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A new continuum model with consideration of driver’s forecast effect is obtained to study the density wave problem and the stop-
and-go phenomena. The stability condition of the new model is derived by using linear analysis. The triangular shock wave, one
type of density wave, which is determined by Burgers equation in the stable region, is discussed in great detail with reductive
perturbation method. The local cluster appears when we perform the numerical simulations for the new model. It also proves that
the driver’s forecast effect has the positive effect of reducing the local cluster.

1. Introduction

Traffic jams, the typical signature of the complex behavior
of vehicular traffic, have been studied by various traffic
models [1–8]. From different theoretical basis, there are
microscopic and macroscopic models to describe traffic flow.
The dynamical aspects of microscopic models are based on
the description of the individual vehicles’ situation. This
process is largely determined by the drivers’ behavior and the
physical performance of vehicles. The macroscopic models
describe traffic streams as a compressible fluid obeying global
rules.This coarse-grainedmeans is needed for understanding
the collective behavior of traffic, designing efficient control
strategies, developing macroscopic traffic simulation, and so
forth.

Bando et al. [9] propose the optimal velocity (OV) model
to characterize the car-following behavior. Although the OV
model is shown to have the universal structure in describing
many properties of traffic flow,many approaches to extending
the model toward more realistic traffic model have been
pursued. Helbing and Tilch [10] develop a generalized force
model with a velocity difference term added into the OV
model. Xue et al. [11] extend the OV model to take into
account the effect of the relative velocity.

The pioneer work of continuum traffic flow models is
the LWR model [12, 13]. Although the LWR model can
reproduce most basic traffic flow phenomena such as traffic
congestion formation and dissipation in heavy traffic, this
model can not describe nonequilibrium traffic flow dynamics
and does not have the ability to explain the amplification
of small disturbances in heavy traffic. To overcome the
deficiencies in the LWR model, various macroscopic traffic
models have been proposed. Payne [14] introduces a high-
order continuummodel which can describe the amplification
of small disturbances in heavy traffic and allow fluctuations of
speed around the equilibrium value.Thus, the Paynemodel is
suitable to describe nonequilibrium situations such as stop-
and-go traffic. However, a fundamental principle of traffic
flow, that is, a car being influenced only by the motion of
cars ahead of it, not by the motion of cars behind it, is
violated in the Payne model because one characteristic speed
of this model is greater than the macroscopic flow speed.
Notice that cars are anisotropic particles and respond only
to frontal stimuli. Jiang et al. [15] develop a macroscopic
continuum model based on a car-following theory. This
model overcomes the characteristic speed problem that exists
in many high-order continuum models such as the Payne
model.
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However, the consistency between microscopic and
macroscopic models has been proved [16]. There are also
some papers to derive macroscopic continuum models from
micromodels (mainly the car-following models), such as [14,
15, 17].

There are many studies to reveal nonlinear phenomena
of vehicular traffic, such as stop-and-go, phase transition,
self-organized, and the nonlinear waves. Kurtze and Hong
[18] derive the Korteweg-de Vries (KdV) equation from one
continuum traffic flow model. Zhou et al. [19] obtain the
KdV equation and the modified Korteweg-de Vries (mKdV)
equation from the continuum traffic flow model derived
from a car-following model. Ou [17] obtains the Burgers
equation and the KdV equation from a continuum version
of the full velocity difference car-following model. Yu et al.
[20] investigate density waves in an optimal velocity model
with reaction-time delay of drivers and derive the Burgers,
KdV, and mKdV equations. However, the nonlinear waves
results of the continuum traffic flow models are far less than
those of the car-following models. The reason is probably the
complex partial differential forms of the continuum traffic
flow models.

In fact, the future traffic situation can be forecasted by the
intelligent transportation system (ITS) based on the current
traffic status, so the driver may be guided by the forecast
information to adjust his/her current acceleration. However,
few models consider the drivers forecast effect. Recently, a
new car-following model with the driver’s forecast effect is
proposed by Tang et al. [21]. Similar to the other models
which consider the information of ITS, the model presented
by Tang et al. [21] can improve the stability of traffic flow and
reduce traffic jams.

