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The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the
mixed finite element methods.The state and costate are approximated by the 𝑘 order (𝑘 ≥ 0) Raviart-Thomas mixed finite elements
and the control is approximated by piecewise polynomials of order 𝑘. By applying the elliptic projection operators and Gronwall’s
lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.

1. Introduction

With the advances of scientific computing, optimal control
problems are now widely used in multidisciplinary appli-
cations such as physics, biology, medicine, engineering
design, fluid mechanics, and social-economic systems. The
finite element method is undoubtedly the most widely used
numerical method in computing optimal control problems.
Finite element approximation of a class of elliptic optimal
control problems has been studied by Falk in [1]. Then, Alt
and Mackenroth in [2] established a priori error estimates
for the finite element approximations to state constrained
convex parabolic boundary control problems. Finite element
approximation of optimal control problems was developed in
[3–16], but there are very less published results on this topic
for hyperbolic optimal control problems.

Since the pioneering work of Brezzi and Fortin [17], the
mixed finite element methods to second order elliptic prob-
lems have drawn the attention of many specialists in partial
differential equations. Mixed finite elements are appropriate
for the state equations in such cases since both the scalar
variable and its flux variable can be approximated to the same
accuracy. In finite element methods, mixed finite element
methods were widely used to approximate flux variables,
although there was only very limited research work on
analyzing such elements for optimal control problems. More

recently, in [9], the authors derived a priori error estimates
and superconvergence for bilinear quadratic optimal control
problems using mixed finite element methods. A posteriori
error analysis of mixed finite element methods for some
optimal control problems was addressed in [18, 19]. In [20],
the author discussed the semidiscrete mixed finite element
methods for quadratic hyperbolic optimal control problems.
By using mixed elliptic reconstruction methods, he obtained
a posteriori 𝐿∞(𝐿

2

)-error estimates for both the state and the
control approximation.

The purpose of this work is to obtain a priori error
estimates of mixed finite element methods for general convex
optimal control problems governed by linear hyperbolic
partial differential equations. Analogous a priori error esti-
mates of mixed finite element solutions for optimal control
problems governed by linear parabolic equations can be
found in [21]. However, it does not seem to be straightforward
to extend the existing techniques to general optimal control
problems involving hyperbolic equations.

For 1 ≤ 𝑝 < ∞ and 𝑚 any nonnegative integer,
let 𝑊

𝑚,𝑝

(Ω) = {V ∈ 𝐿
𝑝

(Ω); 𝐷
𝛼V ∈ 𝐿

𝑝

(Ω) if |𝛼| ≤

𝑚} denote the Sobolev spaces endowed with the norm
‖V‖𝑝

𝑚,𝑝
= ∑

|𝛼|≤𝑚
‖𝐷

𝛼V‖𝑝
𝐿
𝑝
(Ω)

and the seminorm |V|𝑝
𝑚,𝑝

=

∑
|𝛼|=𝑚

‖𝐷
𝛼V‖𝑝

𝐿
𝑝
(Ω)

. We set 𝑊𝑚,𝑝

0
(Ω) = {V ∈ 𝑊

𝑚,𝑝

(Ω) :

V|
𝜕Ω

= 0}. For 𝑝 = 2, we denote 𝐻
𝑚

(Ω) = 𝑊
𝑚,2

(Ω),
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𝐻
𝑚

0
(Ω) = 𝑊

𝑚,2

0
(Ω) and ‖ ⋅ ‖

𝑚
= ‖ ⋅ ‖

𝑚,2
, ‖ ⋅ ‖ = ‖ ⋅ ‖

0,2
. We

denote by𝐿𝑠(𝐽;𝑊𝑚,𝑝

(Ω)) the Banach space of all𝐿𝑠 integrable
functions from 𝐽 to 𝑊

𝑚,𝑝

(Ω) with norm ‖V‖
𝐿
𝑠
(𝐽;𝑊
𝑚,𝑝

(Ω))
=

(∫
𝑇

0

‖V‖𝑠
𝑊
𝑚,𝑝

(Ω)
𝑑𝑡)

1/𝑠

𝑓𝑜𝑟 𝑠 ∈ [1,∞), ‖V‖
𝐿
∞
(𝐽;𝑊
𝑚,𝑝

(Ω))
=

sup
𝑡∈𝐽
‖V‖

𝑊
𝑚,𝑝

(Ω)
, and the standard modification for 𝑠 = ∞.

In this paper, we focus our attention on the following
general linear hyperbolic convex optimal control problems:

min
𝑢∈𝐾⊂𝑈

{∫

𝑇

0

(𝑔
1
(p) + 𝑔

2
(𝑦) + ℎ (𝑢)) 𝑑𝑡} , (1)

subject to the state equations

𝑦
𝑡𝑡
+ div p = 𝑓 + 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽, (2)

p = − 𝐴∇𝑦, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽, (3)

𝑦
𝜕Ω = 0, 𝑡 ∈ 𝐽, (4)

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , 𝑥 ∈ Ω, (5)

𝑦
𝑡
(𝑥, 0) = 𝑦

1
(𝑥) , 𝑥 ∈ Ω, (6)

where the bounded open setΩ ⊂ R2 is a convex polygonwith
the boundary 𝜕Ω, Ω

𝑈
is a bounded open set in R2 with the

Lipschitz boundary 𝜕Ω
𝑈
,𝑔

1
,𝑔

2
, and ℎ are convex functionals,

and 𝐽 = [0, 𝑇]. We assume that 𝐾 is a closed convex set in
𝑈 = 𝐿

2

(𝐽; 𝐿
2

(Ω
𝑈
)), 𝑓 ∈ 𝐿

2

(𝐽; 𝐿
2

(Ω)), and 𝑦
0
, 𝑦

1
∈ 𝐻

1

(Ω).
Furthermore, we assume the coefficient matrix 𝐴(𝑥) =

(𝑎
𝑖,𝑗
(𝑥))

2×2

∈ (𝑊
1,∞

(Ω))
2×2 is a symmetric 2 × 2-matrix and

there is a constant 𝑐 > 0 satisfying for any vector X ∈ R2,
X

𝐴X ≥ 𝑐‖X‖2R2 . The set of admissible controls 𝐾 is defined
by

𝐾 = {𝑢 ∈ 𝑈 = 𝐿
2

(𝐽; 𝐿
2

(Ω
𝑈
)) : ∫

𝑇

0

∫
Ω𝑈

𝑢 𝑑𝑥 𝑑𝑡 ≥ 0} . (7)

The remainder of the paper is organized as follows. In
Section 2, we construct the 𝑘 order Raviart-Thomas mixed
finite element approximation for general convex optimal
control problems governed by linear hyperbolic equations
and briefly state the definitions and properties of some
interpolation operators. In Section 3, we derive a priori error
estimates of themixed finite element solutions for the general
hyperbolic optimal control problems. Finally, we give the
conclusion and the future work in Section 4.

2. Mixed Methods of
Hyperbolic Optimal Control

We will now describe the mixed finite element discretization
of general linear hyperbolic convex optimal control problems
(1)–(6). Firstly, we introduce the costate hyperbolic equation,

𝑧
𝑡𝑡
(𝑥, 𝑡) − div (𝐴 (∇𝑧 (𝑥, 𝑡) + 𝑔



1
(p (𝑥, 𝑡)))) = 𝑔



2
(𝑦 (𝑥, 𝑡)) ,

𝑥 ∈ Ω,

(8)

with the conditions,

𝑧|
𝜕Ω

= 0, 𝑡 ∈ 𝐽; 𝑧 (𝑥, 𝑇) = 0, 𝑥 ∈ Ω;

𝑧
𝑡
(𝑥, 𝑇) = 0, 𝑥 ∈ Ω.

