜏

𝑝
on 𝑋, whose base is a family of

open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜖) : 𝑥 ∈ 𝑋, 𝜖 > 0} where 𝐵

𝑝
(𝑥, 𝜖) = {𝑦 ∈

𝑋 : 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑥) + 𝜖}, for all 𝑥 ∈ 𝑋 and 𝜖 > 0.
Topological concepts such as convergence, Cauchy

sequence, completeness, and continuity on PMS have also
been defined in [1] as follows.
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Definition 3. (1) A sequence {𝑥
𝑛
} in the PMS (𝑋, 𝑝) converges

to the limit 𝑥 if and only if 𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥, 𝑥
𝑛
).

(2) A sequence {𝑥
𝑛
} in the PMS (𝑋, 𝑝) is called a Cauchy

sequence if lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite.

(3) A PMS (𝑋, 𝑝) is called complete if every Cauchy
sequence {𝑥

𝑛
} in 𝑋 converges with respect to 𝜏

𝑝
, to a point

𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

(4)Amapping𝑓 : 𝑋 → 𝑋 is said to be continuous at𝑥
0
∈

𝑋 if for every 𝜖 > 0, there exists 𝛿 > 0 such that𝐹(𝐵
𝑝
(𝑥
0
, 𝛿)) ⊆

𝐵
𝑃
(𝐹𝑥
0
, 𝜖).

Remark 4. The limit of a sequence {𝑥
𝑛
} in a partial metric

space (𝑋, 𝑝)may not be unique.

We give next some basic results in PMS.

Lemma 5 (see [1, 2, 6]). (1) A sequence {𝑥
𝑛
} is a Cauchy

sequence in the PMS (𝑋, 𝑝) if and only if it is a Cauchy sequence
in the metric space (𝑋, 𝑑

𝑝
).

(2) A PMS (𝑋, 𝑝) is complete if and only if the metric space
(𝑋, 𝑑
𝑝
) is complete.

Moreover,

lim
n→∞

𝑑
𝑝
(𝑥, 𝑥
𝑛
) = 0 ⇐⇒ 𝑝 (𝑥, 𝑥) = lim

𝑛→∞
𝑝 (𝑥, 𝑥

𝑛
)

= lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) .

(3)

Lemma 6 (see [7, 9]). Assume 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞ in a PMS

(𝑋, 𝑝) such that 𝑝(𝑧, 𝑧) = 0. Then lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑦) = 𝑝(𝑧, 𝑦)

for every 𝑦 ∈ 𝑋.

Lemma 7 (see [7, 9]). Let (𝑋, 𝑝) be a complete PMS.

(A) If 𝑝(𝑥, 𝑦) = 0, then 𝑥 = 𝑦;
(B) If 𝑥 ̸= 𝑦, then 𝑝(𝑥, 𝑦) > 0.

Admissible mappings have been defined recently by
Samet et al. [13] and employed quite often in order to
generalize the results on various contractions, see [14–17].
We state next the definitions of 𝛼-admissible mapping and
triangular 𝛼-admissible mappings.

Definition 8. A mapping 𝑇 : 𝑋 → 𝑋 is called 𝛼-admissible
if for all 𝑥, 𝑦 ∈ 𝑋 we have

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1, (4)

where 𝛼 : 𝑋 × 𝑋 → R+ is a given function.

Definition 9. A mapping 𝑇 : 𝑋 → 𝑋 is called triangular 𝛼-
admissible if it is 𝛼-admissible and satisfies

𝛼 (𝑥, 𝑦) ≥ 1

𝛼 (𝑦, 𝑧) ≥ 1
󳨐⇒ 𝛼 (𝑥, 𝑧) ≥ 1, (5)

where 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 : 𝑋 × 𝑋 → R+ is a given function.

In [16], Alsulami et al. defined the following weaker
condition which is sufficient in the proof of existence and
uniqueness theorems.

Definition 10. A mapping 𝑇 : 𝑋 → 𝑋 is said to be weak
triangular 𝛼-admissible if it is 𝛼-admissible and satisfies

𝛼 (𝑥, 𝑇𝑥) ≥ 1 󳨐⇒ 𝛼 (𝑥, 𝑇
2
𝑥) ≥ 1, (6)

where 𝑥 ∈ 𝑋 and 𝛼 : 𝑋 × 𝑋 → R+ is a given function.

