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It is shown how the mid-point iterative method with cubical rate of convergence can be applied for finding the principal matrix
square root. Using an identity between matrix sign function and matrix square root, we construct a variant of mid-point method
which is asymptotically stable in the neighborhood of the solution. Finally, application of the presented approach is illustrated in
solving a matrix differential equation.

1. Introductory Notes

Let us consider a scalar function𝑓 and amatrix𝐴 ∈ C𝑛×𝑛 and
specify 𝑓(𝐴) to be a matrix function of the same dimensions
as 𝐴. Higham in [1] indicates that if 𝑓 is defined on the
spectrum of 𝐴, then one has the following properties for the
matrix function 𝑓(𝐴):

(i) 𝑓(𝐴) commutes with 𝐴;

(ii) 𝑓(𝐴𝑇) = 𝑓(𝐴)𝑇;

(iii) 𝑓(𝑋𝐴𝑋−1) = 𝑋𝑓(𝐴)𝑋−1;
(iv) the eigenvalues of 𝑓(𝐴) are 𝑓(𝜆

𝑖
), where 𝜆

𝑖
are the

eigenvalues of 𝐴;
(v) if 𝑋 commutes with 𝐴, then 𝑋 commutes with 𝑓(𝐴).

In this paper, we are interested in numerical computation
of matrix square root, which is one of the most fundamental
matrix functions with potential applications. An example
involving the computation of matrix square roots appears
in a semidefinite programming algorithm [2]. A step length
is calculated using a line search algorithm that involves
computing the unique symmetric positive definite (SPD)
square roots of a sequence of SPD matrices, where each
matrix differs little from the previous one.That is, given a SPD

𝐴 ∈ R𝑛×𝑛 and the SPD square root𝑋 of𝐴, one wishes to find
the SPD square root𝑋 of 𝐴, where ‖𝐴 − 𝐴‖ is small. This has
to be done repeatedly with 𝐴 changing slightly each time.

It is known that [3]𝐴 ∈ C𝑛×𝑛 has a square root if and only
if in the ascent sequence of integers 𝑑

1
, 𝑑
2
, . . . , defined by

𝑑
𝑖
= dim (null (𝐴𝑖)) − dim (null (𝐴𝑖−1)) , (1)

no two terms are the same odd integer.
Among the square roots of a matrix, the principal square

root is distinguished by its usefulness in theory and applica-
tions. Let 𝐴 ∈ C𝑛×𝑛 have no eigenvalues on R− (the closed
negative real axis). There is a unique square root 𝑋 of 𝐴 that
all of its eigenvalues lie in the open right half-plane, and it
is a primary matrix function of 𝐴 [4]. We refer to 𝑋 as the
principal square root of 𝐴 and write 𝑋 = 𝐴1/2. Note that if 𝐴
is real, then 𝐴1/2 is real.

Björck and Hammarling [5] developed a numerical
method for the principal square root via Schur form. Among
all the available numerical procedures, the Newton’s matrix
method and its variants have received many attractions in
order to tackle this problem. To bemore precise, applying the
famous Newton’s method to the matrix equation

𝐹 (𝑋) ≡ 𝑋2 − 𝐴 = 0 (2)
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would yield the following (simplified) matrix iteration
method [4]:

𝑋
𝑘+1

=
1

2
[𝑋
𝑘
+ 𝐴𝑋−1

𝑘
] , (3)

for suitable initial values 𝑋
0
, wherein the commutativity

of matrices 𝑋
𝑘
and 𝐴 has been considered to simplify the

procedure as much as possible. Unfortunately, this iteration
becomes unstable in most cases as pointed out by Higham
[4].

To remedy this, Denman and Beavers (DB) in [6] pro-
posed a quadratically convergent variant of Newton’s matrix
method (3) which is numerically stable in what follows:

𝑌
0
= 𝐴, 𝑍

0
= 𝐼, 𝑘 = 0, 1, . . . ,

𝑌
𝑘+1

=
1

2
[𝑌
𝑘
+ 𝑍−1
𝑘

] ,

𝑍
𝑘+1

=
1

2
[𝑍
𝑘
+ 𝑌−1
𝑘

] .

