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We study the existence and monotone iteration of solutions for a third-order four-point boundary value problem. An existence
result of positive, concave, and pseudosymmetric solutions and itsmonotone iterative scheme are established by using themonotone
iterative technique. Meanwhile, as an application of our results, an example is given.

1. Introduction

The third-order equations arise in many areas of applied
mathematics and physics, such as the deflection of a curved
beam having a constant or varying cross section, three-layer
beam, electromagnetic waves, or gravity-driven flows [1], and
thus have been studied extensively in the literature; see [1–29]
and references therein. Recently, wide attention has been paid
to the third-order boundary value problems with nonlocal
boundary conditions; see [4, 6–9, 11, 12, 15, 16, 20, 23–30] and
references therein.

In 2006, using the monotone iterative technique, Zhou
and Ma [30] obtained the existence of positive solutions
and established a corresponding iterative scheme for the
following third-order 𝑝-Laplacian problem:

(𝜙𝑝 (𝑢
󸀠󸀠
(𝑡)))
󸀠

= 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) =

𝑚

∑

𝑖=1

𝛼𝑖𝑢 (𝜉𝑖) , 𝑢
󸀠
(𝜂) = 0,

𝑢
󸀠󸀠
(1) =

𝑛

∑

𝑖=1

𝛽𝑖𝑢
󸀠󸀠
(𝜃𝑖) .

(1)

In 2009, Sun et al. [23] studied the existence of positive
solutions for the following third-order 𝑝-Laplacian problem:

(𝜙𝑝 (𝑢
󸀠󸀠
(𝑡)))
󸀠

= 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠
(𝑡) , 𝑢
󸀠󸀠
(𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) =

𝑚

∑

𝑖=1

𝛼𝑖𝑢 (𝜉𝑖) , 𝑢
󸀠
(𝜂) = 0,

𝑢
󸀠󸀠
(1) =

𝑛

∑

𝑖=1

𝛽𝑖𝑢
󸀠󸀠
(𝜃𝑖) .

(2)

By applying a monotone iterative method, the authors
obtained the existence of positive solutions for the problem
and established iterative schemes for approximating the
solutions.

In 2011, Zhang [29] considered the following singular
third-order three-point boundary value problem:

𝑢
󸀠󸀠󸀠
(𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢
󸀠
(0) = 0, 𝑢

󸀠
(1) = 𝛼𝑢

󸀠
(𝜂) .

(3)
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The existence and uniqueness of solutions and corresponding
iterative scheme to the problem are obtained by applying the
cone theory and the Banach contraction mapping principle.

In 2013, Li et al. [7] studied third-order four-point bound-
ary value problem with 𝑝-Laplacian of the form

(𝜙𝑝 (𝑢
󸀠󸀠
(𝑡)))
󸀠

+ 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠
(𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 𝑢 (𝜂) , 𝑢
󸀠󸀠
(
1 + 𝜂

2
) = 0.

(4)

By using the monotone iterative technique, the existence
result of positive pseudosymmetric solutions and its mono-
tone iterative scheme are established for the problem.

Motivated by above works and [31], in this paper, we
consider the existence and monotone iteration of positive
pseudosymmetric solutions of the following third-order four-
point boundary value problem:

𝑢
󸀠󸀠󸀠
(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

󸀠
(𝑡) , 𝑢
󸀠󸀠
(𝑡)) = 0, 𝑡 ∈ (0, 1) ,

(5)

subject to boundary conditions

𝛼𝑢 (0) − 𝛽𝑢
󸀠
(0) = 0, 𝑢

󸀠
(𝜂) + 𝑢

󸀠
(1) = 0,

𝑢
󸀠󸀠
(
1 + 𝜂

2
) = 0,

(6)

where 𝜂 ∈ (0, 1) and𝛼 > 0,𝛽 ≥ 0. Herewe say𝑢∗(𝑡) is positive
solution of BVP (5), (6), if 𝑢∗(𝑡) is the solution of BVP (5), (6)
and satisfies 𝑢∗(𝑡) > 0 for 𝑡 ∈ (0, 1].

