
Research Article
Crank-Nicolson Fully Discrete𝐻1-Galerkin
Mixed Finite Element Approximation of One Nonlinear
Integrodifferential Model

Fengxin Chen

School of Science, Shandong Jiaotong University, Jinan 250357, China

Correspondence should be addressed to Fengxin Chen; cfx 1981@163.com

Received 9 March 2014; Accepted 30 April 2014; Published 25 May 2014

Academic Editor: Xinan Hao

Copyright © 2014 Fengxin Chen.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a fully discrete 𝐻
1-Galerkin mixed finite element approximation of one nonlinear integrodifferential model which

often arises inmathematical modeling of the process of amagnetic field penetrating into a substance.We adopt the Crank-Nicolson
discretization for time derivative. Optimal order a priori error estimates for the unknown function in 𝐿

2 and 𝐻
1 norm and its

gradient function in 𝐿
2 norm are presented. A numerical example is given to verify the theoretical results.

1. Introduction

The objective of this paper is to discuss a Crank-Nicolson
fully discrete𝐻1-mixed finite element scheme for the follow-
ing nonlinear integrodifferential model:

𝑢
𝑡
− (1 + 𝜆 (𝑡)) 𝑢

𝑥𝑥
= 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐼 × (0, 𝑇] ,

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐼,

(1)

where 𝜆(𝑡) = ∫
𝑡

0
∫
1

0
(𝜕𝑢/𝜕𝑥)

2
𝑑𝑥 𝑑𝑠 and 𝐼 = [0, 1]. 𝑢

0
(𝑥) and

𝑓(𝑥, 𝑡) are given functions.
The above equations have been widely used to describe

the process of a magnetic field penetrating into a substance,
which is a generalization of the model proposed in [1–4].
The existence and uniqueness of a weak solution to the above
boundary value problems were proved in [5].

During the last decades, many numerical methods were
developed to discretize this kind of problems. For the finite
difference approximation of the above model one can refer to
[6–11]. For Galerkin finite element approximation of model
(1) we can refer to [11], where the authors developed error
estimates for semidiscretization in the energy norm. Note
that the coefficient in (1) depends on the derivative of𝑢.When

finite difference method and Galerkin method were used to
solve this model, one needed to differentiate the numerical
solution to determine the coefficient. This would generate
an inaccurate coefficient, which then reduces the accuracy
of the numerical approximation for 𝑢. In order to overcome
this question an 𝐻

1-Galerkin mixed finite element discrete
scheme was proposed in [12]. Optimal order error estimates
in𝐿
2 norm and𝐻

1 normwere presented. Formore references
with respect to𝐻

1-Galerkinmixedfinite elementmethodone
can refer to [13–17].

In [12] the backward Euler method was used to discretize
the time derivative. Note that problem (1) is nonlocal due
to the integration term in the coefficient. To improve the
convergence order for time discretization and save the storage
we construct a Crank-Nicolson 𝐻

1-mixed finite element
scheme for problem (1). By using elliptic projection and the
boundness of the numerical solutions we prove optimal a
priori error estimates for the scalar unknown function and
its flux. Finally we carry out a numerical example to verify
our theoretical results.

The rest of this paper is organized as follows. In Section 2
a Crank-Nicolson 𝐻

1-mixed finite element scheme is con-
structed. Optimal a priori error estimates are deduced in
Section 3. In Section 4 a numerical example is carried out to
verify our theoretical results.
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Throughout the paper, we use the standard notation
𝑊
𝑚,𝑞

(Ω) for Sobolev space on Ω with a norm ‖ ⋅ ‖
𝑚,𝑞

and a
seminorm | ⋅ |

𝑚,𝑞
. For 𝑞 = 2, we denote 𝐻

𝑚
(Ω) = 𝑊

𝑚,2
(Ω),

‖ ⋅ ‖
𝑚

= ‖ ⋅ ‖
𝑚,2

, and for 𝑚 = 0, we denote ‖ ⋅ ‖ = ‖ ⋅ ‖
0
.

Moreover, the inner products in 𝐿
2
(Ω) are indicated by (⋅, ⋅).