(4)

This method generates the sequence {𝑌
𝑘
}, which converges to

𝐴1/2. For further readings, one may refer to [7, 8].
In the next section, we first apply the followingmid-point

cubically convergent scheme of Frontini and Sormani (given
for scalar nonlinear equations [9])

𝑦
𝑘
= 𝑥
𝑘
− 2−1𝑓󸀠(𝑥

𝑘
)
−1

𝑓 (𝑥
𝑘
) ,

𝑥
𝑘+1

= 𝑥
𝑘
− 𝑓󸀠(𝑦

𝑘
)
−1

𝑓 (𝑥
𝑘
) ,

(5)

to derive a new iterative scheme for the numerical com-
putation of 𝐴1/2. In Section 2, we theoretically prove that
the scheme is convergent under some proper conditions.
A variant of the mid-point rule (5) is brought forward to
provide a stable iteration for finding both the principalmatrix
square root and the principal inverse matrix square root. We
note that our results in this work are some extensions to
[10]. In order to derive a higher order new version of mid-
point method for computing square root, we use some of the
methods in the literature and obtain a new scheme for𝐴1/2 as
well. Section 3 is devoted to the application of the discussed
matrix methods in solving some examples. Finally, Section 4
draws a conclusion of this paper.

2. Extension of the Mid-Point Method

Multipoint nonlinear solvers such as (5) belong to the class
of the most efficient methods for nonlinear scalar equations.
Recent interests in the research and development of this type
of methods have arisen from their capability to overcome
theoretical limits of one-point methods concerning the con-
vergence order and computational efficiency.

Let us apply (5) for solving the nonlinear matrix equation
(2). We attain the following scheme:

𝑋
𝑘+1

= [3𝐴𝑋
𝑘
+ 𝑋3
𝑘
] [𝐴 + 3𝑋2

𝑘
]
−1

, (6)

considering the fact that the initial approximation is of the
following forms:

𝑋
0
= 𝛼𝐼, (7)

or

𝑋
0
= 𝛽𝐴, (8)

wherein 𝛼 and 𝛽 are suitable positive parameters to ensure
convergence. The derivation of (6) may not be clear yet.
Hence, we give a Mathematica code written for obtaining it
as fast as possible in a symbolical language as follows:

ClearAll["Global‘ ∗ "]
f[X ] := X̂2 - A;
Y = X - f[X]/(2f’[X]) // FullSimplify;
FullSimplify[X - f[X]/f’[Y]]

Lemma 1. Let 𝐴 = [𝑎
𝑖𝑗
]
𝑛×𝑛

be a nonsingular complex matrix
with no eigenvalues onR−. If𝐴𝑋

0
= 𝑋
0
𝐴 is valid, then for the

sequence of {𝑋
𝑘
}𝑘=∞
𝑘=0

of (6), one has that

𝐴𝑋
𝑘
= 𝑋
𝑘
𝐴 (9)

holds, for all 𝑘 = 1, 2, . . ..

Proof. The proof is by induction. Let 𝑋
0
be one of the initial

values (7) or (8); then it is obvious that 𝐴𝑋
0
= 𝑋
0
𝐴. For the

inductive hypothesis, we take 𝑘 > 0 and 𝐴𝑋
𝑘

= 𝑋
𝑘
𝐴 and

show that

𝐴𝑋
𝑘+1

= 𝐴 [3𝐴𝑋
𝑘
+ 𝑋3
𝑘
] [𝐴 + 3𝑋2

𝑘
]
−1

= [3𝐴2𝑋
𝑘
+ 𝐴𝑋3

𝑘
] [𝐴 + 3𝑋2

𝑘
]
−1

= [3 (𝑋
𝑘
𝐴)𝐴 + 𝑋2

𝑘
(𝑋
𝑘
𝐴)] [𝐴 + 3𝑋2

𝑘
]
−1

= [3𝑋
𝑘
𝐴 + 𝑋3

𝑘
] [𝐴−1𝐴 + 3𝐴−1𝑋2

𝑘
]
−1

= [3𝑋
𝑘
𝐴 + 𝑋3

𝑘
] [𝐴𝐴−1 + 3𝑋2

𝑘
𝐴−1]
−1

= 𝑋
𝑘+1

𝐴.