To the best of our knowledge, the pseudosymmetric
solutions for the second-order boundary value problem have
been studied by some authors, see [31–33]. And [7] is the only
one concernedwith the third-order boundary value problem.
We note that the nonlinearity of 𝑓 in our problem contains
explicitly 𝑡 and every derivatives of 𝑢 up to order two.

This work is organized as follows. In Section 2, some
notations and preliminaries are introduced. The main results
are discussed in Section 3. As an application of our results, an
example is given in the last section.

2. Preliminary

In this section, we give a definition and some lemmas which
help to simplify the presentation of our main result.

Definition 1 (see [33]). Let 𝑢 ∈ 𝐶 [0, 1], 𝜂 ∈ (0, 1). We say
𝑢 is pseudosymmetric about 𝜂 on [0, 1], if 𝑢 is symmetric on
[𝜂, 1]; that is,

𝑢 (𝑡) = 𝑢 (1 + 𝜂 − 𝑡) , ∀𝑡 ∈ [𝜂, 1] . (7)

Let the Banach space 𝐸 = 𝐶
2
[0, 1] be endowed with the

norm

‖𝑢‖ = max {‖𝑢‖∞,
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

,
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠󵄩󵄩󵄩󵄩󵄩∞

} , (8)

where ‖𝑢(𝑖)‖∞ = max0≤𝑡≤1|𝑢
(𝑖)
(𝑡)|, 𝑖 = 0, 1, 2. Define a cone

𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 | 𝑢 (𝑡) is nonnegative, concave, and

pseudosymmetric about 𝜂 on [0, 1]} ,

(9)

and by “≤” denote the induced partial ordering via cone 𝑃;
that is, for 𝑢1, 𝑢2 ∈ 𝐸, 𝑢1 ≤ 𝑢2 if and only if 𝑢2 − 𝑢1 ∈ 𝑃.

For convenience, we denote the following.

(𝐻0) 𝑞(𝑡) is a nonnegative continuous function
defined on (0, 1), 𝑞(𝑡) ̸≡ 0 on any subinterval of
(0, 1). In addition, ∫1

0
𝑞(𝑡)𝑑𝑡 < +∞ and

𝑞 (𝑡) = 𝑞 (1 + 𝜂 − 𝑡) on (𝜂, 1) . (10)

(𝐻1) 𝑓(𝑡, 𝑢, V, 𝑤) : [0, 1]×[0, +∞)×R×(−∞, 0] → R

is continuous,

𝑓 (𝑡, 𝑢, V, 𝑤) ≤ 0 on [0,
1 + 𝜂

2
] × [0, +∞)

2
× (−∞, 0] ,

(11)

and, for all (𝑡, 𝑢, V, 𝑤) ∈ [𝜂, 1]×[0, +∞)×R×(−∞, 0],

𝑓 (𝑡, 𝑢, V, 𝑤) = −𝑓 (1 + 𝜂 − 𝑡, 𝑢, −V, 𝑤) . (12)

(𝐻2) 𝑓(𝑡, 𝑢, V, 𝑤) is nonincreasing in 𝑢, nonincreas-
ing in V, and nondecreasing in 𝑤 on [0, (1 + 𝜂)/2] ×
[0, +∞)

2
× (−∞, 0].

(𝐻3) 𝑓(𝑡, 0, 0, 0) ̸≡ 0 on [0, 1].
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Now, we define an operator 𝑇 : 𝑃 → 𝐶
2
[0, 1] as follows:

for 𝑢 ∈ 𝑃,

(𝑇𝑢) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

∫

(1+𝜂)/2

𝜏

×∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

×𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

×∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

×𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

0 ≤ 𝑡 ≤
1 + 𝜂

2
,

∫

1

𝑡

∫

𝜏

(1+𝜂)/2

×∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

×𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+∫

𝜂

0

∫

(1+𝜂)/2

𝜏

×∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

×𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

×∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

×𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

1 + 𝜂

2
≤ 𝑡 ≤ 1.

(13)

Obviously, under assumptions (𝐻0) and (𝐻1), the operator 𝑇
is well defined.