Let𝑋 be a Banach space and 𝜑(𝑡) : [0, 𝑇] → 𝑋; we set

𝜑


2

𝐿
2
(𝑋)

= ∫

𝑇

0

𝜑 (𝑠)


2

𝑋
𝑑𝑠,

𝜑
𝐿∞(𝑋)

= ess sup
0≤𝑡≤𝑇

𝜑
𝑋

.

(2)

In addition, 𝐶 denotes a generic constant independent
of the spatial mesh parameter ℎ and time discretization
parameter 𝜏, and 𝜀 denotes an arbitrarily small positive
constant.

2. Crank-Nicolson Discrete Scheme

In this section we first briefly describe the weak formulation
for problem (1) and then construct a Crank-Nicolson discrete
scheme for it.

2.1. Weak Formulation. In order to define a fully discrete𝐻1-
Galerkin mixed finite element procedure for problem (1), we
firstly split (1) into a first order system. Let 𝜎 = 𝑢

𝑥
; then (1)

reduces to

𝜎 = 𝑢
𝑥
,

𝑢
𝑡
= (1 + 𝜆 (𝑡)) 𝜎

𝑥
+ 𝑓 (𝑥, 𝑡) ,

(3)

where 𝜆(𝑡) = ∫
𝑡

0
∫
1

0
𝜎
2
𝑑𝑥 𝑑𝑠.

Let 𝐻1
0
(𝐼) = {V ∈ 𝐻

1
(𝐼); V(0) = V(1) = 0}. It is natural

to state the weak formulation for problem (1) in the following
form:

(𝑢
𝑥
, V
𝑥
) = (𝜎, V

𝑥
) , V ∈ 𝐻

1

0
(𝐼) ,

(𝜎
𝑡
, 𝑤) + ((1 + 𝜆 (𝑡)) 𝜎

𝑥
, 𝑤
𝑥
) + (𝑓, 𝑤

𝑥
) = 0, 𝑤 ∈ 𝐻

1
(𝐼) .

(4)

2.2. The Crank-Nicolson Discrete Scheme. First we introduce
two finite element spaces. Let 𝑉

ℎ
and 𝑊

ℎ
denote the finite

dimensional subspaces of𝐻1
0
(𝐼) and𝐻

1
(𝐼), respectively, with

the following approximation properties:

inf
𝜓
ℎ
∈𝑉
ℎ

{
𝜓 − 𝜓

ℎ

0,𝑝
+ ℎ

𝜓 − 𝜓
ℎ

1,𝑝
} ≤ 𝐶ℎ

𝑘+1𝜓
𝑘+1,𝑝

,

𝜓 ∈ 𝐻
1

0
(𝐼) ∩ 𝑊

𝑘+1,𝑝
(𝐼) ,

inf
𝑤
ℎ
∈𝑊
ℎ

{
𝑤 − 𝑤

ℎ

0,𝑝
+ ℎ

𝑤 − 𝑤
ℎ

1,𝑝
} ≤ 𝐶ℎ

𝑟+1
‖𝑤‖𝑟+1,𝑝,

𝑤 ∈ 𝑊
𝑟+1,𝑝

(𝐼) ,

(5)

where 1 ≤ 𝑝 ≤ ∞. 𝑘, 𝑟 are positive integers.
To define the fully discrete scheme we also need a time

mesh grid. Let 0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑇 be a given partition

of the time interval [0, 𝑇]with step length 𝜏 = 𝑇/𝑁, for some

positive integers𝑁. Define 𝑡𝑛 = 𝑛𝜏 and 𝑡
𝑛−(1/2)

= (𝑛−(1/2))𝜏.
For conveniencewe set𝜙𝑛 = 𝜙(𝑡

𝑛
) and𝜙

𝑛−(1/2)
= (𝜙
𝑛
+𝜙
𝑛−1

)/2

for a smooth function 𝜙.
Let𝑈𝑛 and𝑄

𝑛 denote the discrete counterpart of 𝑢 and 𝜎

at 𝑡 = 𝑡
𝑛 which satisfy the following Crank-Nicolson discrete

scheme:

(𝑈
𝑛

𝑥
, V
ℎ𝑥
) = (𝑄

𝑛
, V
ℎ𝑥
) , V

ℎ
∈ 𝑉
ℎ
, (6)

(
𝑄
𝑛
− 𝑄
𝑛−1

𝜏
, 𝑤
ℎ
)

+ ((1 +

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
, 𝑤
ℎ𝑥
)

+ (𝑓
𝑛−(1/2)

, 𝑤
ℎ𝑥
) = 0, 𝑤

ℎ
∈ 𝑊
ℎ
,

(7)

where

𝛿
𝑛,𝑖

=

{

{

{

𝜏, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝜏

2
, 𝑖 = 𝑛,

(8)

and 𝑈
0, 𝑄0 are to be defined later.

