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In this work we compute the determinant and inverse matrices for a certain symmetric matrix of Rayleigh sums. As a special case
we also obtain the determinants and inverses for the matrices of the Bernoulli numbers and related numbers.

1. Introduction

The sequence of Bernoulli numbers 𝐵
𝑛
is one of the most

important sequences inmathematics. It has deep connections
to number theory, for instance, the Bernoulli numbers are
used to express the values of 𝜁(2𝑛), where 𝜁(𝑠) is the
Riemann zeta function and 𝑛 is a positive integer [1, 2]. The
Bernoulli numbers are also very important in analysis, for
example, they appear in the Euler-Maclaurin formula [1],
which is very important in mathematics and physics. The
Bernoulli numbers are also very important in asymptotics
of 𝑞-special functions; for example, in [3] we proved a
complete asymptotic expansion of 𝑞-Gamma function Γ

𝑞
(𝑧)

on the complex plane in terms of Bernoulli polynomials
and Bernoulli polynomials. The applications of Bernoulli
numbers in applied mathematics are just too many to list
all of them; just to name a few, for example, see [4–6]. The
Rayleigh sums 𝜎(𝑛)] generalize 𝜁(2𝑛) and it is known that 𝜎(𝑛)

1/2

is a rational multiple of 𝐵
2𝑛

[7]. In this work we first derive
the inverse and determinant of a certain symmetric matrix
defined by 𝜎

(𝑛)

] and then specialize the result to the matri-
ces defined by Bernoulli numbers 𝐵

𝑛
and related numbers

𝑆
𝑛
.
But we have to emphasize that the present work demon-

strated a method to compute inverses of certain Hankel
matrices, not just determinants. In fact there aremany known
methods to compute determinants; for example, see [1, 8–11].

2. Preliminaries

For ] > −1 the Bessel function of first kind is defined by [1, 7,
11, 12]:

𝐽] (𝑧) =
1

Γ (] + 1)

∞

∑

𝑘=0

(−1)
𝑘

𝑘!(] + 1)
𝑘

(
𝑧

2
)

2𝑘+]
, (1)

where
1

Γ (𝑎)
= 𝑎

∞

∏

𝑗=1

(1 +
𝑎

𝑗
)(1 +

1

𝑗
)

−𝑎

,

(𝑎)
𝑛
=
Γ (𝑎 + 𝑛)

Γ (𝑎)
, 𝑛 ∈ Z, 𝑎 ∈ C.

(2)

As a special case we have

𝐽
1/2

(𝑧) = √
2

𝜋𝑧
sin 𝑧. (3)

It is known that the even entire function 𝐽](𝑧)𝑧
−] has

infinitely many zeros, all of which are real. Let

0 < 𝑗],1 < 𝑗],2 < ⋅ ⋅ ⋅ (4)

be all its positive zeros; then the Rayleigh sum is defined by
[7]

𝜎
(𝑛)

] =

∞

∑

𝑘=1

1

𝑗
2𝑛

],𝑘
, 𝑛 ∈ N. (5)
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Clearly [1],

𝜎
(𝑛)

1/2
=

∞

∑

𝑛=1

1

(𝑛𝜋)
2𝑘

=
(−1)
𝑛+1

2
2𝑛−1

𝐵
2𝑛

(2𝑛)!
, (6)

where the Bernoulli numbers 𝐵
𝑛
are defined by [1, 2, 12]

𝑧

𝑒𝑧 − 1
=

∞

∑

𝑛=0

𝐵
𝑛

𝑧
𝑛

𝑛!
, |𝑧| < 2𝜋. (7)

The related numbers {𝑆
𝑛
}
∞

𝑛=1
are defined by [2, 13]

𝑆
𝑛
= 2(

2

𝜋
)

𝑛 ∞

∑

𝑘=−∞

1

(4𝑘 + 1)
𝑛

(8)

for 𝑛 = 2, 3, . . . and 𝑆
1
= 1; it is known that

(−1)
𝑛+1

𝐵
2𝑛

(2𝑛)!
=

𝑆
2𝑛

22𝑛 (22𝑛 − 1)
, 𝑛 ∈ N. (9)

3. Main Results

Theorem 1. Given a nonnegative integer 𝑛, one has

det (𝜎(𝑗+𝑘+1)] )
𝑛

𝑗,𝑘=1

=
2
(𝑛+1)(2𝑛+1)

((] + 1)/2)
𝑛+1

∏
𝑛

𝑘=0
(] + 1)

2

2𝑘

,

{(𝜎
(𝑗+𝑘+1)

] )
𝑛

𝑗,𝑘=1

}

−1

= (

𝑛

∑

𝑚=0

((−1)
𝑗+𝑘

(2𝑚 + ] + 1) (𝑚 + 𝑗)! (𝑚 + 𝑘)!