Lemma 2. Assume that (𝐻0) and (𝐻1) hold. Then 𝑢 ∈ 𝑃 is a
solution of BVP (5), (6) if and only if 𝑢 ∈ 𝑃 is a fixed point of
𝑇.

Proof. At first we show the necessity. Suppose 𝑢 ∈ 𝑃 is a
solution of BVP (5), (6). Then, integrating (5) and using (6)
we infer that

𝑢
󸀠󸀠
(𝑡) + ∫

𝑡

(1+𝜂)/2

𝑞 (𝑟) 𝑓 (𝑟, 𝑢 (𝑟) , 𝑢
󸀠
(𝑟) , 𝑢
󸀠󸀠
(𝑟)) 𝑑𝑟 = 0,

𝑡 ∈ [0, 1] ,

(14)

𝛼𝑢 (0) − 𝛽𝑢
󸀠
(0) = 0, 𝑢

󸀠
(𝜂) + 𝑢

󸀠
(1) = 0. (15)

For 𝑡 ∈ [0, (1 + 𝜂)/2], integrating (14) on [𝑡, (1 + 𝜂)/2] and
taking into account 𝑢󸀠((1 + 𝜂)/2) = 0, we get

𝑢
󸀠
(𝑡) = ∫

(1+𝜂)/2

𝑡

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

𝑡 ∈ [0,
1 + 𝜂

2
] .

(16)

Again integrating (16) on [0, 𝑡] ⊂ [0, (1+𝜂)/2] one can obtain

𝑢 (𝑡) = ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ 𝑢 (0) .

(17)

But, from (15) and (16), it follows that

𝑢 (0)

=
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟.

(18)

Therefore, for 𝑡 ∈ [0, (1 + 𝜂)/2], one has

𝑢 (𝑡)

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟.

(19)
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For 𝑡 ∈ [(1 + 𝜂)/2, 1], integrating (14) on [(1 + 𝜂)/2, 𝑡], we get

𝑢
󸀠
(𝑡)

= −∫

𝑡

(1+𝜂)/2

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

𝑡 ∈ [
1 + 𝜂

2
, 1] .

(20)

Again integrating (20) on [𝑡, 1] ⊂ [(1 + 𝜂)/2, 1] one obtains

𝑢 (𝑡)

= ∫

1

𝑡

∫

𝜏

(1+𝜂)/2

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ 𝑢 (1) , 𝑡 ∈ [
1 + 𝜂

2
, 1] .

(21)

In particular, we have

𝑢 (
1 + 𝜂

2
)

= ∫

1

(1+𝜂)/2

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏 + 𝑢 (1) .

(22)

In (19), we take 𝑡 = (1 + 𝜂)/2, and then

𝑢 (
1 + 𝜂

2
)

= ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟.

(23)

From (22) and (23) one has
𝑢 (1)

= ∫

1

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟.

(24)
Hence from (21) it follows that
𝑢 (𝑡)

= ∫

1

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ ∫

1

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2
𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟

= ∫

1

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ (∫

𝜂

0

+∫

(1+𝜂)/2

𝜂

+∫

1

(1+𝜂)/2
)

× ∫

(1+𝜂)/2

𝜏

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2
𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

𝑡 ∈ [
1 + 𝜂

2
, 1] .

(25)



Abstract and Applied Analysis 5

Notice that from (𝐻0), (𝐻1), and the fact that 𝑢 ∈ 𝑃, we have

(∫

(1+𝜂)/2

𝜂

+∫

1

(1+𝜂)/2

)

× ∫

(1+𝜂)/2

𝜏

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏 = 0.

(26)

Therefore

𝑢 (𝑡)

= ∫

1

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2
𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟,

𝑡 ∈ [
1 + 𝜂

2
, 1] .

(27)

This together with (19) implies that 𝑢(𝑡) is fixed point of 𝑇.
The sufficiency, by direct computation and using the fact

that 𝑢 ∈ 𝑃, follows immediately.

The following lemmas are some properties of the operator
𝑇.