(10)

Note that, from𝐴𝑋
𝑘
= 𝑋
𝑘
𝐴, we obtain that𝐴−1𝑋

𝑘
= 𝑋
𝑘
𝐴−1.

This completes the proof.

Let (𝑀, 𝑑) be a metric space. We say that a sequence {𝑋
𝑘
}

of points of 𝑀 converges to a point 𝑋∗ of 𝑀 if

lim
𝑘→∞

𝑑 (𝑋
𝑘
, 𝑋∗) = 0. (11)

The convergence properties will depend on the choice of a
distance in 𝑀, but for a given distance the speed of con-
vergence of the sequence {𝑋

𝑘
} is characterized by the speed

of convergence of the sequence of nonnegative numbers
𝑑(𝑋
𝑘
, 𝑋∗) [11]. In what follows, we investigate the rate of

convergence for (6).

Theorem2. Let𝐴 = [𝑎
𝑖,𝑗
]
𝑛×𝑛

have no eigenvalues onR−. If the
initial approximation 𝑋

0
is according to the rules (7) or (8),
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then the iterative method (6) converges to the principal 𝐴1/2
with local third order of convergence (without considering the
round-off error).

Proof. Using the methodology of [10], we now prove the con-
vergence order of (6). If 𝐴 is considered to be diagonalizable
and nonsingular, then

𝑉−1𝐴𝑉 = 𝐷 = diag {𝜆
1
, . . . , 𝜆

𝑛
} , (12)

where 𝑉 is a nonsingular matrix. In addition assume that
𝑀
𝑘
= 𝑉−1𝑋

𝑘
𝑉. From the iterative method (6), we attain

𝑀
𝑘+1

= [3𝐷M
𝑘
+ 𝑀3
𝑘
] [𝐷 + 3𝑀2

𝑘
]
−1

. (13)

{𝑀
𝑘
} is the sequence of real block diagonal matrices 𝑀

𝑘
=

diag{𝑚(𝑘)
1

, . . . , 𝑚(𝑘)
𝑛

}. Note that if𝑀
0
is a diagonalmatrix, then

all successive𝑀
𝑘
are diagonal too.The recursive relation (13)

is equivalent to 𝑛 scalar equations as follows:

𝑚(𝑘+1)
𝑖

= [3𝜆
𝑖
𝑚(𝑘)
𝑖

+ (𝑚(𝑘)
𝑖

)
3

] [𝜆
𝑖
+ 3(𝑚(𝑘)

𝑖
)
2

]
−1

, 1 ≤ 𝑖 ≤ 𝑛.

(14)

The sequence {𝑚(𝑘)
𝑖

} is real and it is obvious that

lim
𝑘→∞

𝑀
𝑘
= 𝐷1/2 = diag {√𝜆

1
, . . . , √𝜆

𝑛
} . (15)

Then the fact that 𝑀
𝑘

= 𝑉−1𝑋
𝑘
𝑉 yields lim

𝑘→∞
𝑋
𝑘

=

𝑉𝐷1/2𝑉−1 = 𝐴1/2. Therefore,

𝑀
𝑘+1

− 𝐷1/2 =
1

8
(3𝑀
𝑘
+ 𝐷1/2)𝑀−3

𝑘
(𝑀
𝑘
− 𝐷1/2)

3

. (16)

Using a transformation by 𝑉, we have

𝑋
𝑘+1

− 𝐴1/2 =
1

8
(3𝑋
𝑘
+ 𝐴1/2)𝑋−3

𝑘
(𝑋
𝑘
− 𝐴1/2)