× (] + 1)
𝑚+𝑗

(] + 1)
𝑚+𝑘

× (4
𝑗+𝑘+1

(2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!

× (] + 1)
𝑚−𝑗

(] + 1)
𝑚−𝑘

)
−1

))

𝑛

𝑗,𝑘=0

,

(10)

for ] > −1.

Corollary 2. For any nonnegative integer 𝑛, one has

det(
𝐵
2𝑗+2𝑘+2

(2𝑗 + 2𝑘 + 2)!
)

𝑛

𝑗,𝑘=1

=
1

(3/4)
𝑛+1

∏
𝑛

𝑘=0
(3/2)
2

2𝑘

,

{(

𝐵
2(𝑗+𝑘+1)

(2𝑗 + 2𝑘 + 2)!
)

𝑛

𝑗,𝑘=0

}

−1

= (

𝑛

∑

𝑚=0

((𝑚 +
3

4
) (𝑚 + 𝑗)! (𝑚 + 𝑘)!(

3

2
)
𝑚+𝑗

(
3

2
)
𝑚+𝑘

× ((2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!(
3

2
)
𝑚−𝑗

× (
3

2
)
𝑚−𝑘

)

−1

))

𝑛

𝑗,𝑘=0

,

(11)

or, equivalently,

det(
𝑆
2𝑗+2𝑘+2

4𝑗+𝑘+1 − 1
)

𝑛

𝑗,𝑘=0

=
4
(𝑛+1)

2

(3/4)
𝑛+1

∏
𝑛

𝑘=0
(3/2)
2

2𝑘

, (12)

{(

𝑆
2𝑗+2𝑘+2

4𝑗+𝑘+1 − 1
)

𝑛

𝑗,𝑘=0

}

−1

= (

𝑛

∑

𝑚=0

((𝑚 +
3

4
) (𝑚 + 𝑗)! (𝑚 + 𝑘)!(

3

2
)
𝑚+𝑗

(
3

2
)
𝑚+𝑘

× ((−4)
𝑗+𝑘

(2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!

× (
3

2
)
𝑚−𝑗

(
3

2
)
𝑚−𝑘

)

−1

))

𝑛

𝑗,𝑘=0

.

(13)

4. Proofs

Given a probability measure 𝑑𝜇(𝑥) on R such that
∫
R
𝑥
2𝑛

𝑑𝜇(𝑥) < ∞ for all 𝑛 ∈ R, we define the inner
product for 𝑑𝜇(𝑥) square integrable functions 𝑓(𝑥) and 𝑔(𝑥)

by

(𝑓, 𝑔) = ∫

∞

−∞

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝜇 (𝑥) . (14)

For each 𝑛 ∈ N ∪ {0}, let 𝐺
𝑛

= (𝑚
𝑗,𝑘
)
𝑛

𝑗,𝑘=0

with 𝑚
𝑗,𝑘

=

(𝑢
𝑗
, 𝑢
𝑘
) for 𝑗, 𝑘 = 0, 1, . . . , 𝑛 where {𝑢

𝑘
(𝑥)}
∞

𝑘=0
is a sequence of

polynomials with 𝑢
0
(𝑥) = 1 such that, for each 𝑛, {𝑢

𝑘
(𝑥)}
𝑛

𝑘=0

are linearly independent.Then there is a unique orthonormal
system {𝑝

𝑘
(𝑥)}
∞

𝑘=0
[1, 10, 11]:

𝑝
𝑛
(𝑥) =

1

√det𝐺
𝑛
det𝐺
𝑛−1

× det((

(

𝑚
0,0

𝑚
0,1

𝑚
0,2

⋅ ⋅ ⋅ 𝑚
0,𝑛

𝑚
1,0

𝑚
1,1

𝑚
1,2

⋅ ⋅ ⋅ 𝑚
1,𝑛

...
...

... d
...