(9)

Next, we need the following regularity assumptions for
the hyperbolic equations (2) and (8): there exists a constant𝐶
such that

𝑦
𝐿∞(𝐽;𝐻𝑘+2(Ω)) +

𝑦𝑡
𝐿∞(𝐽;𝐻𝑘+2(Ω)) +

𝑦𝑡𝑡
𝐿2(𝐽;𝐻𝑘+2(Ω)) ≤ 𝐶,

‖𝑧‖
𝐿
∞
(𝐽;𝐻
𝑘+2

(Ω))
+
𝑧𝑡

𝐿∞(𝐽;𝐻𝑘+2(Ω)) ≤ 𝐶,

‖p‖
𝐿
∞
(𝐽;(𝐻
𝑘+2

(Ω))

2
)
+ ‖q‖

𝐿
∞
(𝐽;(𝐻
𝑘+2

(Ω))

2
)

+
q𝑡

𝐿∞(𝐽;(𝐻𝑘+1(Ω))
2
)
≤ 𝐶.

(10)

We will take the state spaces 𝐿
2

(V) = 𝐿
2

(𝐽;V) and
𝐿
2

(𝑊) = 𝐿
2

(𝐽;𝑊), where V and𝑊 are defined as follows:

V = 𝐻 (div; Ω) = {v ∈ (𝐿
2

(Ω))
2

, div v ∈ 𝐿
2

(Ω)} ,

𝑊 = 𝐿
2

(Ω) .

(11)

The Hilbert space V is equipped with the following norm:

‖v‖
𝐻(div;Ω) = (‖v‖2

0,Ω
+ ‖div v‖2

0,Ω
)
1/2

. (12)

We recast (1)–(5) as the following weak form: find
(p, 𝑦, 𝑢) ∈ 𝐿

2

(V) × 𝐿
2

(𝑊) × 𝐾 such that

min
𝑢∈𝐾

{∫

𝑇

0

(𝑔
1
(p) + 𝑔

2
(𝑦) + ℎ (𝑢)) 𝑑𝑡} ,

(𝐴
−1p, v) − (𝑦, div v) = 0, ∀v ∈ V,

(𝑦
𝑡𝑡
, 𝑤) + (div p, 𝑤) = (𝑓 + 𝑢, 𝑤) , ∀𝑤 ∈ 𝑊,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , ∀𝑥 ∈ Ω,

𝑦
𝑡
(𝑥, 0) = 𝑦

1
(𝑥) , ∀𝑥 ∈ Ω.

(13)

Hereafter, we assume that ℎ(𝑢) = ∫
Ω𝑈

𝑗(𝑢)𝑑𝑥, where 𝑗(⋅) is a
convex continuously differentiable function on R. Then, it is
easy to see that (ℎ(𝑢), v)

𝑈
= (𝑗



(𝑢), v)
𝑈
= ∫

Ω𝑈

𝑗


(𝑢)v𝑑𝑥.
Taking into account the precious result in [20, 22], the

optimal control problem (13) has a unique solution (p, 𝑦, 𝑢),
and a triplet (p, 𝑦, 𝑢) is the solution of (13) if and only if there
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is a costate (q, 𝑧) ∈ 𝐿
2

(V) × 𝐿
2

(𝑊) such that (p, 𝑦, q, 𝑧, 𝑢)
satisfies the following optimality conditions:

(𝐴
−1p, v) − (𝑦, div v) = 0, ∀v ∈ V, (14)

(𝑦
𝑡𝑡
, 𝑤) + (div p, 𝑤) = (𝑓 + 𝑢, 𝑤) , ∀𝑤 ∈ 𝑊, (15)

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) , ∀𝑥 ∈ Ω, (16)

𝑦
𝑡
(𝑥, 0) = 𝑦

1
(𝑥) , ∀𝑥 ∈ Ω, (17)

(𝐴
−1q, v) − (𝑧, div v) = − (𝑔



1
(p) , v) , ∀v ∈ V, (18)

(𝑧
𝑡𝑡
, 𝑤) + (div q, 𝑤) = (𝑔



2
(𝑦) , 𝑤) , ∀𝑤 ∈ 𝑊, (19)

𝑧 (𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (20)

𝑧
𝑡
(𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (21)

∫

𝑇

0

(𝑗


(𝑢) + 𝑧, �̃� − 𝑢)
𝑈

𝑑𝑡 ≥ 0, ∀�̃� ∈ 𝐾, (22)

where (⋅, ⋅)
𝑈
is the inner product of 𝑈 and 𝑔



1
, 𝑔

2
, and 𝑗

 are
the derivatives of 𝑔

1
, 𝑔

2
, and 𝑗. For simplification, the product

(⋅, ⋅)
𝑈
will be denoted by (⋅, ⋅).

For ease of exposition, we will assume thatΩ andΩ
𝑈
are

both polygons. LetT
ℎ
andT

ℎ
(Ω

𝑈
) be regular triangulations

or rectangulations of Ω and Ω
𝑈
, respectively. They are

assumed to satisfy the angle conditionwhichmeans that there
is a positive constant 𝐶 such that, for all 𝜏 ∈ T

ℎ
(𝜏

𝑈
∈

T
ℎ
(Ω

𝑈
)), 𝐶−1

ℎ
2

𝜏
≤ |𝜏| ≤ 𝐶ℎ

2

𝜏
, 𝐶−1

ℎ
2

𝜏𝑈
≤ |𝜏

𝑈
| ≤ 𝐶ℎ

2

𝜏𝑈
, where

|𝜏| is the area of 𝜏, |𝜏
𝑈
| is the area of 𝜏

𝑈
, ℎ

𝜏
is the diameter

of 𝜏, and ℎ
𝜏𝑈

is the diameter of 𝜏
𝑈
. Let ℎ = max ℎ

𝜏
(ℎ

𝑈
=

max ℎ
𝜏𝑈
). In addition, 𝐶 or 𝑐 denotes a general positive

constant independent of ℎ.
Let V

ℎ
× 𝑊

ℎ
⊂ V × 𝑊 denote the order 𝑘 Raviart-

Thomas space [23] associated with the triangulations or
rectangulationsT

ℎ
ofΩ.𝑃

𝑘
denotes the space of polynomials

of total degree at most 𝑘 and 𝑄
𝑚,𝑛

indicates the space of
polynomials of degree no more than 𝑚 and 𝑛 in 𝑥 and 𝑦,
respectively. If 𝜏 is a triangle, V(𝜏) = {v ∈ 𝑃

2

𝑘
(𝜏) + 𝑥 ⋅ 𝑃

𝑘
(𝜏)},

and if 𝜏 is a rectangle, V(𝜏) = {v ∈ 𝑄
𝑘+1,𝑘

(𝜏) × 𝑄
𝑘,𝑘+1

(𝜏)},
𝑊(𝜏) = 𝑃

𝑘
(𝜏). We define

V
ℎ
:= {v

ℎ
∈ V : ∀𝜏 ∈ T

ℎ
, v

ℎ

𝜏 ∈ V (𝜏)} ,

𝑊
ℎ
:= {𝑤

ℎ
∈ 𝑊 : ∀𝜏 ∈ T

ℎ
, 𝑤

ℎ

𝜏 ∈ 𝑊 (𝜏)} ,

𝑈
ℎ
:= {�̃�

ℎ
∈ 𝑈 : ∀𝜏 ∈ T

ℎ
(Ω

𝑈
) , �̃�

ℎ

𝜏 ∈ 𝑊 (𝜏)} .