The existence and uniqueness of the discrete solution
for the above problems can be guaranteed by the theory
presented in [18, page 237–239].

To discretize the time integration we used the following
integroformula:

∫

𝑡
𝑛−(1/2)

0

𝑔 (𝜏) 𝑑𝑠 ≈

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖
𝑔
𝑖−(1/2)

. (9)

Its truncation error can be estimated as follows:


∫

𝑡
𝑛−(1/2)

0

𝑔 (𝜏) 𝑑𝑠 −

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖
𝑔
𝑛−(1/2)



≤ 𝐶(𝜏∫

𝑡
𝑛

𝑡
𝑛−1

𝑔𝑡
 + 𝜏
2
∫

𝑡
𝑛

0

𝑔𝑡𝑡
 𝑑𝑠) .

(10)

3. Error Analysis

3.1. Preliminaries. We begin by recalling some preliminary
knowledge that will be used in the following convergence
analysis.

We define the following elliptic projections: �̃�
ℎ
(𝑡) ∈ 𝑉

ℎ
,

�̃�
ℎ
(𝑡) ∈ 𝑊

ℎ
, which satisfy

(𝑢
𝑥
− �̃�
ℎ𝑥
, V
ℎ𝑥
) = 0, ∀V

ℎ
∈ 𝑉
ℎ
,

(𝜎
𝑥
− �̃�
ℎ𝑥
, 𝑤
ℎ𝑥
) + 𝛼 (𝜎 − �̃�

ℎ
, 𝑤
ℎ
) = 0, ∀𝑤

ℎ
∈ 𝑊
ℎ
.

(11)

Here𝛼 is chosen to guarantee the𝐻1-coercivity of the bilinear
form in the second equations. Moreover, it is easy to check
that the bilinear form is bounded.
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Let 𝜂 = 𝑢−�̃�
ℎ
,𝜌 = 𝜎−�̃�

ℎ
; then 𝜂 and𝜌 satisfy the following

estimates from [19]:
𝜂 (𝑡)

𝑗
+
𝜂𝑡 (𝑡)

𝑗
≤ 𝐶ℎ
𝑘+1−𝑗

(‖𝑢‖𝑘+1 +
𝑢𝑡

𝑘+1
) , 𝑗 = 0, 1,

𝜌 (𝑡)
𝑗

+
𝜌𝑡 (𝑡)

𝑗
≤ 𝐶ℎ
𝑟+1−𝑗

(
𝑞

𝑟+1
+
𝑞𝑡

𝑟+1
) , 𝑗 = 0, 1.

(12)

To derive the error estimates we also need the following
discrete Gronwall inequality.

Lemma 1 (discrete Gronwall inequality; see [20]). Let
𝜏, 𝐵
1
, 𝐶
1

> 0 and let 𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
, and 𝑑

𝑛
be sequences of

nonnegative numbers satisfying

∀𝑛 ≥ 0, 𝑎
𝑛
+ 𝜏

𝑛

∑

𝑖=0

𝑏
𝑖
≤ 𝐵
1
+ 𝐶
1
𝜏

𝑛

∑

𝑖=0

𝑎
𝑖
+ 𝜏

𝑛

∑

𝑖=0

𝑐
𝑖
. (13)

Then, if 𝐶
1
𝜏 < 1,

∀𝑛 ≥ 0, 𝑎
𝑛
+ 𝜏

𝑛

∑

𝑖=0

𝑏
𝑖
≤ 𝑒
𝐶
1
(𝑛+1)𝜏

(𝐵
1
+ 𝜏

𝑛

∑

𝑖=0

𝑐
𝑖
) . (14)

3.2. Error Analysis. To estimate the errors, we firstly decom-
pose the errors into

𝑢 (𝑡
𝑛
) − 𝑈
𝑛
= 𝑢 (𝑡

𝑛
) − �̃�
ℎ
(𝑡
𝑛
) + �̃�
ℎ
(𝑡
𝑛
) − 𝑈
𝑛
= 𝜂
𝑛
+ 𝜁
𝑛
,

𝜎 (𝑡
𝑛
) − 𝑄
𝑛
= 𝜎 (𝑡

𝑛
) − �̃�
ℎ
(𝑡
𝑛
) + �̃�
ℎ
(𝑡
𝑛
) − 𝑄
𝑛
= 𝜌
𝑛
+ 𝜉
𝑛
.