𝑚
𝑛−1,0

𝑚
𝑛−1,1

𝑚
𝑛−1,2

⋅ ⋅ ⋅ 𝑚
𝑛−1,𝑛

𝑢
0
(𝑥) 𝑢

1
(𝑥) 𝑢

2
(𝑥) ⋅ ⋅ ⋅ 𝑢

𝑛
(𝑥)

)
)

)

,

(15)

with positive leading coefficient in 𝑢
𝑛
(𝑥). Clearly we have

𝑝
𝑛
(𝑥) = ∑

𝑛

𝑗=0
𝑎
𝑛,𝑗
𝑢
𝑗
(𝑥) for some real numbers 𝑎

𝑗,𝑘
for 𝑗, 𝑘 =

0, 1, . . . , 𝑛 and 𝑎
𝑗,𝑘

= 0 for 𝑘 > 𝑗.

Lemma 3. For each nonnegative integer 𝑛, let𝐺
𝑛
= (𝑚
𝑗,𝑘
)
𝑛

𝑗,𝑘=0

and 𝐴
𝑛
= (𝑎
𝑗,𝑘
)
𝑛

𝑗,𝑘=0

. Then

det𝐺
𝑛
=

𝑛

∏

𝑗=0

𝑎
−2

𝑗,𝑗
, 𝐺

−1

𝑛
= 𝐴
𝑇

𝑛
𝐴
𝑛
. (16)
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Proof. From (15) and 𝑝
𝑛
(𝑥) = ∑

𝑛

𝑗=0
𝑎
𝑛,𝑗
𝑢
𝑗
(𝑥) it is clear that

𝑎
𝑛,𝑛

= √
det𝐺
𝑛−1

det𝐺
𝑛

, det𝐺
𝑛
=

𝑛

∏

𝑗=0

𝑎
−2

𝑗,𝑗
. (17)

For each 𝑛, since both {𝑝
𝑘
(𝑥)}
𝑛

𝑘=0
and {𝑢

𝑘
(𝑥)}
𝑛

𝑘=0
are a basis

for the same set of polynomials, 𝐴
𝑛
must be invertible for

each 𝑛 ∈ N ∪ {0}. We denote 𝐴−1
𝑛

= (𝑠
𝑗,𝑘
)
𝑛

𝑗,𝑘=0

; then 𝑢
𝑗
(𝑥) =

∑
𝑛

ℓ=0
𝑠
𝑗,ℓ
𝑝
ℓ
(𝑥) for 𝑗 = 0, 1, . . . , 𝑛. Clearly, 𝑠

𝑗,ℓ
= 0 for ℓ > 𝑗.

Thus,

𝑚
𝑗,𝑘

= (𝑢
𝑗
(𝑥) , 𝑢

𝑘
(𝑥)) =

𝑛

∑

𝑚=0

𝑠
𝑗,𝑚

𝑠
𝑘,𝑚

, (18)

for 𝑗, 𝑘 = 0, 1, . . . , 𝑛, which is

𝐺
𝑛
= 𝐴
−1

𝑛
(𝐴
−1

𝑛
)
𝑇

= 𝐴
−1

𝑛
(𝐴
𝑇

𝑛
)
−1

, (19)

and hence 𝐺−1
𝑛

= 𝐴
𝑇

𝑛
𝐴
𝑛
.

4.1. Proof of Theorem 1. The normalized even order Lommel
polynomials are defined by [11]

ℎ
𝑛
(𝑥) =

√2𝑛 + ] + 1

2
ℎ
2𝑛,]+1 (𝑥)

=

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

√2𝑛 + ] + 1 (𝑛 + 𝑘)!(] + 1)
𝑛+𝑘

22𝑘+1 (2𝑘)! (𝑛 − 𝑘)!(] + 1)
𝑛−𝑘

(𝑥
2

)
𝑘

,

(20)

for 𝑛 ∈ N and ℎ
0
(𝑥) = √] + 1/2. They satisfy the orthogonal

relation

∞

∑

𝑘=1

1

𝑗
2

],𝑘
ℎ
𝑚
(

1

𝑗],𝑘
)ℎ
𝑛
(

1

𝑗],𝑘
) = 𝛿

𝑚,𝑛
. (21)

For 𝑛 = 0, 1, . . ., it is clear that the 𝑛th moment with respect
to the measure of orthogonality is

𝑚
𝑛
=

∞

∑

𝑘=1

1

𝑗
2+2𝑛

],𝑘
= 𝜎
(𝑛+1)

] . (22)

Let 𝑢
𝑛
(𝑥) = 𝑥

2𝑛 for 𝑛 = 0, 1, . . .; then

𝑎
𝑛,𝑘

=
(−1)
𝑛−𝑘

√2𝑛 + ] + 1 (𝑛 + 𝑘)!(] + 1)
𝑛+𝑘

22𝑘+1 (2𝑘)! (𝑛 − 𝑘)!(] + 1)
𝑛−𝑘

. (23)