Weak triangular 𝛼-admissible mappings satisfy a prop-
erty stated in the following Lemma the proof of which easily
follows from the definition and can be found in [15].

Lemma 11 (see [15]). Let 𝑇 : 𝑋 → 𝑋 be a weak triangular
𝛼-admissible mapping. Assume that there exists 𝑥

0
∈ 𝑋 such

that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. If 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
, then 𝛼(𝑥

𝑚
, 𝑥
𝑛
) ≥ 1 for all

𝑚, 𝑛 ∈ N
0
with𝑚 < 𝑛.

2. Fixed Point Theorems on Complete Partial
Metric Spaces

Our main results include theorems on existence and unique-
ness of fixed points for a class of weak triangular𝛼-admissible
mappings defined on partial metric spaces. Inspired by a
recent study of Alsulami et al. [16] and Yan et al. [18], we
define a class of 𝛼-admissible contractions on a PMS via
auxiliary functions and discuss the existence and uniqueness
of their fixed points.

Our main theorem is stated below.

Theorem 12. Let (𝑋, 𝑝) be a complete partial metric space. Let
𝑇 : 𝑋 → 𝑋 be a continuous, weak triangular 𝛼-admissible
mapping such that

𝛼 (𝑥, 𝑦) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋, (7)

where 𝜓 is an altering distance functions, 𝜙 : R+ → R+ is a
continuous function satisfying 𝜓(𝑡) > 𝜙(𝑡), for all 𝑡 > 0, and

𝑀(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥,T𝑥) , 𝑝 (𝑦, 𝑇𝑦)} . (8)
If there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, then 𝑇 has a

fixed point.

Proof. Take 𝑥
0
∈ 𝑋 which satisfies 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1 and define

the sequence {𝑥
𝑛
} as 𝑥
𝑛+1

= 𝑇𝑥
𝑛
for 𝑛 ∈ N

0
.

If 𝑥
𝑛0

= 𝑥
𝑛0+1

for some 𝑛
0
∈ N
0
, then obviously, 𝑥

𝑛0
=

𝑇𝑥
𝑛0
a fixed point of 𝑇. Suppose that 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) > 0, for all
𝑛 ∈ N

0
.

Since 𝑇 is 𝛼-admissible and 𝛼(𝑥
0
, 𝑇𝑥
0
) = 𝛼(𝑥

0
, 𝑥
1
) ≥ 1,

we deduce
𝛼 (𝑇𝑥

0
, 𝑇𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1, therefore

𝛼 (𝑇𝑥
1
, 𝑇𝑥
2
) = 𝛼 (𝑥

2
, 𝑥
3
) ≥ 1,

(9)

and continuing in this way, we get
𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 ∀𝑛 ∈ N
0
. (10)

Due to (10) we can put 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛−1
in (7) which gives

𝜓 (𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
))

≤ 𝛼 (𝑥
𝑛
, 𝑥
𝑛−1

) 𝜓 (𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
))

= 𝛼 (𝑥
𝑛
, 𝑥
𝑛−1

) 𝜓 (𝑝 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)) ≤ 𝜙 (𝑀 (𝑥
𝑛
, 𝑥
𝑛−1

)) ,

(11)
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where
𝑀(𝑥
𝑛
, 𝑥
𝑛−1

)

= max {𝑝 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑝 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

)}

= max {𝑝 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)} .

(12)

If 𝑀(𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) for some 𝑛, then the inequality
(11) becomes

0 < 𝜓 (𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
)) ≤ 𝜙 (𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)) , (13)

which is not possible since 𝜓(𝑡) > 𝜙(𝑡) for 𝑡 > 0. Then, we
should have𝑀(𝑥

𝑛
, 𝑥
𝑛−1

) = 𝑝(𝑥
𝑛
, 𝑥
𝑛−1

) for all 𝑛 ≥ 1 and, thus,

0 < 𝜓 (𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
)) ≤ 𝜙 (𝑝 (𝑥

𝑛
, 𝑥
𝑛−1

)) < 𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛−1

)) ,

(14)

which gives

𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
) < 𝑝 (𝑥

𝑛
, 𝑥
𝑛−1

) , (15)

since 𝜓 is a nondecreasing function. Therefore, the sequence
{𝑝(𝑥
𝑛+1

, 𝑥
𝑛
)} is a decreasing sequence bounded below by 0

and hence converges to a limit; say 𝑟 ≥ 0. Taking limit as
𝑛 → ∞ in (11), we get

𝜓 (𝑟) ≤ 𝜙 (𝑟) . (16)