(15)

Note that the estimates of 𝜂𝑛 and 𝜌
𝑛 can be found out easily

from (12) at 𝑡 = 𝑡
𝑛. Therefore it remains to estimate 𝜁𝑛 and 𝜉

𝑛.
Setting 𝑡 = 𝑡

𝑛−(1/2) in (4) and combining (6) and (7)
with auxiliary projections, we deduce the following error
equations with respect to 𝜁

𝑛 and 𝜉
𝑛:

(𝜁
𝑛

𝑥
, V
ℎ𝑥
) = (𝜌

𝑛
, V
ℎ𝑥
) + (𝜉

𝑛
, V
ℎ𝑥
) , (16)

(
𝜉
𝑛
− 𝜉
𝑛−1

𝜏
, 𝑤
ℎ
) + (

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
, 𝑤
ℎ𝑥
)

= (
𝜎
𝑛
− 𝜎
𝑛−1

𝜏
− 𝜎
𝑛−(1/2)

𝑡
, 𝑤
ℎ
) − (

𝜌
𝑛
− 𝜌
𝑛−1

𝜏
, 𝑤
ℎ
)

+ 𝛼(
𝜌
𝑛
+ 𝜌
𝑛−1

2
, 𝑤
ℎ
)

− (𝜆
𝑛−(1/2)

𝜎
𝑛−(1/2)

𝑥
− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

×
𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
, 𝑤
ℎ𝑥
)

+ (
𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥
, 𝑤
ℎ𝑥
) .

(17)

Theorem 2. Suppose that 𝑈0 = �̃�
ℎ
(0), 𝑄0 = �̃�

ℎ
(0), and 1 ≤

𝐽 ≤ 𝑁. Then there exists a positive constant C independent of
h and 𝜏 such that for sufficiently small 𝜏


𝑢
𝐽
− 𝑈
𝐽

+ ℎ

𝑢
𝐽
− 𝑈
𝐽1

+

𝜎
𝐽
− 𝑄
𝐽

≤ 𝐶 (ℎ
min{𝑘+1, 𝑟+1}

+ 𝜏
2
) .

(18)

Here 𝑘, 𝑟 ≥ 1 are positive integers.

Proof. Choosing V
ℎ
= 𝜁
𝑛 in (16) yields

(𝜁
𝑛

𝑥
, 𝜁
𝑛

𝑥
) = (𝜌

𝑛
, 𝜁
𝑛

𝑥
) + (𝜉

𝑛
, 𝜁
𝑛

𝑥
) , (19)

which implies

𝜁
𝑛

𝑥

 ≤
𝜌
𝑛 +

𝜉
𝑛 . (20)

Setting 𝑤
ℎ
= (𝜉
𝑛
+ 𝜉
𝑛−1

)/2 in (17) gives

(
𝜉
𝑛
− 𝜉
𝑛−1

𝜏
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
) + (

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

+ (𝜆
𝑛−(1/2)

𝜎
𝑛−(1/2)

𝑥
− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

×
𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

= (
𝜎
𝑛
− 𝜎
𝑛−1

𝜏
− 𝜎
𝑛−(1/2)

𝑡
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
)

− (
𝜌
𝑛
− 𝜌
𝑛−1

𝜏
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
)

+ 𝛼(
𝜌
𝑛
+ 𝜌
𝑛−1

2
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
)

+ (
𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
) .

(21)

For the third term on the left side we have

(𝜆
𝑛−(1/2)

𝜎
𝑛−(1/2)

𝑥
− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

×
𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

= ((

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)
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+ ((𝜆
𝑛−(1/2)

− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
))𝜎

𝑛−(1/2)

𝑥
,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

+ ((

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)(𝜎

𝑛−(1/2)

𝑥
−

𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
) ,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

− 𝛼((

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

𝜌
𝑛
+ 𝜌
𝑛−1

2
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
) .