In this paper, a newmacroversion is obtained based on the
anisotropic continuum model proposed by Tang et al. [21].
The density wave problem and the stop-and-go phenomena
are studied. In Section 2, the stability condition of the model
is derived. In Section 3, the triangular shock wave, which
is determined by the Burgers equation in the stable region,
is discussed in great detail by using nonlinear analysis. In
Section 4, the simulation results are given.These results prove
that the driver’s forecast effect has the positive effect of
reducing the local cluster. Finally, a summary is given.

2. The Model and Its Stability Analysis

The new car-following model with the consideration of the
driver’s forecast effect can be written as follows [21]:
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(1)

where 𝜅 is the reactive coefficient, 𝛽 is the coefficient of the
driver’s forecast effect, and 𝜏 is the time-step of the driver
forecast. Using the transformation between microvariables

and macrovariables, the corresponding anisotropic macro-
continuummodel of (1) is obtained [21], that is, the following
equations:
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where 𝑇 is the reactive time given by the inverse of the
coefficient 𝜅, 𝑐

0
= 𝜖/(𝛽𝜏+𝑇) > 0 is the propagating velocity of

the small perturbation, 𝜖 is the distance between the following
and leading vehicles in micromodel, and

𝑢
𝑒
(ℎ) = 𝑉

𝑒
(𝜌) , ℎ = 1/𝜌. (3)

To derive the stability condition, the Burgers equation,
and its shock solution of the macroversion of (1), the
following new macromodel is derived from (2) according to
(3); that is,
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where 𝛾 = (1+𝛽)/(𝑇+𝛽𝜏). Obviously,model (4) is anisotropy.
The linear stability theory will be applied to derive the

linear stability condition of model (4). Assume traffic to be
initially in a state differing infinitesimally from the uniform
steady flow. Similar to the decomposition of the flow of (4)
into a linear combination of Fourier modes in [18], we have
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(5)

where 𝜌
0
and V
0
are the uniform steady states of (4). Substi-

tuting (5) into (4), linearizing andneglecting the higher-order
terms of the small perturbations 𝜌

𝑘
and V̂
𝑘
, we have
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From (6), we have
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Substituting (8) into (7), the following quadratic equation is
obtained:
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Consider the long wave expansion of 𝜎
𝑘
in (9), which is

determined order by order around 𝑖𝑘 ≈ 0 [8]. By expanding
𝜎
𝑘
= 𝜎
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2
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+ ⋅ ⋅ ⋅ and separating the real part and
the imaginary part, the coefficients of 𝑖𝑘 and (𝑖𝑘)2 are derived
as follows:
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where 𝜛 = 𝛽𝜏𝑐
0
.

The linear stability condition of (4) is decided by the real
part of 𝜎

𝑘
. In fact, the uniform traffic flow described by (4) is

stable against all infinitesimal disturbances when 𝜎
2
> 0; that

is,

𝜛𝜌
0
> 1. (11)

It means that the traffic flow described by (4) is stable when
(11) holds.

3. Nonlinear Analysis

To investigate the system behavior in the stable region,
we consider the long wavelength modes on coarse-grained
scales.The reductive perturbation method as in [8] is applied
to (4). Introduce the slow scales for space variable 𝑥 and time
variable 𝑡 and define slow variables𝑋 and 𝑇 as follows:

𝑋 = 𝜀 (𝑥 − 𝑏𝑡) , 𝑇 = 𝜀
2

𝑡, (12)

where 𝑏 is a constant to be determined and 0 < 𝜀 ≪ 1. We set
the density and velocity as
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(13)

Substituting (12) and (13) into (4) and making the Taylor
expansions to 𝜀3, the following nonlinear partial differential
equations are derived:
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From the coefficient of 𝜀 in (15), we have
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The relationship between the perturbation of density and
velocity is given by (16) which is the basis of Burgers
equation’s derivation. According to (16), we have the value of
𝑏 from the second term of 𝜀 in (14); that is,
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Combining (14) and (18), the following equation is derived:
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In accordance with stability condition (11), the coefficient of
the second derivative term on the right hand side of (19) is
positive in the stable region.Thus, in the stable region, (19) is
just the Burgers equation.