3

. (17)

Taking norm of (17), we obtain that

󵄩󵄩󵄩󵄩󵄩𝑋𝑘+1 − 𝐴1/2
󵄩󵄩󵄩󵄩󵄩 ≤

1

8

󵄩󵄩󵄩󵄩󵄩3𝑋𝑘 + 𝐴1/2
󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩𝑋
−1

𝑘

󵄩󵄩󵄩󵄩󵄩
3󵄩󵄩󵄩󵄩󵄩𝑋𝑘 − 𝐴1/2

󵄩󵄩󵄩󵄩󵄩
3

. (18)

Therefore, the method (6) possesses the local third order of
convergence. Equation (11) reveals, in a metric space, how
convergence could be understood from (17). Furthermore
since𝐴 has no nonpositive real eigenvalues, so the mid-point
approach computes the principal matrix square root.

We remark that all iterates {𝑋
𝑘
} generated by (6) are well

defined when the function 𝑓(𝑥) = 𝑎 + 3𝑥2 is not zero for
all nonnegative numbers 𝑥. In fact, the initial values actually
determine a unique real number 𝑥

𝑘
for each 𝑘 ≥ 1. In general,

well defined means that some object was given a description
up to some arbitrary choices but that the arbitrary choices
have no material effect. Accordingly, using the initial choices
𝐴 and 𝐼, the sequence is well defined.

Under the assumptions of Theorem 2. (without consid-
ering the round-off error), and when 𝐴 is nonsingular, 𝑋

𝑘

tends to 𝐴1/2. This means that 𝑋−1
𝑘

tends to 𝐴−1/2, that is, the
principal inverse matrix square root.

Unfortunately, scheme (6) has turned out to be unstable
when the size of the input matrix 𝐴 is high or is ill-
conditioned. A similar reasoning as in [4] could reveal this
point using 𝑋

0
= 𝐴. Therefore, (6) can only be employed

for symmetric positive definite matrices with extremely well-
conditioned structure.

Iannazzo in [12] showed that in the case that 𝑋
0
is

the identity matrix, the Newton’s method converges for any
matrix𝐴 having eigenvalues with modulus less than 1 and with
positive real parts. Similar results can be deduced for (6).

In order to reach third order of convergence by the mid-
point approach in solving (2) as well as to obtain a stable
sequence, we use a fact (identity) in what follows:

sign([
0 𝐴
𝐼 0

]) = [
0 𝐴1/2

𝐴−1/2 0
] , (19)

which indicates an important relationship between matrix
square root 𝐴1/2 and the matrix sign function sign(𝐴).

We remark that (19) has an extra important advantage
which is the computation of the inverse matrix square root
along with the matrix square root at the same time.

Applying (5) to solve thematrix equation𝐺(𝑋) ≡ 𝑋2−𝐼 =
0 yields in its reciprocal form

𝑋
𝑘+1

= [𝐼 + 3𝑋2
𝑘
] [𝑋
𝑘
(3𝐼 + 𝑋2

𝑘
)]
−1

. (20)

This method which is similar to the application of Halley’s
method for solving 𝑋2 = 𝐼 (see, e.g., [13, 14]) computes the
matrix sign of the nonsingular matrix

[
0 𝐴
𝐼 0

] (21)

and in the convergence phase gives

[
0 𝐴1/2

𝐴−1/2 0
] . (22)

It is easy to deduce the following convergence theorem for
(20).

Theorem 3. Let𝐴 = [𝑎
𝑖,𝑗
]
𝑛×𝑛

have no eigenvalues onR−. If𝑋
0

is (21), then the iterative method (20) converges to (22).

Proof. The proof of this theorem is based on the diagonaliza-
tion property of the sign matrix 𝑆. It is hence omitted.

Lemma 4. The sequence {𝑋
𝑘
}𝑘=∞
𝑘=0

generated by (20) using
𝑋
0
= (21) is asymptotically stable.