However, since by definition of 𝜓 and 𝜙 we have 𝜓(𝑡) > 𝜙(𝑡)

for 𝑡 > 0, the above inequality is possible only for 𝑟 = 0, that
is,

𝑟 = lim
𝑛→∞

𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (17)

On the other hand, by (PM2), we have

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) ≤ 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛
) , (18)

or upon letting 𝑛 → ∞,

0 ≤ lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) ≤ lim
𝑛→∞

𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0, (19)

that is,
lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 0. (20)

We prove next that {𝑥
𝑛
} is a Cauchy sequence in the metric

space (𝑋, 𝑑
𝑝
), where 𝑑

𝑝
is the metric defined in (2) associated

with the partial metric 𝑝. Assume that {𝑥
𝑛
} is not Cauchy.

Then, for some 𝜀 > 0 there exist subsequences {𝑥
𝑚𝑘

} and {𝑥
𝑛𝑘
}

of {𝑥
𝑛
} with

𝑛
𝑘
> 𝑚
𝑘
> 𝑘, 𝑑

𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) ≥ 𝜀, (21)

for all 𝑘 ≥ 1, where corresponding to each 𝑚
𝑘
, we choose 𝑛

𝑘

to be smallest integer for which (21) holds. Then

𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘

) < 𝜀. (22)

Note that from

𝑑
𝑝
(𝑥
𝑛
, 𝑥
𝑛+1

) = 2𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) − 𝑝 (𝑥
𝑛
, 𝑥
𝑛
) − 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛+1

) ,

(23)

we have

lim
𝑛→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑥
𝑛+1

)

= lim
𝑛→∞

[2𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) − 𝑝 (𝑥
𝑛
, 𝑥
𝑛
) − 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛+1

)] = 0.

(24)

Using triangle inequality and regarding (21) and (22), we
obtain

𝜀 ≤ 𝑑
𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) ≤ 𝑑
𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑛𝑘−1

) + 𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘

)

≤ 𝑑
𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑛𝑘−1

) + 𝜀.

(25)

Letting 𝑘 → ∞ in the above inequality and using (24), we
get

lim
𝑘→∞

𝑑
𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) = 𝜀. (26)

On the other hand, we also have

𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) ≤ 𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘

) + 𝑑
𝑝
(𝑥
𝑚𝑘

, 𝑥
𝑚𝑘−1

)

≤ 𝜀 + 𝑑
𝑝
(𝑥
𝑚𝑘

, 𝑥
𝑚𝑘−1

) .

(27)

Again by letting 𝑘 → ∞ and using (24) and (26), we get

lim
𝑘→∞

𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) = 𝜀. (28)

From (26) and (28) and using (20) it is easy to see that

𝜀 = lim
𝑘→∞

𝑑
𝑝
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

)

= lim
𝑘→∞

[2𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) − 𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘
) − 𝑝 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘

)]

= lim
𝑘→∞

2𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

)

𝜀 = lim
𝑘→∞

𝑑
𝑝
(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

)

= lim
𝑘→∞

[2𝑝 (𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) − 𝑝 (𝑥
𝑛𝑘−1

, 𝑥
𝑛𝑘−1

)

−𝑝 (𝑥
𝑚𝑘−1

, 𝑥
𝑚𝑘−1

)]

= lim
𝑘→∞

2𝑝 (𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) ,

(29)

or

lim
𝑘→∞

𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) = lim
𝑘→∞

𝑝 (𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) =

𝜀

2

. (30)

Thus, the limit of

𝑀(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

)

= max {𝑝 (𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) , 𝑝 (𝑥
𝑛𝑘−1

, 𝑇𝑥
𝑛𝑘−1

) ,

𝑝 (𝑥
𝑚𝑘−1

, 𝑇𝑥
𝑚𝑘−1

)} ,

(31)
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as 𝑘 → ∞, is calculated as

lim
𝑘→∞

𝑀(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) = lim
𝑘→∞

max { 𝜀

2

, 0, 0} =

𝜀

2

, (32)

due to (17) and (30). Recall that 𝑇 is weak triangular 𝛼-
admissible.Then, from Lemma 11 we have 𝛼(𝑥

𝑛𝑘−1
, 𝑥
𝑚𝑘−1

) ≥ 1.
Therefore, we can apply condition (7) with 𝑥

𝑛𝑘−1
and 𝑥

𝑚𝑘−1
to

obtain

0 < 𝜓 (𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

)) ≤ 𝛼 (𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

) 𝜓 (𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

))

≤ 𝜙 (𝑀(𝑥
𝑛𝑘−1

, 𝑥
𝑚𝑘−1

)) .