(22)

Then we obtain

1

2𝜏
(
𝜉
𝑛

2

−

𝜉
𝑛−1

2

) + (1 +

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

×



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



2

= −((𝜆
𝑛−(1/2)

− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
))𝜎

𝑛−(1/2)

𝑥
,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

+ ((

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)(

𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥
) ,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)

+ (
𝜎
𝑛
− 𝜎
𝑛−1

𝜏
− 𝜎
𝑛−(1/2)

𝑡
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
)

− (
𝜌
𝑛
− 𝜌
𝑛−1

𝜏
,
𝜉
𝑛
+ 𝜉
𝑛−1

2
)

+ 𝛼((1 +

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

𝜌
𝑛
+ 𝜌
𝑛−1

2
,

𝜉
𝑛
+ 𝜉
𝑛−1

2
)

+ (
𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

ℎ𝑥
,
𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
) .

(23)

Now it remains to estimate the terms on the right side of (23).
It is easy to prove that



𝜌
𝑛
− 𝜌
𝑛−1

𝜏



2

≤ 𝐶
1

𝜏
∫

𝑡
𝑛

𝑡
𝑛−1

𝜌𝑡


2

𝑑𝑠,



𝜎
𝑛
− 𝜎
𝑛−1

𝜏
− 𝜎
𝑛−(1/2)

𝑡



2

≤ 𝐶𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

𝜎𝑡𝑡𝑡


2

𝑑𝑠,



𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥



2

≤ 𝐶𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

𝜎𝑥𝑡𝑡𝑡


2

𝑑𝑠.

(24)

Here the Taylor formula with integral remainder was used.
Note that



𝜆
𝑛−(1/2)

− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)



=



∫

1

0

(∫

𝑡
𝑛−(1/2)

0

𝜎
2
𝑑𝑠 −

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

(𝑄
𝑖
)
2

+ (𝑄
𝑖−1

)
2

2
)𝑑𝑥



≤



∫

1

0

∫

𝑡
𝑛−(1/2)

0

(𝜎
2
− �̃�
2

ℎ
) 𝑑𝑠 𝑑𝑥



+



∫

1

0

(∫

𝑡
𝑛−(1/2)

0

�̃�
2

ℎ
𝑑𝑠 −

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

(�̃�
𝑖

ℎ
)
2

+ (�̃�
𝑖−1

ℎ
)
2

2
)𝑑𝑥



+



∫

1

0

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

(

(�̃�
𝑖

ℎ
)
2

+ (�̃�
𝑖−1

ℎ
)
2

2
−

(𝑄
𝑖
)
2

+(𝑄
𝑖−1

)
2

2
)𝑑𝑥



:= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(25)

By Hölder inequality and the bound of the projection �̃�
ℎ
we

have

𝐼
1
=



∫

1

0

∫

𝑡
𝑛−(1/2)

0

(𝜎
2
− �̃�
2

ℎ
) 𝑑𝑠 𝑑𝑥



≤
𝜎 − �̃�

ℎ

𝐿2(0,𝑡𝑛 ;𝐿2(𝐼))
(‖𝜎‖𝐿2(0,𝑡𝑛;𝐿2(𝐼)) +

�̃�ℎ
𝐿2(0,𝑡𝑛;𝐿2(𝐼))

)

≤ 𝐶
𝜌

𝐿2(0,𝑡𝑛;𝐿2(𝐼))
.

(26)
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Using the error formula (10) and the bound of the projection
�̃�
ℎ
we derive

𝐼
2
=



∫

1

0

(∫

𝑡
𝑛−(1/2)

0

�̃�
2

ℎ
𝑑𝑠 −

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖
(�̃�
𝑖−(1/2)