By Lemma 3, the matrix (𝜎(𝑗+𝑘+1)] )
𝑛

𝑗,𝑘=0
has determinant

𝑛

∏

𝑘=0

2
4𝑘+2

(] + 1 + 2𝑘) (] + 1)
2

2𝑘

=
2
(𝑛+1)(2𝑛+1)

((] + 1)/2)
𝑛+1

∏
𝑛

𝑘=0
(] + 1)

2

2𝑘

(24)

and its inverse (𝛾
𝑗,𝑘
)
𝑛

𝑗,𝑘=0

has elements

𝛾
𝑗,𝑘

=

𝑛

∑

𝑚=0

((−1)
𝑗+𝑘

(2𝑚 + ] + 1) (𝑚 + 𝑗)! (𝑚 + 𝑘)!

× (] + 1)
𝑚+𝑗

(] + 1)
𝑚+𝑘

× (4
𝑗+𝑘+1

(2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!

× (] + 1)
𝑚−𝑗

(] + 1)
𝑚−𝑘

)
−1

) .

(25)

4.2. Proof of Corollary 2. From (24), (25), and (6), we get

det(
(−1)
𝑗+𝑘

2
2𝑗+2𝑘+1

𝐵
2(𝑗+𝑘+1)

(2𝑗 + 2𝑘 + 2)!
)

𝑛

𝑗,𝑘=0

=
2
(𝑛+1)(2𝑛+1)

(3/4)
𝑛+1

∏
𝑛

𝑘=0
(3/2)
2

2𝑘

,

{

{

{

(

(−1)
𝑗+𝑘

2
2𝑗+2𝑘+1

𝐵
2(𝑗+𝑘+1)

(2𝑗 + 2𝑘 + 2)!
)

𝑛

𝑗,𝑘=0

}

}

}

−1

= (

𝑛

∑

𝑚=0

((−1)
𝑗+𝑘

(2𝑚 +
3

2
) (𝑚 + 𝑗)! (𝑚 + 𝑘)!

× (
3

2
)
𝑚+𝑗

(
3

2
)
𝑚+𝑘

× (4
𝑗+𝑘+1

(2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!(
3

2
)
𝑚−𝑗

× (
3

2
)
𝑚−𝑘

)

−1

))

𝑛

𝑗,𝑘=0

.

(26)

They are simplified to

det(
𝐵
2(𝑗+𝑘+1)

(2𝑗 + 2𝑘 + 2)!
) =

1

(3/4)
𝑛+1

∏
𝑛

𝑘=0
(3/2)
2

2𝑘

,

{(

𝐵
2(𝑗+𝑘+1)

(2𝑗 + 2𝑘 + 2)!
)

𝑛

𝑗,𝑘=0

}

−1

= (

𝑛

∑

𝑚=0

((𝑚 +
3

4
) (𝑚 + 𝑗)! (𝑚 + 𝑘)!(

3

2
)
𝑚+𝑗

(
3

2
)
𝑚+𝑘

× ((2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!(
3

2
)
𝑚−𝑗

× (
3

2
)
𝑚−𝑘

)

−1

))

𝑛

𝑗,𝑘=0

.

(27)
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By (9) we get

det(
𝑆
2𝑗+2𝑘+2

2 (4𝑗+𝑘+1 − 1)
)

𝑛

𝑗,𝑘=0

=
2
(𝑛+1)(2𝑛+1)

(3/4)
𝑛+1

∏
𝑛

𝑘=0
(3/2)
2

2𝑘

,

{(

𝑆
2𝑗+2𝑘+2

2 (4𝑗+𝑘+1 − 1)
)

𝑛

𝑗,𝑘=0

}

−1

= (

𝑛

∑

𝑚=0

((−1)
𝑗+𝑘

(2𝑚 +
3

2
) (𝑚 + 𝑗)! (𝑚 + 𝑘)!(

3

2
)
𝑚+𝑗

× (
3

2
)
𝑚+𝑘

× (4
𝑗+𝑘+1

(2𝑗)! (2𝑘)! (𝑚 − 𝑗)! (𝑚 − 𝑘)!(
3

2
)
𝑚−𝑗

× (
3

2
)
𝑚−𝑘

)

−1

))

𝑛

𝑗,𝑘=0

,

(28)

which are simplified to (12) and (13), respectively.
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