Proof. Let Δ
𝑘
be the numerical perturbation introduced at

the 𝑘th iterate of (20). Next, one has

𝑋
𝑘
= 𝑋
𝑘
+ Δ
𝑘
. (23)
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Here, we perform a first-order error analysis; that is, we
formally neglect quadratic terms such as (Δ

𝑘
)2. We have

𝑋
𝑘+1

= [𝐼 + 3𝑋2
𝑘
] [𝑋
𝑘
(3𝐼 + 𝑋2

𝑘
)]
−1

= [𝐼 + 3(𝑋
𝑘
+ Δ
𝑘
)
2

] [(𝑋
𝑘
+ Δ
𝑘
) (3𝐼 + (𝑋

𝑘
+ Δ
𝑘
)
2

)]
−1

,

(24)

where the following identity will be used (for any nonsingular
matrix 𝐵 and the matrix 𝐶):

(𝐵 + 𝐶)
−1 ≈ 𝐵−1 − 𝐵−1𝐶𝐵−1. (25)

Further simplifying yields to

𝑋
𝑘+1

≈ (𝐼 + 3(𝑆 + Δ
𝑘
)
2

) ((𝑆 + Δ
𝑘
) (3𝐼 + (𝑆 + Δ

𝑘
)
2

))
−1

≈ (4𝐼 + 3𝑆Δ
𝑘
+ 3Δ
𝑘
𝑆) ((𝑆 + Δ

𝑘
) (4𝐼 + 𝑆Δ

𝑘
+ Δ
𝑘
𝑆))
−1

≈ (4𝐼 + 3𝑆Δ
𝑘
+ 3Δ
𝑘
𝑆) (

1

4
𝑆 −

5

16
𝑆Δ
𝑘
𝑆 −

1

16
Δ
𝑘
) ,

(26)

where 𝑆2 = 𝐼, 𝑆−1 = 𝑆, and, for enough large 𝑘, we have
considered 𝑋

𝑘
≈ 𝑆. After some algebraic manipulations and

using Δ
𝑘+1

= 𝑋
𝑘+1

− 𝑋
𝑘+1

= 𝑋
𝑘+1

− 𝑆, we conclude that

Δ
𝑘+1

≈
1

2
Δ
𝑘
−

1

2
𝑆Δ
𝑘
𝑆. (27)

Applying (27) recursively, and after some algebraic manipu-
lations, we have

󵄩󵄩󵄩󵄩Δ 𝑘+1
󵄩󵄩󵄩󵄩 ≤

1

2𝑘+1
󵄩󵄩󵄩󵄩Δ 0 − 𝑆Δ

0
𝑆
󵄩󵄩󵄩󵄩 . (28)

From (28), we can conclude that the perturbation at the iterate
𝑘 + 1 is bounded. Therefore, the sequence {𝑋

𝑘
} generated by

(20) is asymptotically stable.

The iteration (20) requires one matrix inversion per
computing step and obtains both 𝐴1/2 and 𝐴−1/2 which are
of interest in most practical problems. The implementation
of (20) for computing principal square roots requires a sharp
attention so as to save much effort. Since the intermediate
matrices are all sparse (at least half of the entries are zero),
then one could simply use sparse approximation techniques
to save up the memory and time.

2.1. A Novel Variant of Mid-Point Scheme. The analysis of the
method from applying mid-point method to 𝑋2 = 𝐴 was
of limited interest, because it yields an iteration method that
is not in general stable. The method with cubic convergence
derived via the matrix sign function (20) is more useful.
However, this method is somewhat not challenging, since it
could be a special case of a family of iteration methods due
to Kenney and Laub [15] and derived from the (explicitly
known) rational Padé approximations for ℎ(𝜁) = (1 − 𝜁)−1/2.
These methods are surveyed in Higham [1, Section 5.4]
and the application to the matrix square root is discussed

in Section 6.7. General results on the stability and rate of
convergence for this family ofmethods are given inTheorems
6.11 and 6.12 of [1].