If 𝜌(𝑋, 0) is of compact support, the solution 𝜌(𝑋, 𝑇) of
Burgers equation, (19), behaves like a train of 𝑁-triangular
shock waves; that is,
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𝜉
𝑛
are the coordinates of the shock fronts, and 𝜂

𝑛
are the

coordinates of the intersections of the slopes with the 𝑥-axis
(𝑛 = 1, 2, . . . , 𝑁). 𝜌(𝑋, 𝑇) decays to 0 like 𝑂(1/𝑇) when 𝑇 →
+∞. That is to say, any shock wave expressed by (19) in stable
traffic flow region will evolve to a uniform flow in the course
of time. We see this phenomenon in Figures 1(a) and 1(e) of
Section 4.

4. The Numerical Simulation

To check the theoretical results, we carry out numerical
simulations for model (4) by using the numerical scheme in
[21]. The difference equations are as follows:

𝜌
𝑗+1

𝑖
= 𝜌
𝑗

𝑖
+
Δ𝑡

Δ𝑥
𝜌
𝑗

𝑖
(V𝑗
𝑖
− V𝑗
𝑖+1
) +
Δ𝑡

Δ𝑥
V𝑗
𝑖
(𝜌
𝑗

𝑖−1
− 𝜌
𝑗

𝑖
) , (21)

(a) if V𝑗
𝑖
< −𝜛(𝜌

𝑗

𝑖
)
2

𝑉
𝑒
(𝜌
𝑗

𝑖
),

V𝑗+1
𝑖
= V𝑗
𝑖
+
Δ𝑡

Δ𝑥
(−𝜛(𝜌

𝑗

𝑖
)
2

𝑉


𝑒
(𝜌
𝑗

𝑖
) − V𝑗
𝑖
) (V𝑗
𝑖+1
− V𝑗
𝑖
)

+ 𝛾Δ𝑡 (𝑉
𝑒
(𝜌
𝑗

𝑖
) − V𝑗
𝑖
) ,

(22)

(b) if V𝑗
𝑖
≥ −𝜛(𝜌

𝑗

𝑖
)
2

𝑉
𝑒
(𝜌
𝑗

𝑖
),

V𝑗+1
𝑖
= V𝑗
𝑖
+
Δ𝑡

Δ𝑥
(−𝜛(𝜌

𝑗

𝑖
)
2

𝑉


𝑒
(𝜌
𝑗

𝑖
) − V𝑗
𝑖
) (V𝑗
𝑖
− V𝑗
𝑖−1
)

+ 𝛾Δ𝑡 (𝑉
𝑒
(𝜌
𝑗

𝑖
) − V𝑗
𝑖
) ,

(23)



4 Journal of Applied Mathematics

0
10

20
30

400
10

20
30

0.02

0.04

0.06

0.08
0.09

Time (min)Space (km)

D
en

sit
y 

(v
eh

/k
m

)

(a) 𝜌
0
= 0.03 veh/m

0
10

20
30

400
10

20
30

0.02

0.04

0.06

0.08
0.09

Time (min)Space (km)

D
en

sit
y 

(v
eh

/k
m

)

(b) 𝜌
0
= 0.042 veh/m

0
10

20
30

400
10

20
30

0.02

0.04

0.06

0.08

0.09

Time (min)Space (km)

D
en

sit
y 

(v
eh

/k
m

)

(c) 𝜌
0
= 0.05 veh/m

0
10

20
30

40
0

10
20

30

0.02

0.04

0.06

0.08

0.09

Time (min)
Space (km)

D
en

sit
y 

(v
eh

/k
m

)

(d) 𝜌
0
= 0.06 veh/m

0
10

20
30

400
10

20
30

0.02

0.04

0.06

0.08

0.09

Time (min)Space (km)

D
en

sit
y 

(v
eh

/k
m

)

(e) 𝜌
0
= 0.08 veh/m

Figure 1: Temporal evolution of traffic flow before 40 minutes for different 𝜌
0
with 𝛽 = 0.2.

where 𝑖, 𝑗,Δ𝑥, andΔ𝑡 represent the road section, time, spatial
step, and time step, respectively, 𝜌𝑗

𝑖
≈ 𝜌(𝑥

𝑖
, 𝑡
𝑗
), V𝑗
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𝑗
),

𝑥
𝑖
= 𝑖Δ𝑥, 𝑡

𝑗
= 𝑗Δ𝑡, and 𝑖, 𝑗 are integers.