(23)

By the definition of finite element subspace, the mixed
finite element discretization of (13) is as follows: compute
(p

ℎ
, 𝑦

ℎ
, 𝑢

ℎ
) ∈ 𝐿

2

(V
ℎ
) × 𝐿

2

(𝑊
ℎ
) × 𝐾

ℎ
such that

min
𝑢ℎ∈𝐾ℎ⊂𝑈ℎ

{∫

𝑇

0

(𝑔
1
(p

ℎ
) + 𝑔

2
(𝑦

ℎ
) + ℎ (𝑢

ℎ
)) 𝑑𝑡} ,

(𝐴
−1p

ℎ
, v

ℎ
) − (𝑦

ℎ
, div v

ℎ
) = 0, ∀V

ℎ
∈ 𝑉

ℎ
,

(𝑦
ℎ𝑡𝑡
, 𝑤

ℎ
) + (div p

ℎ
, 𝑤

ℎ
) = (𝑓 + 𝑢

ℎ
, 𝑤

ℎ
) , ∀𝑤

ℎ
∈ 𝑊

ℎ
,

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , ∀𝑥 ∈ Ω,

𝑦
ℎ𝑡
(𝑥, 0) = 𝑦

ℎ

1
(𝑥) , ∀𝑥 ∈ Ω,

(24)

where 𝐾
ℎ
= 𝑈

ℎ
∩ 𝐾 and 𝑦ℎ

0
(𝑥) and 𝑦ℎ

1
(𝑥) ∈ 𝑊

ℎ
are two finite

element approximations of 𝑦
0
(𝑥) and 𝑦

1
(𝑥).

It is well known (see, e.g., [7, 20]) that the optimal
control problem (24) again has a unique solution (p

ℎ
, 𝑦

ℎ
, 𝑢

ℎ
)

and that a triplet (p
ℎ
, 𝑦

ℎ
, 𝑢

ℎ
) is the solution of (24) if and

only if there is a costate (q
ℎ
, 𝑧

ℎ
) ∈ 𝐿

2

(V
ℎ
) × 𝐿

2

(𝑊
ℎ
)

such that (p
ℎ
, 𝑦

ℎ
, q

ℎ
, 𝑧

ℎ
, 𝑢

ℎ
) satisfies the following optimality

conditions:

(𝐴
−1p

ℎ
, v) − (𝑦

ℎ
, div V) = 0, ∀v ∈ V

ℎ
, (25)

(𝑦
ℎ𝑡𝑡
, 𝑤) + (div p

ℎ
, 𝑤) = (𝑓 + 𝑢

ℎ
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
,

(26)

𝑦
ℎ
(𝑥, 0) = 𝑦

ℎ

0
(𝑥) , ∀𝑥 ∈ Ω, (27)

𝑦
ℎ𝑡
(𝑥, 0) = 𝑦

ℎ

1
(𝑥) , ∀𝑥 ∈ Ω, (28)

(𝐴
−1q

ℎ
, v) − (𝑧

ℎ
, div v) = − (𝑔



1
(p

ℎ
) , v) , ∀v ∈ V

ℎ
,

(29)

(𝑧
ℎ𝑡𝑡
, 𝑤) + (div q

ℎ
, 𝑤) = (𝑔



2
(𝑦

ℎ
) , 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
,

(30)

𝑧
ℎ
(𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (31)

𝑧
ℎ𝑡
(𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (32)

∫

𝑇

0

(𝑗


(𝑢
ℎ
) + 𝑧

ℎ
, �̃� − 𝑢

ℎ
)
𝑈

𝑑𝑡 ≥ 0, ∀�̃� ∈ 𝐾
ℎ
. (33)

Let 𝑃
ℎ
: 𝑊 → 𝑊

ℎ
be the orthogonal 𝐿2(Ω)-projection

into𝑊
ℎ
defined by

(𝑃
ℎ
𝑤 − 𝑤, 𝜒) = 0, 𝑤 ∈ 𝑊, 𝜒 ∈ 𝑊

ℎ
, (34)

which satisfies
𝑃ℎ𝑤 − 𝑤

0,𝑞 ≤ 𝐶‖𝑤‖
𝑠,𝑞
ℎ
𝑠

,

0 ≤ 𝑠 ≤ 𝑘 + 1, if 𝑤 ∈ 𝑊 ∩𝑊
𝑠,𝑞

(Ω) ,

(35)

𝑃ℎ𝑤 − 𝑤
−𝑟 ≤ 𝐶‖𝑤‖

𝑠
ℎ
𝑟+𝑠

,

0 ≤ 𝑟, 𝑠 ≤ 𝑘 + 1, if 𝑤 ∈ 𝐻
𝑠

(Ω) ,

(36)

(div v, 𝑤 − 𝑃
ℎ
𝑤) = 0, 𝑤 ∈ 𝑊, v ∈ V

ℎ
. (37)

Let 𝜋
ℎ
: V → V

ℎ
be the Raviart-Thomas projection [24],

which satisfies

(div (𝜋
ℎ
v − v) , 𝑤

ℎ
) = 0, v ∈ V, 𝑤

ℎ
∈ 𝑊

ℎ
, (38)

𝜋ℎv − v0,𝑞 ≤ 𝐶‖v‖
𝑠,𝑞
ℎ
𝑠

,

1

𝑞
< 𝑠 ≤ 𝑘 + 1, if v ∈ V ∩𝑊

𝑠,𝑞

(Ω)
2

,

(39)

div (𝜋ℎv − v)0 ≤ 𝐶‖div v‖
𝑠
ℎ
𝑠

,

0 ≤ 𝑠 ≤ 𝑘 + 1, if v ∈ V ∩ 𝐻
𝑠

(div; Ω) .
(40)
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We have the commuting diagram property

div ∘𝜋
ℎ
= 𝑃

ℎ
∘ div : V → 𝑊

ℎ
, div (𝐼 − 𝜋

ℎ
)V ⊥ 𝑊

ℎ
, (41)

where 𝐼 denotes identity matrix. We point out (𝜋
ℎ
v)

𝑡
= 𝜋

ℎ
v
𝑡

and (𝑃
ℎ
𝑤)

𝑡
= 𝑃

ℎ
𝑤
𝑡
.

In the rest of the paper, we will use some intermediate
variables. For any control function �̃� ∈ 𝐾, we first define the
state solution (p(�̃�), 𝑦(�̃�), q(�̃�), 𝑧(�̃�)) associated with �̃� that
satisfies

(𝐴
−1p (�̃�) , v) − (𝑦 (�̃�) , div v) = 0, ∀v ∈ V, (42)

(𝑦
𝑡𝑡
(�̃�) , 𝑤) + (div p (�̃�) , 𝑤) = (𝑓 + �̃�, 𝑤) , ∀𝑤 ∈ 𝑊,

(43)

𝑦 (�̃�) (𝑥, 0) = 𝑦
0
(𝑥) , ∀𝑥 ∈ Ω, (44)

𝑦
𝑡
(�̃�) (𝑥, 0) = 𝑦

1
(𝑥) , ∀𝑥 ∈ Ω, (45)

(𝐴
−1q (�̃�) , v) − (𝑧 (�̃�) , div v) = − (𝑔



1
(p (�̃�)) , v) ,

∀v ∈ V,
(46)

(𝑧
𝑡𝑡
(�̃�) , 𝑤) + (div q (�̃�) , 𝑤) = (𝑔



2
(𝑦 (�̃�)) , 𝑤) ,

∀𝑤 ∈ 𝑊,

(47)

𝑧 (�̃�) (𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (48)

𝑧
𝑡
(�̃�) (𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω. (49)

Correspondingly, we define the discrete state solution
(p

ℎ
(�̃�), 𝑦

ℎ
(�̃�), q

ℎ
(�̃�), 𝑧

ℎ
(�̃�)) associated with �̃� ∈ 𝐾 that

satisfies

(𝐴
−1p

ℎ
(�̃�) , v) − (𝑦

ℎ
(�̃�) , div v) = 0, ∀v ∈ V

ℎ
, (50)