(33)

Letting 𝑘 → ∞ and taking into account (30) and (32), we
have

0 < 𝜓(

𝜀

2

) ≤ 𝜙(

𝜀

2

) . (34)

Note however that the condition 𝜓(𝑡) > 𝜙(𝑡), for 𝑡 > 0

implies that the above inequality holds only if 𝜀/2 = 0,
or, equivalently, 𝜀 = 0 which contradicts the assumption
that {𝑥

𝑛
} is not a Cauchy sequence. Thus, {𝑥

𝑛
} must be a

Cauchy sequence in the metric space (𝑋, 𝑑
𝑝
). By Lemma 5,

the sequence {𝑥
𝑛
} is also aCauchy sequence in the PMS (𝑋, 𝑝)

which is a complete PMS. Again by Lemma 5, (𝑋, 𝑑
𝑝
) is a

completemetric space.Therefore, there exists 𝑢 ∈ 𝑋 such that

lim
𝑛→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑢) = 0. (35)

Notice that from Lemma 5 we also have

𝑝 (𝑢, 𝑢) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑢) . (36)

Finally, the continuity of 𝑇 gives

𝑢 = lim
𝑛→∞

𝑥
𝑛
= lim
𝑛→∞

𝑇𝑥
𝑛−1

= 𝑇𝑢, (37)

that is, 𝑢 is a fixed point of 𝑇, which completes the proof.

The continuity condition on 𝛼-admissible mappings is
not required for the existence of a fixed point if the space
under consideration has the following property.

(I) If {𝑥
𝑛
} is a sequence in𝑋 such that

𝑥
𝑛
󳨀→ 𝑥, 𝛼 (𝑥

𝑛
, 𝑥
𝑛+1)

) ≥ 1 ∀𝑛 ∈ N
0
, (38)

then there exists a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} for which

𝛼 (𝑥
𝑛𝑘
, 𝑥) ≥ 1 ∀𝑘 ∈ N

0
. (39)

Under this condition, we can state another existence
theorem as follows.

Theorem 13. Let (𝑋, 𝑝) be a complete PMS on which the
condition (I) holds. Let 𝑇 : 𝑋 → 𝑋 be a weak triangular
𝛼-admissible mapping such that

𝛼 (𝑥, 𝑦) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋, (40)

where 𝜓 is an altering distance functions, 𝜙 : R+ → R+ is a
continuous function satisfying 𝜓(𝑡) > 𝜙(𝑡) for all 𝑡 > 0 and

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} . (41)

If there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, then 𝑇 has a

fixed point.

Proof. As in the proof of Theorem 12, we take 𝑥
0
∈ 𝑋 which

satisfies 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1 and define the sequence {𝑥

𝑛
} as

𝑥
𝑛+1

= 𝑇𝑥
𝑛
for 𝑛 ∈ N

0
. The proof of convergence of this

sequence to a limit 𝑢 ∈ 𝑋 is exactly the same as the proof
of Theorem 12. Since lim

𝑛→∞
𝑥
𝑛
= 𝑢, then the condition (I)

implies 𝛼(𝑥
𝑛𝑘
, 𝑢) ≥ 1, for all 𝑘 ∈ N

0
. Applying the inequality

(40) with 𝑥 = 𝑥
𝑛𝑘
and 𝑦 = 𝑢 we get

𝜓 (𝑝 (𝑥
𝑛𝑘+1

, 𝑇𝑢)) ≤ 𝛼 (𝑥
𝑛𝑘
, 𝑢) 𝜓 (𝑝 (𝑥

𝑛𝑘+1
, 𝑇𝑢))

= 𝛼 (𝑥
𝑛𝑘
, 𝑢) 𝜓 (𝑝 (𝑇𝑥

𝑛𝑘
, 𝑇𝑢))

≤ 𝜙 (𝑀(𝑥
𝑛𝑘
, 𝑢)) ,

(42)

where

𝑀(𝑥
𝑛𝑘
, 𝑢) = max {𝑝 (𝑥

𝑛𝑘
, 𝑢) , 𝑝 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) , 𝑝 (𝑢, 𝑇𝑢)} .