ℎ
)
2

)𝑑𝑥



≤ 𝐶



(∫

1

0

𝜏∫

𝑡
𝑛

𝑡
𝑛−1

𝑑

𝑑𝑡
(�̃�
2

ℎ
) 𝑑𝑠 + 𝜏

2
∫

𝑡
𝑛

0

𝑑
2

𝑑𝑡
2
(�̃�
2

ℎ
) 𝑑𝑠) 𝑑𝑥



= 𝐶



∫

1

0

(𝜏∫

𝑡
𝑛

𝑡
𝑛−1

2�̃�
ℎ
�̃�
ℎ𝑡
𝑑𝑠 + 𝜏

2
∫

𝑡
𝑛

0

(2�̃�
2

ℎ𝑡
+ 2�̃�
ℎ𝑡
�̃�
ℎ𝑡𝑡

) 𝑑𝑠) 𝑑𝑥



≤ 𝐶𝜏∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


�̃�ℎ𝑡
 𝑑𝑠

+ 𝐶𝜏
2
(
�̃�ℎ𝑡

𝐿2(0,𝑡𝑛 ;𝐿2(𝐼))

+
�̃�ℎ

𝐿2(0,𝑡𝑛 ;𝐿2(𝐼))

�̃�ℎ𝑡𝑡
𝐿2(0,𝑡𝑛 ;𝐿2(𝐼))

)

≤ 𝐶(𝜏
3/2

(∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


2�̃�ℎ𝑡


2

𝑑𝑠)

1/2

+ 𝜏
2
) .

(27)

For 𝐼
3
we have

𝐼
3
=

1

2



∫

1

0

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

((�̃�
𝑖

ℎ
)
2

− (𝑄
𝑖
)
2

+ (�̃�
𝑖−1

ℎ
)
2

− (𝑄
𝑖−1

)
2

) 𝑑𝑥



=
1

2



∫

1

0

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

((�̃�
𝑖

ℎ
− 𝑄
𝑖
) (�̃�
𝑖

ℎ
+ 𝑄
𝑖
)

+ (�̃�
𝑖−1

ℎ
− 𝑄
𝑖−1

) (�̃�
𝑖−1

ℎ
+ 𝑄
𝑖−1

)) 𝑑𝑥



≤
1

2

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖

(

𝜉
𝑖

(

�̃�
𝑖

ℎ


+

𝑄
𝑖
) +


𝜉
𝑖−1

(

�̃�
𝑖−1

ℎ


+

𝑄
𝑖−1

)) .

(28)

To bound 𝐼
3
we need to derive the boundness of𝑄𝑖. From (7)

we can deduce

((1 +

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
,
𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
)

+ (
𝑄
𝑛
− 𝑄
𝑛−1

𝜏
,
𝑄
𝑛
+ 𝑄
𝑛−1

2
) +(𝑓

𝑛−(1/2)
,
𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2
) = 0.

(29)

By 𝜀 inequality we have

1

2𝜏
(
𝑄
𝑛

2

−

𝑄
𝑛−1

2

) + (
1

2
+

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)

×



𝑄
𝑛

𝑥
+ 𝑄
𝑛−1

𝑥

2



2

≤

𝑓
𝑛−(1/2)

2

.

(30)

Then,multiplying by 2𝜏 and summing from 1 to 𝑙we conclude


𝑄
𝑙

2

≤ 𝜏

𝑙

∑

𝑖=1


𝑓
𝑛−(1/2)

2

+

𝑄
0

2

, (31)

which implies 𝑄𝑙 is bounded.
Combining (31) with the above estimate of 𝐼

3
and using

the boundness of �̃�
ℎ
, we can get

𝐼
3
≤ 𝐶𝜏

𝑛

∑

𝑖=1


𝜉
𝑖

, (32)

where 𝜉
0
= 0 was used.

Collecting the above estimates for 𝐼
1

∼ 𝐼
3
and using 𝜀

inequality, we obtain



((𝜆
𝑛−(1/2)

− (

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
))𝜎

𝑛−(1/2)

𝑥
,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)



≤ 𝐶(
𝜌

𝐿2(0,𝑡𝑛;𝐿2(𝐼))
+ 𝜏
3/2

(∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


2�̃�ℎ𝑡


2

𝑑𝑠)

1/2

+ 𝜏
2
)

×



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



+ 𝜏

𝑛

∑

𝑖=1


𝜉
𝑖



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



≤ 𝐶(
𝜌



2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(𝐼))

+ 𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


2�̃�ℎ𝑡


2

𝑑𝑠 + 𝜏
4
)

+ 𝜏

𝑛

∑

𝑖=1


𝜉
𝑖

2

+ 𝜀



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



2

≤ 𝐶(
𝜌



2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(𝐼))

+ 𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


2�̃�ℎ𝑡


2

𝑑𝑠

+𝜏
4
+ 𝜏

𝑛

∑

𝑖=1


𝜉
𝑖

2

)

+ 𝜀



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



2

,



((

𝑛

∑

𝑖=1

𝛿
𝑛,𝑖


𝑄
𝑖

2

+

𝑄
𝑖−1

2

2
)(

𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥
) ,

𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
)



≤ 𝐶



𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥





𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2
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Table 1: The errors of ‖𝑢𝐽 − 𝑈
𝐽
‖ at different time.