(𝑦
ℎ𝑡𝑡

(�̃�) , 𝑤) + (div p
ℎ
(�̃�) , 𝑤) = (𝑓 + �̃�, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
,

(51)

𝑦
ℎ
(�̃�) (𝑥, 0) = 𝑦

ℎ

0
(𝑥) , ∀𝑥 ∈ Ω, (52)

𝑦
ℎ𝑡
(�̃�) (𝑥, 0) = 𝑦

ℎ

1
(𝑥) , ∀𝑥 ∈ Ω, (53)

(𝐴
−1q

ℎ
(�̃�) , v) − (𝑧

ℎ
(�̃�) , div v) = − (𝑔



1
(p

ℎ
(�̃�)) , v) ,

∀v ∈ V
ℎ
,

(54)

(𝑧
ℎ𝑡𝑡

(�̃�) , 𝑤) + (div q
ℎ
(�̃�) , 𝑤) = (𝑔



2
(𝑦

ℎ
(�̃�)) , 𝑤) ,

∀𝑤 ∈ 𝑊
ℎ
,

(55)

𝑧
ℎ
(�̃�) (𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω, (56)

𝑧
ℎ𝑡
(�̃�) (𝑥, 𝑇) = 0, ∀𝑥 ∈ Ω. (57)

Thus, as we defined, the exact solution and its approxima-
tion can be written in the following way:

(p, 𝑦, q, 𝑧) = (p (𝑢) , 𝑦 (𝑢) , q (𝑢) , 𝑧 (𝑢)) ,

(p
ℎ
, 𝑦

ℎ
, q

ℎ
, 𝑧

ℎ
) = (p

ℎ
(𝑢

ℎ
) , 𝑦

ℎ
(𝑢

ℎ
) , q

ℎ
(𝑢

ℎ
) , 𝑧

ℎ
(𝑢

ℎ
)) .

(58)

In the following, we further assume that 𝑔
1
, 𝑔

2
, and 𝑗 are

locally Lipschitz continuous, that 𝑔
1
(⋅) and 𝑔



2
(⋅) are bound

functions on (𝐿
2

(Ω))
2 and 𝐿

2

(Ω), and that there is a 𝑐 > 0

such that

(𝑗


(𝑢) − 𝑗


(V) , 𝑢 − V) ≥ 𝑐‖𝑢 − V‖2
𝐿
2
(Ω𝑈)

, ∀𝑢, V ∈ 𝐿
2

(Ω
𝑈
) .

(59)

For 𝜑 ∈ 𝑊
ℎ
, we will write

𝜙 (𝜑) − 𝜙 (𝜌) = 𝜙


(𝜑) (𝜑 − 𝜌) , (60)

where 𝜙(𝜑) = ∫
1

0

𝜙


(𝜑 + 𝑠(𝜌 − 𝜑))𝑑𝑠 is bounded function in
Ω [25].

3. A Priori Error Estimates

Now we will construct an analogue of the family of elliptic
projection operators defined by Wheeler [26] in her thesis.
Let (p, 𝑦, q, 𝑧) be the solution of (14)–(18). Then, define
the elliptic projection of (p, 𝑦, q, 𝑧) to be (𝑃, 𝑌, 𝑄, 𝑍) by the
following relations:

(𝐴
−1

𝑃, v
ℎ
) − (𝑌, div v

ℎ
) = 0, ∀v

ℎ
∈ V

ℎ
, (61)

(div𝑃,𝑤
ℎ
) = (𝑓 + 𝑢 − 𝑦

𝑡𝑡
, 𝑤

ℎ
) , ∀𝑤

ℎ
∈ 𝑊

ℎ
,

(62)

(𝐴
−1

𝑄, v
ℎ
) − (𝑍, div v

ℎ
) = − (𝑔



1
(p) , v

ℎ
) , ∀v

ℎ
∈ V

ℎ
,

(63)

(div𝑄,𝑤
ℎ
) = (𝑔



2
(𝑦) − 𝑧

𝑡𝑡
, 𝑤

ℎ
) , ∀𝑤

ℎ
∈ 𝑊

ℎ
,

(64)

where we assume that 𝑍(𝑥, 𝑇) = 𝑍
𝑡
(𝑥, 𝑇) = 0.

Let

𝜏
1
= 𝑦 − 𝑌, 𝜎

1
= p − 𝑃,

𝜏
2
= 𝑧 − 𝑍, 𝜎

2
= q − 𝑄.

(65)

From (14)–(18) and (61)–(64), we can easily derive the follow-
ing error equations:

(𝐴
−1

𝜎
1
, v

ℎ
) − (𝜏

1
, div v

ℎ
) = 0, ∀v

ℎ
∈ V

ℎ
,

(div 𝜎
1
, 𝑤

ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑊

ℎ
,

(𝐴
−1

𝜎
2
, v

ℎ
) − (𝜏

2
, div v

ℎ
) = 0, ∀v

ℎ
∈ V

ℎ
,

(div 𝜎
2
, 𝑤

ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑊

ℎ
.

(66)

Estimates for 𝜏
1
, 𝜏

2
, 𝜎

1
, 𝜎

2
are given in [27] and are

presented in Lemma 1 without proof.
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Lemma 1. Assume that the optimal control problems (1)–(5)
have a unique solution (p, 𝑦, 𝑢). For 𝑡 ∈ 𝐽 and for ℎ sufficiently
small, there is a positive constant 𝐶 independent of ℎ such that

𝜎1
0 +

𝜏1
0 ≤ 𝐶ℎ

𝑘+1𝑦
𝑘+2, if 𝑦 ∈ 𝐻

𝑘+2

(Ω) ,

𝜎2
0 +

𝜏2
0 ≤ 𝐶ℎ

𝑘+1𝑦
𝑘+2, if 𝑦 ∈ 𝐻

𝑘+2

(Ω) .

(67)

By using Lemma 3 in [22], we can obtain the following
technical results.

Lemma 2. For 𝑡 ∈ 𝐽 and for ℎ sufficiently small, if 𝑦
𝑡
, 𝑦

𝑡𝑡
, 𝑦

𝑡𝑡𝑡
∈

𝐻
𝑘+2

(Ω), there is a positive constant 𝐶 independent of ℎ such
that

𝜎1𝑡
0 +

𝜏1𝑡
0 ≤ 𝐶ℎ

𝑘+1𝑦𝑡
𝑘+2,

𝜎1𝑡𝑡
0 +

𝜏1𝑡𝑡
0 ≤ 𝐶ℎ

𝑘+1𝑦𝑡𝑡
𝑘+2,

𝜎1𝑡𝑡𝑡
0 +

𝜏1𝑡𝑡𝑡
0 ≤ 𝐶ℎ

𝑘+1𝑦𝑡𝑡𝑡
𝑘+2.

(68)

By Theorem 3 in [28], we can establish the following
useful result.

Lemma 3. Suppose V ∈ 𝐿
2

(𝐽;𝐻
1

(Ω)) ∩𝐻
1

(𝐽;𝐻
1

(Ω)
∗

). Then,

V ∈ 𝐶 (𝐽; 𝐿
2

(Ω)) ,
𝑑

𝑑𝑡
‖V (𝑡)‖2

0
= 2 (V (𝑡) , V (𝑡)) , ∀𝑡 ∈ 𝐽.

(69)

Now, we investigate the intermediate error estimates
between (p, 𝑦, q, 𝑧) and the intermediate solution (p

ℎ
(𝑢),

𝑦
ℎ
(𝑢), q

ℎ
(𝑢), 𝑧

ℎ
(𝑢)). Benefit from the previous results in this

section, we only need to estimate ‖𝑃−p
ℎ
(𝑢)‖, ‖𝑌−𝑦

ℎ
(𝑢)‖ and

‖𝑃
ℎ
q − q

ℎ
(𝑢)‖, ‖𝜋

ℎ
𝑧 − 𝑧

ℎ
(𝑢)‖.