Lemma 3. Assume that (𝐻0) and (𝐻1) hold. Then 𝑇𝑃 ⊂ 𝑃.

Proof. From the definition of 𝑇, it is easy to check that 𝑇𝑢
is nonnegative on [0, 1] and satisfies (6) for all 𝑢 ∈ 𝑃.
Furthermore, since

(𝑇𝑢)
󸀠󸀠
(𝑡) = −∫

𝑡

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] ,

(28)

it follows that 𝑇𝑢 is concave on [0, 1].

Next we prove that 𝑇𝑢 is pseudosymmetric about 𝜂 on
[0, 1]. In fact, if 𝑡 ∈ [𝜂, (1+𝜂)/2], then 1+𝜂−𝑡 ∈ [(1+𝜂)/2, 1];
it follows that

(𝑇𝑢) (1 + 𝜂 − 𝑡)

= ∫

1

1+𝜂−𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

𝑟

(1+𝜂)/2
𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟.

(29)

Note that 𝑢 is pseudosymmetric about 𝜂 on [0, 1]; that is,
𝑢(𝑡) = 𝑢(1 + 𝜂 − 𝑡) for 𝑡 ∈ [𝜂, 1], and then

𝑢
󸀠
(𝑡) = −𝑢

󸀠
(1 + 𝜂 − 𝑡) , 𝑢

󸀠󸀠
(𝑡) = 𝑢

󸀠󸀠
(1 + 𝜂 − 𝑡) ,

𝑡 ∈ [𝜂, 1] .

(30)

Thus, for all 𝑟 ∈ [𝜂, 1], from (𝐻0) and (𝐻1), we have

∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠

= −∫

𝑟

(1+𝜂)/2

𝑞 (1 + 𝜂 − 𝑠)

× 𝑓 (1 + 𝜂 − 𝑠, 𝑢 (𝑠) , −𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠

= −∫

𝑟

(1+𝜂)/2

𝑞 (1 + 𝜂 − 𝑠)

× 𝑓 (1 + 𝜂 − 𝑠, 𝑢 (1 + 𝜂 − 𝑠) ,

𝑢
󸀠
(1 + 𝜂 − 𝑠) , 𝑢

󸀠󸀠
(1 + 𝜂 − 𝑠)) 𝑑𝑠

= ∫

1+𝜂−𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠.

(31)
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Hence, for 𝑡 ∈ [𝜂, (1 + 𝜂)/2],

∫

1

1+𝜂−𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

= −∫

1

1+𝜂−𝑡

∫

1+𝜂−𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

= −∫

𝜂

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑 (−𝜏)

= ∫

𝜂

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏.

(32)

From (29) and (32), it follows that

(𝑇𝑢) (1 + 𝜂 − 𝑡)

= ∫

𝜂

𝑡

∫

𝜏

(1+𝜂)/2

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+ ∫

𝜂

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟

= (𝑇𝑢) (𝑡) , 𝑡 ∈ [𝜂,
1 + 𝜂

2
] .

(33)

If 𝑡 ∈ [(1 + 𝜂)/2, 1], then 1 + 𝜂 − 𝑡 ∈ [𝜂, (1 + 𝜂)/2]. From (33),
we have

(𝑇𝑢) (1 + 𝜂 − 𝑡) = (𝑇𝑢) (1 + 𝜂 − (1 + 𝜂 − 𝑡)) = (𝑇𝑢) (𝑡) ,

𝑡 ∈ [
1 + 𝜂

2
, 1] .

(34)

This together with (33) implies

(𝑇𝑢) (𝑡) = (𝑇𝑢) (1 + 𝜂 − 𝑡) , 𝑡 ∈ [𝜂, 1] . (35)

In summary, 𝑇𝑢 ∈ 𝑃, and then 𝑇𝑃 ⊂ 𝑃.

The following lemma can be easily verified by a standard
argument.

Lemma 4. Assume that (𝐻0) and (𝐻1) hold.Then𝑇 : 𝑃 → 𝑃

is completely continuous.