ℎ = 𝜏

Time
𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

Error Order Error Order Error Order Error Order
1/20 1.0174𝑒 − 004 \ 1.1819𝑒 − 004 \ 1.2690𝑒 − 004 \ 1.2445𝑒 − 004 \

1/40 2.5472𝑒 − 005 1.9979 2.9553𝑒 − 005 1.9997 3.1723𝑒 − 005 2.0001 3.1112𝑒 − 005 2.0000
1/80 6.3711𝑒 − 006 1.9993 7.3900𝑒 − 006 1.9997 7.9329𝑒 − 006 1.9996 7.7813𝑒 − 006 1.9994

Table 2: The errors of ‖𝑢𝐽
𝑥
− 𝑈
𝐽

𝑥
‖ at different time.

ℎ = 𝜏

Time
𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

Error Order Error Order Error Order Error Order
1/20 0.0020 \ 0.0024 \ 0.0025 \ 0.0025 \

1/40 0.0010 1.0000 0.0012 1.0000 0.0013 0.9434 0.0012 1.0589
1/80 5.0969𝑒 − 04 0.9723 5.9120𝑒 − 04 1.0213 6.3463𝑒 − 04 1.0345 6.2251𝑒 − 04 0.9469

Table 3: The errors of ‖𝜎𝐽 − 𝑄
𝐽
‖ at different time.

ℎ = 𝜏

Time
𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

Error Order Error Order Error Order Error Order
1/20 1.9532𝑒 − 004 \ 3.5339𝑒 − 004 \ 5.4745𝑒 − 004 \ 7.6700𝑒 − 004 \

1/40 4.7504𝑒 − 005 2.0397 8.6496𝑒 − 005 2.0306 1.3441𝑒 − 004 2.0261 1.8884𝑒 − 004 2.0221
1/80 1.1699𝑒 − 005 2.0217 2.1381𝑒 − 005 2.0163 3.3284𝑒 − 005 2.0137 4.6818𝑒 − 005 2.0120

≤ 𝐶



𝜎
𝑛

𝑥
+ 𝜎
𝑛−1

𝑥

2
− 𝜎
𝑛−(1/2)

𝑥



2

+ 𝜀



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



2

≤ 𝐶𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

𝜎𝑥𝑡𝑡𝑡


2

𝑑𝑠 + 𝜀



𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2



2

.

(33)

Inserting (24) and (33) into (23) leads to

1

2𝜏
(
𝜉
𝑛

2

−

𝜉
𝑛−1

2

)

≤ 𝐶(
𝜌



2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(𝐼))

+
𝜌
𝑛

2

+

𝜌
𝑛−1

2

+𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

�̃�ℎ


2

𝑑𝑠 + 𝜏
4
+ 𝜏

𝑛

∑

𝑖=1


𝜉
𝑖

2

)

+ 𝐶
1

𝜏
∫

𝑡
𝑛

𝑡
𝑛−1

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

𝜎𝑥𝑡𝑡𝑡


2

𝑑𝑠

+ 𝐶𝜏
3
∫

𝑡
𝑛

𝑡
𝑛−1

𝜎𝑡𝑡𝑡


2

𝑑𝑠

+ 𝐶



𝜉
𝑛
+ 𝜉
𝑛−1

2



2

.