Let

𝛼
1
= 𝑌 − 𝑦

ℎ
(𝑢) , 𝛽

1
= 𝑃 − p

ℎ
(𝑢) ,

𝛼
2
= 𝑃

ℎ
𝑧 − 𝑧

ℎ
(𝑢) , 𝛽

2
= 𝜋

ℎ
q − q

ℎ
(𝑢) .

(70)

Lemma 4. Assume that the optimal control problems (1)–(5)
have a unique solution (p, 𝑦, 𝑢) and thatΩ is 2-regular. Assume
that the regularity assumptions (10) are valid.There is a positive
constant 𝐶 > 0, independent of ℎ, such that

𝑃 − p
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑌 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶ℎ
𝑘+1

,

(71)

𝜋ℎq − q
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑃ℎ𝑧 − 𝑧

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))≤𝐶ℎ
𝑘+1

.

(72)

Proof. Firstly, we prove the first inequality (71). From (61)-
(62) and (50)-(51), we can derive the following error equa-
tions:

(𝐴
−1

𝛽
1
, v) − (𝛼

1
, div v) = 0, ∀v ∈ V

ℎ
, (73)

(𝛼
1𝑡𝑡
, 𝑤) + (div 𝛽

1
, 𝑤) = − ((𝑦 − 𝑌)

𝑡𝑡
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
.

(74)

Differentiating (73) with respect to 𝑡, we obtain

(𝐴
−1

𝛽
1𝑡
, v) − (𝛼

1𝑡
, div v) = 0, ∀v ∈ V

ℎ
. (75)

Taking 𝑡 = 0 and v = 𝛽
1
(0) in (75) and choosing 𝑦ℎ

0
= 𝑌(𝑥, 0)

and 𝑦ℎ
1
= 𝑌

𝑡
(𝑥, 0), we can derive that

𝛼
1
(0) = 𝛼

1𝑡
(0) = 𝛽

1
(0) = div 𝛽

1
(0) = 0. (76)

Next, taking 𝑡 = 0 and v = 𝛽
1𝑡
(0) in (75) and choosing 𝑦ℎ

0
=

𝑌(𝑥, 0) and 𝑦
ℎ

1
= 𝑌

𝑡
(𝑥, 0), we also find that 𝛽

1𝑡
(0) = 0. Now,

choosing𝑤 = 𝛼
1
and v = 𝛽

1
as test functions in (73) and (74),

we have

𝛼1𝑡
𝐿∞(𝐽;𝐿2(Ω)) +

𝛽1
𝐿∞(𝐽;(𝐿2(Ω))

2
)
≤ 𝐶ℎ

𝑘+1𝑦𝑡𝑡
𝐿2(𝐽;𝐻𝑘+2(Ω)).

(77)

From (76), we find that 𝛼
1
(0) = 0, and then we have

𝛼1
𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶

𝛼1𝑡
𝐿2(𝐽;𝐿2(Ω)). (78)

Then we obtain (71) from (77), (78), and the triangle inequal-
ity.

Furthermore, we prove the second inequality (72). By
using (34), subtract (18)-(19) and (46)-(47) to get the follow-
ing error equations:

(𝐴
−1

𝛽
2
, v) − (𝛼

2
, div v)

= − (𝐴
−1

(q − 𝜋
ℎ
q) + 𝑔



1
(p) − 𝑔



1
(p

ℎ
(𝑢)) , v) ,

∀v ∈ V
ℎ
,

(79)

(𝛼
2𝑡𝑡
, 𝑤) + (div 𝛽

2
, 𝑤) = (𝑔



2
(𝑦) − 𝑔



2
(𝑦

ℎ
(𝑢)) , 𝑤) ,

∀𝑤 ∈ 𝑊
ℎ
.

(80)

Noting that 𝛼
2
(𝑇) = 𝑃

ℎ
𝑧(𝑇) − 𝑧

ℎ
(𝑢)(𝑇) = 0 and taking 𝑡 = 𝑇

in (79), we find that

(𝐴
−1

𝛽
2
(𝑇) , v)

= − (𝐴
−1

(q − 𝜋
ℎ
q) (𝑇) + 𝑔



1
(p (𝑇)) − 𝑔



1
(p

ℎ
(𝑢) (𝑇)) , v) ,

∀v ∈ V
ℎ
.

(81)
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By using Lemma 1 and (77), we can obtain that

𝛽2 (𝑇)


≤ 𝐶
(q − 𝜋

ℎ
q) (𝑇)

+ 𝐶

𝑔


1
(p (𝑇))

−𝑔


1
(p

ℎ
(𝑢) (𝑇))



≤ 𝐶
(q − 𝜋

ℎ
q) (𝑇)

+ 𝐶

𝑔


1
(p (𝑇)) ((p − p

ℎ
(𝑢)) (𝑇))



≤ 𝐶ℎ
𝑘+1

‖q‖
𝐿
∞
(𝐽;(𝐻
𝑘+2

(Ω))

2
)

+ 𝐶‖p − 𝑃‖
𝐿
∞
(𝐽;(𝐿
2
(Ω))
2
)

+ 𝐶
𝑃 − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤ 𝐶ℎ
𝑘+1

.

(82)

Taking 𝑡 = 0 and 𝑤 = 𝛼
1𝑡𝑡
(0) in (74), since div 𝛽

1
(0) = 0, we

have

𝛼1𝑡𝑡 (0)
𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶

(𝑦 − 𝑌)
𝑡𝑡
(0)

𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶ℎ
𝑘+1𝑦𝑡𝑡

𝐿∞(𝐽;𝐻𝑘+2(Ω)).

(83)

Differentiating (75) and (74) with respect to 𝑡, we obtain

(𝐴
−1

𝛽
1𝑡𝑡
, v) − (𝛼

1𝑡𝑡
, div v) = 0, ∀v ∈ V

ℎ
, (84)

(𝛼
1𝑡𝑡𝑡

, 𝑤) + (div 𝛽
1𝑡
, 𝑤) = − ((𝑦 − 𝑌)

𝑡𝑡𝑡
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
.

(85)

Selecting v = 𝛽
1𝑡
and 𝑤 = 𝛼

1𝑡𝑡
as test functions in (84) and

(85), respectively, we get

(𝛼
1𝑡𝑡𝑡

, 𝛼
1𝑡𝑡
) + (𝐴

−1

𝛽
1𝑡𝑡
, 𝛽

1𝑡
) = − ((𝑦 − 𝑌)

𝑡𝑡𝑡
, 𝛼

1𝑡𝑡
) ,

∀𝑤 ∈ 𝑊
ℎ
.

(86)

Integrating (86) from 0 to 𝑡, using (83) and the Gronwall’s
Lemma, we obtain

𝛼1𝑡𝑡
𝐿∞(𝐽;𝐿2(Ω)) +

𝛽1𝑡
𝐿∞(𝐽;(𝐿2(Ω))

2
)

≤ 𝐶ℎ
𝑘+1

(
𝑦𝑡𝑡

𝐿∞(𝐽;𝐻𝑘+2(Ω)) +
𝑦𝑡𝑡𝑡

𝐿2(𝐽;𝐻𝑘+2(Ω))) .

(87)

Differentiating (79) with respect to 𝑡, we obtain

(𝐴
−1

𝛽
2𝑡
, v) − (𝛼

2𝑡
, div v)

= − (𝐴
−1

(q − 𝜋
ℎ
q)

𝑡
+ 𝑔



1
(p

𝑡
) − 𝑔



1
(p

ℎ𝑡
(𝑢)) , v) ,

∀v ∈ V
ℎ
.