Lemma 5. Assume that (𝐻0), (𝐻1), and (𝐻2) hold. Then 𝑇 is
nondecreasing on 𝑃; that is, 𝑇𝑢1 ≤ 𝑇𝑢2 for 𝑢1, 𝑢2 ∈ 𝑃 with
𝑢1 ≤ 𝑢2.

Proof. Let 𝑢1, 𝑢2 ∈ 𝑃 with 𝑢1 ≤ 𝑢2. Then 𝑢2 − 𝑢1 ∈ 𝑃. By
the definition of 𝑃, 𝑢2(𝑡) − 𝑢1(𝑡) is nonnegative, concave, and
pseudosymmetric about 𝜂 on [0, 1]. Therefore

𝑢
󸀠

2
(𝑡) ≥ 𝑢

󸀠

1
(𝑡) , 0 ≤ 𝑡 ≤

1 + 𝜂

2
;

𝑢
󸀠

2
(𝑡) ≤ 𝑢

󸀠

1
(𝑡) ,

1 + 𝜂

2
≤ 𝑡 ≤ 1,

𝑢
󸀠󸀠

2
(𝑡) ≤ 𝑢

󸀠󸀠

1
(𝑡) , 𝑡 ∈ [0, 1] .

(36)

From (𝐻2) and the definition of 𝑇 it follows that

(𝑇𝑢2) (𝑡) − (𝑇𝑢1) (𝑡)

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× [𝑓 (𝑠, 𝑢2 (𝑠) , 𝑢
󸀠

2
(𝑠) , 𝑢
󸀠󸀠

2
(𝑠))

−𝑓 (𝑠, 𝑢1 (𝑠) , 𝑢
󸀠

1
(𝑠) , 𝑢
󸀠󸀠

1
(𝑠))] 𝑑𝑠 𝑑𝑟 𝑑𝜏
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+
𝛽

𝛼
∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× [𝑓 (𝑠, 𝑢2 (𝑠) , 𝑢
󸀠

2
(𝑠) , 𝑢
󸀠󸀠

2
(𝑠))

−𝑓 (𝑠, 𝑢1 (𝑠) , 𝑢
󸀠

1
(𝑠) , 𝑢
󸀠󸀠

1
(𝑠))] 𝑑𝑠 𝑑𝑟

≥ 0, 𝑡 ∈ [0,
1 + 𝜂

2
] ,

(37)

(𝑇𝑢2)
󸀠󸀠
(𝑡) − (𝑇𝑢1)

󸀠󸀠
(𝑡)

= ∫

(1+𝜂)/2

𝑡

𝑞 (𝑠) [𝑓 (𝑠, 𝑢2 (𝑠) , 𝑢
󸀠

2
(𝑠) , 𝑢
󸀠󸀠

2
(𝑠))

−𝑓 (𝑠, 𝑢1 (𝑠) , 𝑢
󸀠

1
(𝑠) , 𝑢
󸀠󸀠

1
(𝑠))] 𝑑𝑠

≤ 0, 𝑡 ∈ [0,
1 + 𝜂

2
] .

(38)

We now prove that (37) and (38) hold for 𝑡 ∈ [(1+ 𝜂)/2, 1]. In
fact, if 𝑡 ∈ [(1 + 𝜂)/2, 1], then 1 + 𝜂 − 𝑡 ∈ [𝜂, (1 + 𝜂)/2] ⊂

[0, (1 + 𝜂)/2], and hence, from the fact that 𝑇𝑢1 and 𝑇𝑢2
are pseudosymmetric about 𝜂 on [0, 1], it follows that, for
𝑡 ∈ [(1 + 𝜂)/2, 1],

(𝑇𝑢2) (𝑡) − (𝑇𝑢1) (𝑡) = (𝑇𝑢2) (1 + 𝜂 − 𝑡)

− (𝑇𝑢1) (1 + 𝜂 − 𝑡) ≥ 0,

(𝑇𝑢2)
󸀠󸀠
(𝑡) − (𝑇𝑢1)

󸀠󸀠
(𝑡) = (𝑇𝑢2)

󸀠󸀠
(1 + 𝜂 − 𝑡)

− (𝑇𝑢1)
󸀠󸀠
(1 + 𝜂 − 𝑡) ≤ 0.