(34)

Multiplying by 2𝜏 and summing from 1 to 𝐽 leads to


𝜉
𝐽

2

≤ 𝐶
𝜌



2

𝐿
∞
(0,𝑡
𝐽
;𝐿
2
(𝐼))

+ 𝐶𝜏
4
∫

𝑡
𝐽

0

�̃�ℎ


2

𝑑𝑠 + 𝐶𝜏
4

+ 𝐶∫

𝑡
𝐽

0

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏
4
∫

𝑡
𝐽

0

𝜎𝑥𝑡𝑡𝑡


2

𝑑𝑠

+ 𝐶𝜏
4
∫

𝑡
𝐽

0

𝜎𝑡𝑡𝑡


2

𝑑𝑠

+ 𝐶𝜏
2

𝐽

∑

𝑛=1

𝑛

∑

𝑖=1


𝜉
𝑖

2

+ 𝐶𝜏

𝐽

∑

𝑛=1



𝜉
𝑛
+ 𝜉
𝑛−1

2



2

≤ 𝐶
𝜌



2

𝐿
∞
(0,𝑡
𝐽
;𝐿
2
(𝐼))

+ 𝐶∫

𝑡
𝐽

0

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏

𝐽

∑

𝑛=1

𝜉
𝑛

2

+ 𝐶𝜏
4
(∫

𝑡
𝐽

0

�̃�ℎ


2

𝑑𝑠 + ∫

𝑡
𝐽

0

𝜎𝑥𝑡𝑡𝑡


2

𝑑𝑠

+∫

𝑡
𝐽

0

𝜎𝑡𝑡𝑡


2

𝑑𝑠 + 1)

≤ 𝐶
𝜌



2

𝐿
∞
(0,𝑡
𝐽
;𝐿
2
(𝐼))

+ 𝐶∫

𝑡
𝐽

0

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏

𝐽

∑

𝑛=1

𝜉
𝑛

2

+ 𝐶𝜏
4
.

(35)
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Taking 𝜏
1
, let 0 < 𝜏 ≤ 𝜏

1
, such that 1−𝐶𝜏 > 0; then by discrete

Gronwall’s lemma we obtain that


𝜉
𝐽

2

≤ 𝐶
𝜌



2

𝐿
∞
(0,𝑡
𝐽
;𝐿
2
(𝐼))

+ 𝐶∫

𝑡
𝐽

0

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏
4
. (36)

Substituting (36) into (20) yields


𝜁
𝐽

𝑥



2

≤ 𝐶
𝜌



2

𝐿
∞
(0,𝑡
𝐽
;𝐿
2
(𝐼))

+ 𝐶∫

𝑡
𝐽

0

𝜌𝑡


2

𝑑𝑠 + 𝐶𝜏
4 (37)

Combining (36), (37), and the estimates of 𝜂𝑛, 𝜌𝑛 and using
the triangle inequality, we can complete the proof.

4. Numerical Example

In this section a numerical example is carried out to verify the
theorems presented in this paper.

Example 1. Let us consider the initial and boundary problem
(1) with the initial value 𝑢(𝑥, 0) = 𝑥(1−𝑥) sin(𝑥) and the right
hand term

𝑓 = 𝑥 (1 − 𝑥) cos (𝑥 + 𝑡)

− (1 +
11

60
𝑡 −

1

8
cos (𝑡) sin (𝑡)

−
1

8
cos (𝑡 + 1) sin (𝑡 + 1) +

1

8
cos (1) sin (1))

× (−2 sin (𝑥 + 𝑡) + 2 (1 − 𝑥) cos (𝑥 + 𝑡)

− 2𝑥 cos (𝑥 + 𝑡) − 𝑥 (1 − 𝑥) sin (𝑥 + 𝑡)) .

(38)

This example is taken from [11].

In this example we use piecewise linear finite element
spaces to approximate the unknown functions 𝑢 and 𝜎,
respectively. The Crank-Nicolson method is used to approx-
imate the time derivative. Then the corresponding error
estimates reduce to

𝑢
𝐽
− 𝑈
𝐽

+ ℎ

𝑢
𝐽
− 𝑈
𝐽1

+

𝜎
𝐽
− 𝑄
𝐽

≤ 𝐶 (ℎ
2
+ 𝜏
2
) .

(39)

In the numerical implementationwe choose ℎ = 𝜏.The errors
and the corresponding rate of convergence for 𝑢

𝐽
− 𝑈
𝐽 and

𝜎
𝐽
− 𝑄
𝐽 are displayed in Tables 1, 2, and 3, respectively.

We can observe that the numerical results are in agree-
ment with our theoretical results proposed in Section 3.
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