(88)

Now we choose𝑤 = −𝛼
2𝑡
and v = −𝛽

2
as test function in (80)

and (88), and we have

−
1

2

𝑑

𝑑𝑡
(
𝛼2𝑡

 +

𝐴
−1/2

𝛽
2


)
2

= − (𝑔


2
(𝑦) − 𝑔



2
(𝑦

ℎ
(𝑢)) , 𝛼

2𝑡
)

+ (𝐴
−1

(q − 𝜋
ℎ
q)

𝑡
+ 𝑔



1
(p

𝑡
) − 𝑔



1
(p

ℎ𝑡
(𝑢)) , 𝛽

2
)

= − (𝑔


2
(𝑦) (𝑦 − 𝑦

ℎ
(𝑢)) , 𝛼

2𝑡
)

+ (𝐴
−1

(q − 𝜋
ℎ
q)

𝑡
+ 𝑔



1
(p

𝑡
) (p − p

ℎ
(𝑢))

𝑡
, 𝛽

2
) .

(89)

Then, integrating (89) from 𝑡 into 𝑇, using (83) and (87), we
obtain

𝛼2𝑡
𝐿∞(𝐽;𝐿2(Ω)) +

𝛽2
𝐿∞(𝐽;(𝐿2(Ω))

2
)

≤ 𝐶 (
𝑦 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) +
q𝑡 − 𝜋

ℎ
q
𝑡

𝐿∞(𝐽;(𝐿2(Ω))
2
)

+
p − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
)

≤ 𝐶 (
𝑦 − 𝑌

𝐿∞(𝐽;𝐿2(Ω)) +
𝑌 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

+ ℎ
𝑘+1q𝑡

𝐿∞(𝐽;(𝐻𝑘+1(Ω))
2
)
+ ‖p − 𝑃‖

𝐿
∞
(𝐽;(𝐿
2
(Ω))
2
)

+
𝑃 − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
)

≤ 𝐶ℎ
𝑘+1

.

(90)

Note that 𝑍(𝑥, 𝑇) = 𝑍
𝑡
(𝑥, 𝑇) = 0; then 𝛼

2
(𝑇) = 0. Since

𝛼
2
(𝑡) = 𝛼

2
(𝑡) − 𝛼

2
(𝑇) = − ∫

𝑇

𝑡

𝛼
2𝑠
𝑑𝑠, we have

𝛼2 (𝑡)
 ≤ 𝐶

𝛼2𝑡
𝐿∞(𝐽;𝐿2(Ω)). (91)

Then we complete the proof by combining (90), (91), and the
triangle inequality.

Using the Lemmas 1 and 4, we can also derive the follow-
ing error estimates.

Theorem 5. Assume that the optimal control problems (1)–(5)
have a unique solution (p, 𝑦, 𝑢) and thatΩ is 2-regular. Assume
that the regularity assumptions (10) are valid.There is a positive
constant 𝐶 > 0, independent of ℎ, such that

p − p
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑦 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶ℎ
𝑘+1

,

q − q
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑧 − 𝑧

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶ℎ
𝑘+1

.

(92)
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Proof. Combining Lemmas 1 and 4, (35), (39), and the trian-
gle inequality, we obtain that

p − p
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤ ‖p − 𝑃‖
𝐿
∞
(𝐽;(𝐿
2
(Ω))
2
)

+
𝑃 − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤ 𝐶ℎ
𝑘+1

+ 𝐶ℎ
𝑘+1

= 𝐶ℎ
𝑘+1

,

𝑦 − 𝑦
ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

≤
𝑦 − 𝑌

𝐿∞(𝐽;𝐿2(Ω)) +
𝑌 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶ℎ
𝑘+1

+ 𝐶ℎ
𝑘+1

= 𝐶ℎ
𝑘+1

.

(93)

Similarly, we can also obtain that
q − q

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤
q − 𝜋

ℎ
q𝐿∞(𝐽;(𝐿2(Ω))2) +

𝜋ℎq − q
ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤ 𝐶ℎ
𝑘+1

+ 𝐶ℎ
𝑘+1

= 𝐶ℎ
𝑘+1

,

𝑧 − 𝑧
ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

≤
𝑧 − 𝑃

ℎ
𝑧
𝐿∞(𝐽;𝐿2(Ω)) +

𝑃ℎ𝑧 − 𝑧
ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶ℎ
𝑘+1

+ 𝐶ℎ
𝑘+1

= 𝐶ℎ
𝑘+1

.

(94)

This proves (92).

By applying the results we have proved above, we
only need to estimate ‖p

ℎ
(𝑢) − p

ℎ
‖
𝐿
∞
(𝐽;(𝐿
2
(Ω))
2
)
, ‖𝑦

ℎ
(𝑢)−

𝑦
ℎ
‖
𝐿
∞
(𝐽;𝐿
2
(Ω))

and ‖q
ℎ
(𝑢) − q

ℎ
‖
𝐿
∞
(𝐽;(𝐿
2
(Ω))
2
)
, ‖𝑧

ℎ
(𝑢)−

𝑧
ℎ
‖
𝐿
∞
(𝐽;𝐿
2
(Ω))

. For convenience, let

𝑒
1
= 𝑦

ℎ
(𝑢) − 𝑦

ℎ
, 𝑟

1
= p

ℎ
(𝑢) − p

ℎ
,

𝑒
2
= 𝑧

ℎ
(𝑢) − 𝑧

ℎ
, 𝑟

2
= q

ℎ
(𝑢) − q

ℎ
.

(95)

Theorem 6. Let (p
ℎ
, 𝑦

ℎ
, q

ℎ
, 𝑧

ℎ
, 𝑢

ℎ
) ∈ (V

ℎ
×𝑊

ℎ
)
2

× 𝑈
ℎ
be

the solution of (25)–(33) and (p
ℎ
(𝑢), 𝑦

ℎ
(𝑢), q

ℎ
(𝑢), 𝑧

ℎ
(𝑢)) ∈

(V ×𝑊)
2 the solution of (50)–(57) with �̃� = 𝑢. There is a

constant 𝐶 > 0, independent of ℎ, such that
pℎ (𝑢) − p

ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑦ℎ (𝑢) − 𝑦

ℎ

𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
,

(96)

qℎ (𝑢) − q
ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑧ℎ (𝑢) − 𝑧

ℎ

𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
.

(97)

Proof. From (25)-(26) and (50)-(51), we obtain the following
error equations:

(𝐴
−1

𝑟
1
, v) − (𝑒

1
, div v) = 0, ∀v ∈ V

ℎ
, (98)

(𝑒
1𝑡𝑡
, 𝑤) + (div 𝑟

1
, 𝑤) = (𝑢 − 𝑢

ℎ
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
. (99)

Let 𝑡 = 0 and v = 𝑟
1
(0) in (98); since 𝑒

1
(0) = 0, we have

𝑟
1
(0) = 0. We differentiate (98) with respect to 𝑡, and we

derive

(𝐴
−1

𝑟
1𝑡
, v) − (𝑒

1𝑡
, div V) = 0, ∀v ∈ V

ℎ
. (100)

Choose 𝑤 = 𝑒
1𝑡
and v = 𝑟

1
as test functions and add the two

relations of (99) and (100); using the Cauchy inequality, we
obtain

1

2

𝑑

𝑑𝑡
(

𝐴
1/2

𝑟
1



2

+
𝑒1𝑡


2

) ≤
𝑢 − 𝑢

ℎ


2

+
𝑒1𝑡


2

. (101)

Integrating (101) with respect to time from 0 to 𝑡, we derive

𝑟1

2

+
𝑒1𝑡


2

≤ 𝐶∫

𝑡

0

𝑢 − 𝑢
ℎ


2

𝑑𝑠 + 𝐶∫

𝑡

0

𝑒1𝑡

2

𝑑𝑠. (102)

By using Gronwall’s lemma to (102), we obtain
𝑟1

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑒1𝑡

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
.