(43)

Taking limit as 𝑘 → ∞ and regarding the continuity of 𝜓
and 𝜙, we get

𝜓 (𝑝 (𝑢, 𝑇𝑢)) ≤ 𝜙 (max {𝑝 (𝑢, 𝑢) , 0, 𝑝 (𝑢, 𝑇𝑢)})

= 𝜙 (𝑝 (𝑢, 𝑇𝑢)) .

(44)

Again, using the fact that 𝜓(𝑡) > 𝜙(𝑡), for 𝑡 > 0, we conclude
that 𝑝(𝑢, 𝑇𝑢) = 0 and hence, from Lemma 7, 𝑇𝑢 = 𝑢, which
completes the proof.

For the uniqueness of fixed points of 𝛼-admissible con-
tractions we need an extra condition.This condition reads as
follows:

(II) ∀𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1.

(45)

We prove the uniqueness of a fixed point for a subclass of
contractions defined in Theorems 12 and 13. The reason for
this is that the condition (I) is not sufficient for the uniqueness
of fixed points of maps defined in these two theorems.

Theorem 14. Let (𝑋, 𝑝) be a complete partial metric space
satisfying the condition (II). Let 𝑇 : 𝑋 → 𝑋 be a weak
triangular 𝛼-admissible mapping such that

𝛼 (𝑥, 𝑦) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋, (46)

where 𝜓 is an altering distance functions, 𝜙 : R+ → R+ is a
continuous function satisfying𝜓(𝑡) > 𝜙(𝑡) for all 𝑡 > 0. Assume
that either 𝑇 is continuous or 𝑋 satisfies the condition (I). If
there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, then 𝑇 has a

unique fixed point.
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Proof. The existence proof is similar to that of Theorem 12
(resp., Theorem 13) and hence we omit the details. To show
the uniqueness, we assume that 𝑇 has two different fixed
points; say 𝑥, 𝑦 ∈ 𝑋. From the condition (II), there exists
𝑧 ∈ 𝑋, such that

𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1. (47)

Then, since 𝑇 is 𝛼-admissible, we have from (47)

𝛼 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑧) = 𝛼 (𝑥, 𝑇

𝑛
𝑧) ≥ 1,

𝛼 (𝑇
𝑛
𝑦, 𝑇
𝑛
𝑧) = 𝛼 (𝑦, 𝑇

𝑛
𝑧) ≥ 1,

(48)

for all 𝑛 ∈ N
0
. Define the sequence {𝑧

𝑛
} ∈ 𝑋 as 𝑧

𝑛
= 𝑇
𝑛
𝑧.

If 𝑥 = 𝑧
𝑛
for some 𝑛 ∈ N

0
, then, 𝑇𝑧

𝑛
= 𝑇𝑥 = 𝑥, that is,

the sequence {𝑧
𝑛
} converges to the fixed point 𝑥. Assume that

𝑥 ̸= 𝑧
𝑛
for all 𝑛 ∈ N

0
. Applying (46) with 𝑥 = 𝑥 and 𝑦 = 𝑧

𝑛

we get

0 < 𝜓 (𝑝 (𝑥, 𝑧
𝑛
)) ≤ 𝛼 (𝑥, 𝑧

𝑛−1
) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑧

𝑛−1
))

≤ 𝜙 (𝑝 (𝑥, 𝑧
𝑛−1

)) < 𝜓 (𝑝 (𝑥, 𝑧
𝑛−1

)) .

(49)

Since 𝜓 is nondecreasing, then 𝑝(𝑥, 𝑧
𝑛
) ≤ 𝑝(𝑥, 𝑧

𝑛−1
) for

all 𝑛 ∈ N. Thus, the sequence {𝑝(𝑥, 𝑧
𝑛
)} is a positive non

increasing sequence and hence, converges to a limit say 𝐿 ≥ 0.
Taking limit as 𝑛 → ∞ in (49), and regarding continuity of
𝜓 and 𝜙, we deduce

0 ≤ 𝜓 (𝐿) ≤ 𝜙 (𝐿) , (50)

which is possible only if 𝐿 = 0. Hence, we conclude that

lim
𝑛→∞

𝑝 (𝑥, 𝑧
𝑛
) = 0. (51)

In a similar way, we obtain

lim
𝑛→∞

𝑝 (𝑦, 𝑧
𝑛
) = 0. (52)

By Lemma 6 and (51) and (52), it follows that

𝑝 (𝑥, 𝑥) = lim
𝑛→∞

(𝑥, 𝑧
𝑛
) = lim
𝑛→∞

𝑝 (𝑦, 𝑧
𝑛
) = 𝑝 (𝑦, 𝑥) = 0,

(53)

and using the fact that 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) = 0, the condition
(PM1) implies 𝑥 = 𝑦, which completes the proof of
uniqueness.