To study the local cluster effect of (4), we perform
numerical simulations over a system of 32.2 km long highway
using (21)–(23). The local cluster effect corresponds to the
stop-and-go wave observed in the traffic flow due to the
amplification of a small disturbance. We simulate the traffic

flow under the periodic boundary conditions. The following
variation of the initial density 𝜌

0
is used as in [15]:

𝜌 (𝑥, 0) = 𝜌
0
+ Δ𝜌
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{cosh−2 [160

𝐿
(𝑥 −

5𝐿

16
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−
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4
cosh−2 [40
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11𝐿

32
)]} ,

(24)
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Figure 2: Temporal evolution of traffic flow before 40 minutes for different 𝜌
0
with 𝛽 = 0.4.

where 𝐿 = 32.2 km is the length of the road section under
consideration.The periodic boundary conditions are given as
follows:

𝜌 (𝐿, 𝑡) = 𝜌 (0, 𝑡) , V (𝐿, 𝑡) = V (0, 𝑡) . (25)

Here we use the equilibrium speed-density relationship
proposed in [22]:

𝑉
𝑒
(𝜌) = V

𝑓
{[1 + exp(

𝜌/𝜌
𝑚
− 0.25

0.06
)]

−1

− 3.72 × 10
−6

} .

(26)

Assume the initial flow to be in local steady state; that is,
V(𝑥, 0) = 𝑉

𝑒
(𝜌(𝑥, 0)). Let Δ𝜌

0
= 0.01 veh/m, let the space

interval Δ𝑥 be 100m, and let the time interval Δ𝑡 be 1 s. The
choice of Δ𝑥 and Δ𝑡 satisfies the Courant-Friedrichs-Levy
(CFL) stability condition.The other parameter values we take
are as follows:

𝜏 = 5 s, 𝑇 = 10 s, V
𝑓
= 30m/s,

𝑐
0
= 11m/s, 𝜌

𝑚
= 0.2 veh/m.

(27)

Figures 1 and 2 show the evolution of initial uniform
traffic flow under the small disturbance.

Figure 1 shows the temporal evolution of traffic flow
before 40 minutes for different 𝜌

0
with 𝛽 = 0.2. In pattern (a)

of Figure 1, the initial density 𝜌
0
= 0.03 of traffic flow is so low

that the disturbance dies out without any amplification with
time.With the initial density 𝜌

0
increasing, small disturbance

is amplified and so leads to the instability of traffic flow.
The pattern (b) in Figure 1 shows that several local clusters
form for the initial density 𝜌

0
= 0.042. In pattern (c) of

Figure 1, the stop-and-go phenomenon, which is a complex
local structure consisting of multiclusters, can be observed.
Continuing to increase the initial density 𝜌

0
, we can see a

dipole-like structure which is illustrated by Figure 1(d). In
pattern (e) of Figure 1, a stable traffic flow is reached again
with the initial density 𝜌

0
= 0.08.

Figure 2 shows the temporal evolution of traffic flow
before 40 minutes for different 𝜌

0
with 𝛽 = 0.4. In patterns of

Figure 2, there are no clusters and the disturbances propagate
backward without any amplification with different initial
densities 𝜌

0
.
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Comparing every subfigure of Figures 1 and 2, the value
of 𝛽 is the only different parameter. It is obvious that the
increase of 𝛽 leads to the stabilization of traffic flow. So the
driver’s forecast effect has the positive effect of reducing the
local cluster. This result is coincident with the one in [21].

The above numerical results are not so perfect. The
propagation speeds of the perturbation waves we get from
our figures are about 40–60 km/h against the traffic direction,
which are not very consistent with the ones from the real data.
References [23, 24] point out that the propagation velocity
which is obtained from the real data should be about −12–
20 km/h. Many factors may lead to this result such as the
option of equilibrium function, the difference scheme, or the
parameters. The control and optimization problems of the
parameters in our model can also be studied [25–30]. We will
continue to study these problems in future.

5. Summary

In this paper, a new macroversion is proposed with the
consideration of the driver’s forecast effect proposed. The
stability condition of the model is derived by using linear
analysis. The triangular shock wave which is determined
by Burgers equation in the stable region is discussed with
reductive perturbationmethod.The stop-and-go phenomena
appear when we carry out the numerical simulation for the
model.Thedriver’s forecast effectwhich has the positive effect
of reducing the local cluster is proved.
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