To move forward, we recall that recently authors in [16]
proposed an efficient and interesting variant of mid-point
method for nonlinear equations and extended it for polar
decomposition, while authors of [17] developed that variant
for matrix sign function as follows:

𝑋
𝑘+1

= (𝐼 + 18𝑌
𝑘
+ 13𝑍

𝑘
) [𝑋
𝑘
(7𝐼 + 𝑌

𝑘
) (𝐼 + 3𝑌

𝑘
)]
−1

, (29)

where 𝑌
𝑘
= 𝑋
𝑘
𝑋
𝑘
, 𝑍
𝑘
= 𝑌
𝑘
𝑌
𝑘
.

Theorem 5. Let 𝐴 = [𝑎
𝑖,𝑗
]
𝑛×𝑛

have no eigenvalues on R−. If
one uses𝑋

0
= (21), then the iterative method (29) converges to

(22).

Proof. The proof of this theorem is similar to the proof of
Theorem 3.

Lemma 6. The sequence {𝑋
𝑘
}𝑘=∞
𝑘=0

generated by (29) using
𝑋
0
= (21) is asymptotically stable.

Proof. The proof of this lemma is similar to the proof of
Lemma 4.

Note that in general the inverse of the nonsingular matrix

[
0 𝐾
𝐻 0

] (30)

is of the form

[
0 𝐻−1

𝐾−1 0
] . (31)

In fact, all matrices 𝑋
𝑘
(7𝐼 + 𝑌

𝑘
)(𝐼 + 3𝑌

𝑘
) in (29) would be of

the form

[
0 †
‡ 0

] . (32)

This itself might be helpful to reduce the computational time
of matrix inversion problem.

An implementation of (29) to compute 𝐴1/2 and 𝐴−1/2

for a square matrix 𝐴 having no eigenvalues on R−, in the
programming package Mathematica, is brought forward as
follows:

sqrtMatrix2[A , maxIterations , tolerance ]
:= Module[{k = 0}, {n, n} = Dimensions[A];
Id = SparseArray[{{i , i } -> 1.}, {n, n}];
A1 = SparseArray@ArrayFlatten[{{0, A},
{Id, 0}}];
Y[0] = A1; R[0] = 1;
Id2 = SparseArray[{{i , i } -> 1.},
{2 n, 2 n}]; While[k < maxIterations && R[k]
>= tolerance,
Y2 = SparseArray[Y[k].Y[k]];
l1 = SparseArray[Y[k].(7 Id2 + Y2).(Id2 + 3 Y2)];
l2 = SparseArray@ArrayFlatten[{{0,
Inverse@l1[[n + 1; ; 2 n, 1; ; n]]},
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{Inverse@l1[[1; ; n, n + 1; ; 2 n]], 0}}];
Y[k + 1] = SparseArray[(Id2 + 18 Y2
+13 Y2.Y2).l2]; R[k + 1] = Norm[Y[k + 1] − Y[k],
Infinity]/Norm[Y[k + 1],
Infinity]; k ++]; Y[k]];
The above three-argument function sqrtMatrix2

computes the principal matrix square root and its
inverse at the same time by entering the three arguments
“matrix 𝐴 with no eigenvalue in R−,” “the maximum
number of iterations that (29) could take,” and the
tolerance of the stopping termination in the infinity norm
‖𝑋
𝑘+1

− 𝑋
𝑘
‖
∞

/‖𝑋
𝑘+1

‖
∞

≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. Clearly sqrtMatrix2
[A, maxIterations, tolerance] [[1; ; n, n + 1; ; 2n]] and
sqrtMatrix2[A, maxIterations, tolerance][[n + 1; ; 2n,

1; ; n]] give 𝐴1/2 and 𝐴−1/2, respectively, wherein 𝑛 is the size
of the input matrix 𝐴.