(103)

Since 𝑒
1
(𝑡) = 𝑒

1
(𝑡) − 𝑒

1
(0) = ∫

𝑡

0

𝑒
1,𝑠
𝑑𝑠, using (103), we have

𝑒1
 ≤ 𝐶

𝑒1𝑡
𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶

𝑢 − 𝑢
ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
. (104)

Then we derive (96).
From (29)-(30) and (54)-(55), we obtain the following

error equations:

(𝐴
−1

𝑟
2
, v) − (𝑒

2
, div V) = − (𝑔



1
(p

ℎ
(𝑢)) 𝑟

1
, v) , ∀v ∈ V

ℎ
,

(105)

(𝑒
2𝑡𝑡
, 𝑤) + (div 𝑟

2
, 𝑤) = (𝑔



2
(𝑦

ℎ
(𝑢)) 𝑒

1
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
.

(106)

Let 𝑡 = 𝑇 and v = 𝑟
2
(𝑇) in (105); since 𝑒

2
(𝑇) = 0, we have


𝐴
1/2

𝑟
2
(𝑇)


≤ 𝐶


𝑔


1
(p

ℎ
(𝑢))


⋅
𝑟1 (𝑇)

 ≤ 𝐶
𝑟1 (𝑇)

 .

(107)

Introduce the symbol 𝜑 := ∫
𝑇

𝑡

𝜑(𝑠) 𝑑𝑠, let ̂̃𝑔
2
𝑒
1

=

∫
𝑇

𝑡

𝑔


2
(p

ℎ
(𝑢))𝑒

1
𝑑𝑠, and integrate (105) with respect to time

from 𝑡 to 𝑇, and we obtain

− (𝑒
2𝑡
, 𝑤) + (div 𝑟

2
, 𝑤) = (̂̃𝑔

2
𝑒
1
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
. (108)

Set 𝑤 = 𝑒
2
in (108) and v = 𝑟

2
in (105), note that 𝑟

2
= −(𝑑/

𝑑𝑡)𝑟
2
, and then add those equations to derive

−
1

2

𝑑

𝑑𝑡
(
𝑒2


2

+

𝐴
1/2

𝑟
2



2

) = (̂̃𝑔
2
𝑒
1
, 𝑒

2
) − (𝑟

1
, 𝑟

2
) ,

∀𝑤 ∈ 𝑊
ℎ
.

(109)
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Integrating (109) with respect to time from 𝑡 to 𝑇, using (107)
and Yong’s inequalities, we get

𝑒2
𝐿∞(𝐽;𝐿2(Ω))

≤ 𝐶 (
𝑟2 (𝑇)

 +
𝑒1

𝐿2(𝐽;𝐿2(Ω)) +
𝑟1

𝐿2(𝐽;(𝐿2(Ω))
2
)
)

≤ 𝐶 (
𝑟1 (𝑇)

 +
𝑒1

𝐿2(𝐽;𝐿2(Ω)) +
𝑟1

𝐿2(𝐽;(𝐿2(Ω))
2
)
)

≤ 𝐶 (
𝑒1

𝐿2(𝐽;𝐿2(Ω)) +
𝑟1

𝐿2(𝐽;(𝐿2(Ω))
2
)
) .

(110)

Choosing v = 𝑟
2
and 𝑤 = 𝑒

2
as test functions in (105) and

(106), it is easy to get

𝑒2𝑡

2

𝐿
∞
(𝐽;𝐿
2
(Ω))

+
𝑟2


2

𝐿
∞
(𝐽;(𝐿2(Ω))

2
)

≤ 𝐶
𝑒1


2

𝐿
∞(𝐽;𝐿2(Ω))

+ 𝐶
𝑟1


2

𝐿
∞
(𝐽;(𝐿2(Ω))

2
)

+ 𝐶𝛿(
𝑒2


2

𝐿
∞(𝐽;𝐿2(Ω))

+
𝑟2


2

𝐿
∞
(𝐽;(𝐿2(Ω))

2
)

) ,

(111)

where 𝛿 is an arbitrary small positive constant. Namely,

𝑒2𝑡

2

𝐿
∞
(𝐽;𝐿
2
(Ω))

+
𝑟2


2

𝐿
∞
(𝐽;(𝐿2(Ω))

2
)

≤ 𝐶
𝑒1


2

𝐿
∞(𝐽;𝐿2(Ω))

+ 𝐶
𝑟1


2

𝐿
∞
(𝐽;(𝐿2(Ω))

2
)

≤ 𝐶
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
.

(112)

Combining (103)-(104) and (110)-(112), we derive (97).

In the following, we estimate ‖𝑢 − 𝑢
ℎ
‖
𝐿
2
(𝐽;𝐿
2
(Ω𝑈))

and then
obtain the following main result.

Theorem 7. Let (p, 𝑦, q, 𝑧, 𝑢) ∈ (V ×𝑊)
2

× 𝑈 and (p
ℎ
, 𝑦

ℎ
,

q
ℎ
, 𝑧

ℎ
, 𝑢

ℎ
) ∈ (V

ℎ
×𝑊

ℎ
)
2

×𝑈
ℎ
be the solutions of (14)–(22) and

(25)–(33), respectively. Assume that the regularity assumptions
(10) and (59) are valid. Furthermore, one assumes that

𝑢 ∈ 𝐻
𝑘+1

(Ω
𝑈
) , 𝑗



(𝑢) + 𝑧 ∈ 𝐻
𝑘+1

(Ω
𝑈
) . (113)

Then, one has
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))
≤ 𝐶 (ℎ

𝑘+1

+ ℎ
𝑘+1

𝑈
) ,

p − p
ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑦 − 𝑦

ℎ

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶 (ℎ
𝑘+1

+ ℎ
𝑘+1

𝑈
) ,

q − q
ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑧 − 𝑧

ℎ

𝐿∞(𝐽;𝐿2(Ω)) ≤ 𝐶 (ℎ
𝑘+1

+ ℎ
𝑘+1

𝑈
) .

(114)

Proof. First, in (34), let 𝜒 = 1, and we have

∫
Ω

𝑃
ℎ
𝑢 𝑑𝑥 = ∫

Ω

𝑢 𝑑𝑥. (115)

Integrating (115) from 0 to 𝑇, we can obtain that

∫

𝑇

0

∫
Ω

𝑃
ℎ
𝑢 𝑑𝑥 𝑑𝑡 = ∫

𝑇

0

∫
Ω

𝑢 𝑑𝑥 𝑑𝑡 ≥ 0. (116)

Therefore, we know that 𝑃
ℎ
𝑢 ∈ 𝐾

ℎ
. Now we choose �̃� = 𝑢

ℎ
in

(22) and �̃�
ℎ
= 𝑃

ℎ
𝑢 in (33) to get that

∫

𝑇

0

(𝑗


(𝑢) + 𝑧, 𝑢
ℎ
− 𝑢)

𝑈

𝑑𝑡 ≥ 0,

∫

𝑇

0

(𝑗


(𝑢
ℎ
) + 𝑧

ℎ
, 𝑃

ℎ
𝑢 − 𝑢

ℎ
)
𝑈

𝑑𝑡 ≥ 0.