(39)

So

(𝑇𝑢2) (𝑡) − (𝑇𝑢1) (𝑡) ≥ 0, 𝑡 ∈ [0, 1] , (40)

and (𝑇𝑢2)(𝑡) − (𝑇𝑢1)(𝑡) is concave on [0, 1].
Finally, we show that (𝑇𝑢2)(𝑡) − (𝑇𝑢1)(𝑡) is pseudosym-

metric about 𝜂 on [0, 1]. To do this we let 𝑆(𝑡) = (𝑇𝑢2)(𝑡) −

(𝑇𝑢1)(𝑡). We note that 𝑇𝑢1, 𝑇𝑢2 ∈ 𝑃, (𝑇𝑢1)(𝑡) and (𝑇𝑢2)(𝑡)
are pseudosymmetric about 𝜂 on [0, 1], and thus

𝑆 (1 + 𝜂 − 𝑡) = (𝑇𝑢2) (1 + 𝜂 − 𝑡) − (𝑇𝑢1) (1 + 𝜂 − 𝑡)

= (𝑇𝑢2) (𝑡) − (𝑇𝑢1) (𝑡) = 𝑆 (𝑡) ,

𝑡 ∈ [𝜂, 1] .

(41)

In summary, 𝑇𝑢2 − 𝑇𝑢1 ∈ 𝑃; that is, 𝑇𝑢1 ≤ 𝑇𝑢2.

3. Main Result

Now we establish existence result of positive, concave,
and pseudosymmetric solutions and its monotone iterative
scheme for BVP (5), (6).

Theorem 6. Assume that (𝐻0), (𝐻1), (𝐻2), and (𝐻3) hold.
Suppose also that there exist two positive numbers 𝑎 and 𝑏with
𝑎 > 𝑏 such that

inf
𝑡∈(0,(1+𝜂)/2]

𝑞 (𝑡) 𝑓 (𝑡, 𝑎, 𝑎, −𝑎) ≥ −𝑏, (42)

where 𝑎, 𝑏 satisfy

𝑎 ≥ max
{

{

{

𝛽(1 + 𝜂)
2

4𝛼
(
7

8
−

1

2(1 + 𝜂)
2
)

−1

,

(1 + 𝜂)
3

8
+
𝛽(1 + 𝜂)

2

4𝛼
, (1 + 𝜂)

2
}𝑏.

(43)

Then BVP (5), (6) has positive, concave, and pseudosymmetric
solutions 𝑤∗, V∗ ∈ 𝑃 with

󵄩󵄩󵄩󵄩𝑤
∗󵄩󵄩󵄩󵄩∞ ≤ 𝑎, lim

𝑛→∞
𝑇
𝑛
𝑤0 = 𝑤

∗
,

𝑤ℎ𝑒𝑟𝑒 𝑤0 (𝑡) =
𝑎𝑡 (1 + 𝜂 − 𝑡)

2(1 + 𝜂)
2

+
7

8
𝑎;

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩∞ ≤ 𝑎, lim

𝑛→∞
𝑇
𝑛V0 = V∗, 𝑤ℎ𝑒𝑟𝑒 V0 (𝑡) ≡ 0.

(44)

Proof. We denote 𝑃𝑎 = {𝑢 ∈ 𝑃 : ‖𝑢‖ ≤ 𝑎}. In what follows,
we first show that 𝑇𝑃𝑎 ⊂ 𝑃𝑎. To do this, let 𝑢 ∈ 𝑃𝑎; then
obviously

0 ≤ 𝑢 (𝑡) ≤ max
𝑡∈[0,1]

𝑢 (𝑡) = ‖𝑢‖∞ ≤ 𝑎, 𝑡 ∈ [0, 1] ,

max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
= −min
𝑡∈[0,1]

𝑢
󸀠󸀠
(𝑡) ≤ 𝑎.