2.2. Extension to Matrix 𝑝th Root. Computing the 𝑝th roots
of matrices can arise in certain computations. The unique
matrix𝑋 such that𝑋𝑝 = 𝐴, (𝑝 ∈ Z+) and whose eigenvalues
are in the segment

𝑆 = {𝑧 ∈ C \ {0} :
󵄨󵄨󵄨󵄨arg (𝑧)

󵄨󵄨󵄨󵄨 <
𝜋

𝑝
} (33)

is called the principal 𝑝th root and is denoted by 𝐴1/𝑝.
Many authors have investigated methods for computing

𝑝th root of matrices. The methods are normally based on
iteration or Schur normal form; see, for example, [18] and the
references therein. In general, number of𝑝th roots for a given
matrix may be zero, finite, or infinite.

In this subsection, we provide a combination of Algo-
rithm 7.9 in [1] and our method (29) to compute principal
matrix 𝑝th root in what follows.

Given 𝐴 ∈ C𝑛×𝑛 having no eigenvalues on R−, 𝑝 > 2, the
following lines compute 𝑋 = 𝐴1/𝑝 using (29):

(1) compute 𝐴1/2 by (29) and set 𝐵 = 𝐴1/2;
(2) set𝐶 = 𝐵/𝜃, where 𝜃 is any upper bound for𝜌(𝐵) (e.g.,

𝜃 = ‖𝐵‖);
(3) use the coupled Newton iteration (35) with 𝑋

0
= 𝐼 to

compute

𝑋 = {
𝐶2/𝑝, 𝑝 even,
(𝐶1/𝑝)

2

, 𝑝 odd;
(34)

(4) 𝑋 ← ‖𝐵‖2/𝑝𝑋,

where

𝑋
𝑘+1

= 𝑋
𝑘
(

(𝑝 − 1) 𝐼 + 𝑀
𝑘

𝑝
) , 𝑋

0
= 𝐼,

𝑀
𝑘+1

= (
(𝑝 − 1)𝐼 + 𝑀

𝑘

𝑝
)
−𝑝

𝑀
𝑘
, 𝑀

0
= 𝐶,

(35)

when 𝑋
𝑘

→ 𝐴1/𝑝, 𝑀
𝑘

→ 𝐼.

3. Applications

We test the contributed method (29) denoted by PM1 using
Mathematica 8 in machine precision [19]. Apart from these
schemes, several iterative methods (3), (4), (20) denoted by
PM and the method of Meini originally developed in [20]
based on the cyclic reduction algorithm (CR) have been
considered as follows:

𝑍
0
= 2 (𝐼 + 𝐴) , 𝑌

0
= 𝐼 − 𝐴,

𝑌
𝑘+1

= −𝑌
𝑘
𝑍−1
𝑘

𝑌
𝑘
,

𝑍
𝑘+1

= 𝑍
𝑘
− 2𝑌
𝑘
𝑍−1
𝑘

𝑌
𝑘
,

𝑘 = 0, 1, . . . .

(36)

Thismethod generates the sequence {𝑍
𝑘
}, which converges to

4𝐴1/2. Note that (36) only computes 𝐴1/2 while (4), (20), and
(29) produce 𝐴1/2 and 𝐴−1/2.

Note that PM is equal to Halley’s third order method [14].
The computational order of convergence for computing

the principal matrix square root by matrix iterations can be
estimated by

𝜌 =
ln (

󵄩󵄩󵄩󵄩󵄩𝑋
2

𝑘
− 𝐴

󵄩󵄩󵄩󵄩󵄩
−1 󵄩󵄩󵄩󵄩󵄩𝑋
2

𝑘+1
− 𝐴

󵄩󵄩󵄩󵄩󵄩)

ln (
󵄩󵄩󵄩󵄩󵄩𝑋
2

𝑘−1
− 𝐴

󵄩󵄩󵄩󵄩󵄩
−1 󵄩󵄩󵄩󵄩𝑋
2

𝑘
− 𝐴

󵄩󵄩󵄩󵄩)
, (37)

wherein 𝑋
𝑘−1

, 𝑋
𝑘
, 𝑋
𝑘+1

are the last three approximations for
finding 𝐴1/2 in the convergence phase.