(117)

By using (117) and the assumption (59), we have

𝑐
𝑢 − 𝑢

ℎ


2

𝐿
2
(𝐽;𝐿
2
(Ω𝑈))

≤ ∫

𝑇

0

(𝑗


(𝑢) − 𝑗


(𝑢
ℎ
) , 𝑢 − 𝑢

ℎ
)
𝑈

𝑑𝑡

= ∫

𝑇

0

(𝑗


(𝑢) + 𝑧, 𝑢 − 𝑢
ℎ
)
𝑈

𝑑𝑡

+ ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

− ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧

ℎ
, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

− ∫

𝑇

0

(𝑗


(𝑢
ℎ
) + 𝑧

ℎ
, 𝑢 − 𝑢

ℎ
)
𝑈

𝑑𝑡

≤ ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

− ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧

ℎ
, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

+ ∫

𝑇

0

(𝑗


(𝑢
ℎ
) + 𝑧

ℎ
, 𝑃

ℎ
𝑢 − 𝑢)

𝑈

𝑑𝑡

= ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

− ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧

ℎ
, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

+ ∫

𝑇

0

(𝑗


(𝑢
ℎ
) − 𝑗



(𝑢) , 𝑃
ℎ
𝑢 − 𝑢)

𝑈

𝑑𝑡

+ ∫

𝑇

0

(𝑗


(𝑢) + 𝑧, 𝑃
ℎ
𝑢 − 𝑢)

𝑈

𝑑𝑡

+ ∫

𝑇

0

(𝑧
ℎ
− 𝑧, 𝑃

ℎ
𝑢 − 𝑢)

𝑈
𝑑𝑡.

(118)

From (25)–(33) and (50)–(57), we have

− ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧

ℎ
, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

= −∫

𝑇

0

(𝑢 − 𝑢
ℎ
, 𝑒

2
)
𝑈
𝑑𝑡
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= −∫

𝑇

0

(𝑒
1𝑡𝑡
, 𝑒

2
) 𝑑𝑡 − ∫

𝑇

0

(div 𝑟
1
, 𝑒

2
) 𝑑𝑡

= −∫

𝑇

0

(𝑒
1𝑡𝑡
, 𝑒

2
) 𝑑𝑡 − ∫

𝑇

0

(div 𝑟
1
, 𝑒

2
) 𝑑𝑡

+ ∫

𝑇

0

(𝐴
−1

𝑟
1
, 𝑟

2
) 𝑑𝑡 − ∫

𝑇

0

(𝑒
1
, div 𝑟

2
) 𝑑𝑡

= −∫

𝑇

0

(𝑒
2𝑡𝑡
, 𝑒

1
) 𝑑𝑡 − ∫

𝑇

0

(div 𝑟
2
, 𝑒

1
) 𝑑𝑡

+ ∫

𝑇

0

(𝐴
−1

𝑟
2
, 𝑟

1
) 𝑑𝑡 − ∫

𝑇

0

(𝑒
2
, div 𝑟

1
) 𝑑𝑡

= −∫

𝑇

0

((𝑔


2
(𝑦

ℎ
(𝑢)) − 𝑔



2
(𝑦

ℎ
) , 𝑒

1
)

+ (𝑔


1
(p

ℎ
(𝑢)) − 𝑔



1
(p

ℎ
) , 𝑟

1
)) 𝑑𝑡

= −∫

𝑇

0

((𝑔


2
(𝑦

ℎ
(𝑢)) − 𝑔



2
(𝑦

ℎ
) , 𝑦

ℎ
(𝑢) − 𝑦

ℎ
)

+ (𝑔


1
(p

ℎ
(𝑢)) − 𝑔



1
(p

ℎ
) , p

ℎ
(𝑢) − p

ℎ
)) 𝑑𝑡

≤ 0,
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where we used the fact that 𝑔
1
and 𝑔

2
are convex functionals.

By using (119) and 𝜀-Caunchy inequality,

𝑐
𝑢 − 𝑢

ℎ


2

𝐿
2
(𝐽;𝐿
2
(Ω𝑈))

≤ ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧, 𝑢 − 𝑢

ℎ
)
𝑈
𝑑𝑡

+ ∫

𝑇

0

(𝑗


(𝑢
ℎ
) − 𝑗



(𝑢) , 𝑃
ℎ
𝑢 − 𝑢)

𝑈

𝑑𝑡

+ ∫

𝑇

0

(𝑗


(𝑢) + 𝑧, 𝑃
ℎ
𝑢 − 𝑢)

𝑈

𝑑𝑡

+ ∫

𝑇

0

(𝑧
ℎ
(𝑢) − 𝑧, 𝑃

ℎ
𝑢 − 𝑢)

𝑈
𝑑𝑡

≤ 𝐶
𝑧ℎ (𝑢) − 𝑧


2

𝐿
2(𝐽;𝐿2(Ω))

+ 𝐶𝜀
𝑢 − 𝑢

ℎ


2

𝐿
2(𝐽;𝐿2(Ω𝑈))

+ 𝐶∫

𝑇

0


𝑗


(𝑢) + 𝑧
𝑘+1,Ω𝑈

𝑃ℎ𝑢 − 𝑢
−𝑘−1,Ω𝑈

𝑑𝑡

+ 𝐶
𝑃ℎ𝑢 − 𝑢


2

𝐿
2
(𝐽;𝐿
2
(Ω𝑈))

≤ 𝐶
𝑧ℎ (𝑢) − 𝑧


2

𝐿
2(𝐽;𝐿2(Ω))

+ 𝐶𝜀
𝑢 − 𝑢

ℎ


2

𝐿
2
(𝐽;𝐿
2
(Ω𝑈))

+ 𝐶ℎ
2(𝑘+1)

𝑈
,

(120)

for any small 𝜀 > 0, where ‖𝑃
ℎ
𝑢 − 𝑢‖

−𝑘−1,Ω𝑈
≤

𝐶ℎ
2(𝑘+1)

‖𝑢‖
𝑘+1,Ω𝑈

has been used. It is easy to see that

𝑐
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))

≤ 𝐶
𝑧ℎ (𝑢) − 𝑧

𝐿2(𝐽;𝐿2(Ω)) + 𝐶ℎ
𝑘+1

𝑈
≤ 𝐶 (ℎ

𝑘+1

+ ℎ
𝑘+1

𝑈
) .

(121)

FromTheorems 5 and 6 and (122), we can obtain that

𝑦 − 𝑦
ℎ

𝐿∞(𝐽;𝐿2(Ω)) +
p − p

ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)

+
𝑧 − 𝑧

ℎ

𝐿∞(𝐽;𝐿2(Ω)) +
q − q

ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤
𝑦 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) +
p − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

+
𝑧 − 𝑧

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

+
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(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
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𝑦ℎ (𝑢) − 𝑦

ℎ

𝐿∞(𝐽;𝐿2(Ω))

+
pℎ (𝑢) − p

ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)

+
𝑧ℎ (𝑢) − 𝑧

ℎ

𝐿∞(𝐽;𝐿2(Ω)) +
qℎ (𝑢) − q

ℎ

𝐿∞(𝐽;(𝐿2(Ω))
2
)

≤
𝑦 − 𝑦

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω)) +
p − p

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)

+
q − q

ℎ
(𝑢)

𝐿∞(𝐽;(𝐿2(Ω))
2
)
+
𝑧 − 𝑧

ℎ
(𝑢)

𝐿∞(𝐽;𝐿2(Ω))

+ 𝐶
𝑢 − 𝑢

ℎ

𝐿2(𝐽;𝐿2(Ω𝑈))

≤ 𝐶 (ℎ
𝑘+1

+ ℎ
𝑘+1

𝑈
) .

(122)

Then we complete the proof.

4. Conclusion and Future Works

In this paper we presented a priori error estimate for mixed
finite element approximation of the general linear hyperbolic
optimal control problems (1)–(5).Using the elliptic projection
operators and Gronwall’s Lemma, we have established some
error estimate results for both the state and the costate
discrete solutions and the control approximation. To the best
of our knowledge in the context of optimal control problems,
these a priori error estimates for the general hyperbolic
optimal control problems are new. In our future work, we
will use the fully discrete mixed finite element method to
deal with nonlinear hyperbolic optimal control problems.
Furthermore, we will consider a priori error estimates and
superconvergence of these optimal control problems.
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