3. Consequences and an Example

The class of contractions defined in Theorems 12 and 13 is
quite general and many particular results can be concluded
from these theorems. Some of these conclusions are stated
below.

Corollary 15. Let (𝑋, 𝑝) be a complete PMS. Let 𝑇 : 𝑋 → 𝑋

be weak triangular 𝛼-admissible mapping such that

𝛼 (𝑥, 𝑦) 𝑝 (𝑇x, 𝑇𝑦) ≤ 𝑘𝑀(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋, (54)

where 0 < 𝑘 < 1 and

𝑀(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)} . (55)

Assume that either 𝑇 is continuous or 𝑋 satisfies the condition
(I). If there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, then 𝑇 has

a fixed point.

Proof. Proof is obvious by choosing 𝜓(𝑡) = 𝑡 and 𝜙(𝑡) = 𝑘𝑡 in
Theorem 12.

Corollary 16. Let (𝑋, 𝑝) be a complete PMS. Let 𝑇 : 𝑋 → 𝑋

be a weak triangular 𝛼-admissible mapping such that

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝑝 (𝑥, 𝑦) + 𝑏𝑝 (𝑥, 𝑇𝑥) + 𝑐𝑝 (𝑦, 𝑇𝑦) ,

(56)

for all 𝑥, 𝑦 ∈ 𝑋, where 0 < 𝑎 + 𝑏 + 𝑐 < 1. Assume that either
𝑇 is continuous or 𝑋 satisfies the condition (I). If there exists
𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1, then 𝑇 has a fixed point.

Proof. Due to the fact that

𝑎𝑑 (𝑥, 𝑦) + 𝑏𝑑 (𝑥, 𝑇𝑥) + 𝑐𝑑 (𝑦, 𝑇𝑦) ≤ 𝑘𝑀(𝑥, 𝑦) , (57)

proof follows from Corollary 15.

Last, we give the following example to illustrate our
results.

Example 1. Let 𝑋 = R+ = [0,∞), and define 𝑝(𝑥, 𝑦) and
𝛼(𝑥, 𝑦) on𝑋 as

𝑝 (𝑥, 𝑦) = max {𝑥, 𝑦} ,

𝛼 (𝑥, 𝑦) = {

2 if 𝑥, 𝑦 ∈ [0, 1]

0 otherwise,

(58)

respectively. Let 𝜓(𝑡) = 2𝑡 and 𝜙(𝑡) = 𝑡 and 𝑇 be defined as

𝑇𝑥 =

{
{
{
{

{
{
{
{

{

𝑥 −

4

5

if 𝑥 > 1

𝑥

5

if 0 ≤ 𝑥 ≤ 1

0 if 𝑥 ≤ 0.

(59)

Clearly, 𝑇 is continuous. Then for 𝑥, 𝑦 ∈ [0, 1] with 𝑥 ≤ 𝑦 we
have

𝛼 (𝑥, 𝑦) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦))

=

4𝑦

5

≤ 𝜙 (max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)})

= max {𝑦, 𝑥, 𝑦} = 𝑦,

(60)

and similarly, for 𝑥, 𝑦 ∈ [0, 1] with 𝑦 ≤ 𝑥,

𝛼 (𝑥, 𝑦) 𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦))

=

4𝑥

5

≤ 𝜙 (max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)})

= max {𝑥, 𝑥, 𝑦} = 𝑥.

(61)
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For 𝑥 ∉ [0, 1], 𝑦 ∉ [0, 1], or 𝑥, 𝑦 ∉ [0, 1] the contractive
condition of Theorem 12 is already satisfied since in this case
𝛼(𝑥, 𝑦) = 0. In addition, for 𝑥 = 1/2 we have

𝛼(

1

2

, 𝑇

1

2

) = 𝛼(

1

2

,

1

10

) = 2 ≥ 1. (62)

Since all conditions of Theorem 12 hold, then 𝑇 has a fixed
point which clearly is 𝑥 = 0.
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