Example 7. As the first example, we consider a matrix

𝐴 = (

1

4
+

𝜋2

81

𝜋

9
𝜋

9
1

) , (38)

whereas its eigenvalues are {1.15549, 0.216359}.The principal
matrix square root of 𝐴 is

𝑋 = 𝐴1/2 ≈ (
0.566105 0.226654
0.226654 0.973975

) . (39)

We compare the behavior of differentmethods and report
the numerical results using 𝑙

∞
for all norms involved with the

stopping criterion

𝐸
𝑘+1

=

󵄩󵄩󵄩󵄩𝑋𝑘+1 − 𝑋
𝑘

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑋𝑘+1

󵄩󵄩󵄩󵄩∞
≤ 𝜖 = 10−8, (40)

in Table 1. The numerical results are in harmony with the
theoretical aspects of Section 2.

A differential equation is a mathematical equation for
an unknown function of one or several variables that relate
the values of the function itself and its derivatives of various
orders. A matrix differential equation contains more than
one function stacked into vector form with a matrix relating
the functions to their derivatives. We now illustrate the
application of the new solver for solving matrix differential
equations.
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Table 1: Results of comparisons for Example 7.

Newton DB CR PM PM1
IT 6 6 5 4 3
𝐸
𝑘+1

9.33948 × 10−15 9.31636 × 10−15 9.22389 × 10−15 3.29612 × 10−12 7.94163 × 10−11

𝜌 1.99877 1.99908 2.00031 2.97414 4.02282
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Figure 1: The comparison of different methods for finding 𝐴1/2 in
Example 8.

Example 8. In this test, we compare the behavior of different
methods for solving the following matrix differential equa-
tion:

𝜕2𝑦 (𝑡)

𝜕𝑡2
+ 𝐴𝑦 (𝑡) = 0,

𝑦 (0) = 𝑦
0

𝑦󸀠 (0) = 𝑦󸀠
0
(0) ,

(41)

where its exact solution can be expressed as

𝑦 (𝑡) = cos (𝐴1/2𝑡) 𝑦
0
(0) + 𝐴−1/2 sin (𝐴1/2𝑡) 𝑦󸀠

0
(0) , (42)

and the sparse SPD 100 × 100 matrix 𝐴 in Mathematica is
defined as follows:

A = SparseArray[{{i , i } -> 10., {i , j } /;
Abs[i − j] == 1 -> −5.}, {n, n}];

The interesting point in this example is that we need
both 𝐴1/2 and 𝐴−1/2 at the same time and this paves up the
application of (29). We compare the behavior of different
methods in Figure 1 for finding the principal matrix square
root of𝐴. The results are promising for the proposed method
in terms of the number of iterations. Figure 1 reveals that
the fastest method is (29), while the Newton’s matrix method
is numerically unstable and this makes it diverge after the
seventh iterate.

Note again that among the compared methods only the
method of DB and our proposed method PM1 are able to
find 𝐴−1/2 at the same time which is fruitful in solving

the matrix differential equation (41). Due to page limitation,
we could not present the final solution of (41) explicitly here.
Clearly, using the obtained principal matrix square root and
the principal inverse matrix square root produces the final
solution.

4. Conclusion

In this paper, we have developed and discussed the mid-
point iterative root-finding method for solving some special
and important matrix problems. We discussed under what
conditions the obtainedmethod is convergent to the principal
matrix square root, that is, when 𝐴 has no nonpositive real
eigenvalues.

Furthermore, an asymptotically stable variant of the mid-
point method using an identity between the matrix square
root and the matrix sign function has been derived. The
numerical experiments which we have performed, reported
at the end of the paper, show that the presented procedure is
a reliable tool for computing the principal matrix square root
and its inverse.
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