(45)

Also since 𝑢(𝑡) is concave and pseudosymmetric about 𝜂 on
[0, 1], then 𝑢󸀠(𝑡) is nonincreasing on [0, 1], 𝑢󸀠((1 + 𝜂)/2) = 0,
and 𝑢󸀠(𝑡) = −𝑢󸀠(1+𝜂−𝑡) for 𝑡 ∈ [(1+𝜂)/2, 1]. Hence 𝑢󸀠(𝑡) ≥ 0
for 𝑡 ∈ [0, (1+𝜂)/2] and |𝑢󸀠(𝑡)| achieve themaximum at 𝑡 = 0.
Consequently

max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
= 𝑢
󸀠
(0) ≤ 𝑎. (46)

From (𝐻0), (𝐻2), and (42), it follows that

𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠
(𝑡) , 𝑢
󸀠󸀠
(𝑡))

≥ 𝑞 (𝑡) 𝑓 (𝑡, 𝑎, 𝑎, −𝑎)

≥ inf
𝑡∈(0,(1+𝜂)/2]

𝑞 (𝑡) 𝑓 (𝑡, 𝑎, 𝑎, −𝑎)

≥ −𝑏, 𝑡 ∈ (0,
1 + 𝜂

2
] .

(47)
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This together with Lemma 3 implies

‖𝑇𝑢‖∞

= (𝑇𝑢) (
1 + 𝜂

2
)

= ∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟

≤
(1 + 𝜂)

3

8
𝑏 +

𝛽(1 + 𝜂)
2

4𝛼
𝑏 ≤ 𝑎,

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑢)
󸀠󵄩󵄩󵄩󵄩󵄩∞

= (𝑇𝑢)
󸀠
(0)

= ∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠 𝑑𝑟

≤
(1 + 𝜂)

2

8
𝑏 < 𝑎,

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑢)
󸀠󸀠󵄩󵄩󵄩󵄩󵄩∞

= max
𝑡∈(0,(1+𝜂)/2]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− ∫

𝑡

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −∫

(1+𝜂)/2

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠
(𝑠) , 𝑢
󸀠󸀠
(𝑠)) 𝑑𝑠

≤
1 + 𝜂

2
𝑏 < 𝑎.

(48)

Hence ‖𝑇𝑢‖ ≤ 𝑎, and thus 𝑇𝑃𝑎 ⊂ 𝑃𝑎.
Let𝑤0(𝑡) = (𝑎𝑡(1+𝜂−𝑡)/2(1+𝜂)

2
)+(7/8)𝑎, 𝑡 ∈ [0, 1].Then

‖𝑤0‖ = 𝑎, and thus 𝑤0 ∈ 𝑃𝑎. Let 𝑤1 = 𝑇𝑤0; then 𝑤1 ∈ 𝑃𝑎.
Define iterative sequence {𝑤𝑛} as follows:

𝑤𝑛+1 = 𝑇𝑤𝑛 = 𝑇
𝑛+1
𝑤0, 𝑛 = 0, 1, 2, . . . . (49)

Since 𝑇𝑃𝑎 ⊂ 𝑃𝑎, we have 𝑤𝑛 ∈ 𝑃𝑎, 𝑛 = 0, 1, 2, . . .. From
Lemma 4, {𝑤𝑛}

∞

𝑛=1
has a convergent subsequence {𝑤𝑛𝑘}

∞

𝑘=1
and

there exists 𝑤∗ ∈ 𝑃𝑎 such that

𝑤
(𝑖)

𝑛𝑘
(𝑡) 󴁂󴀱 𝑤

∗(𝑖)
(𝑡) (𝑘 󳨀→ ∞) on [0, 1] , 𝑖 = 0, 1, 2.

(50)

From the definition of 𝑇 and (42), for 𝑡 ∈ [0, (1 + 𝜂)/2], we
have

𝑤1 (𝑡)

= 𝑇𝑤0 (𝑡)

= ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠)

× 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤
󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠)) 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

× ∫

𝑟

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤
󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠)) 𝑑𝑠 𝑑𝑟

≤ ∫

𝑡

0

∫

(1+𝜂)/2

𝜏

× ∫

(1+𝜂)/2

𝑟

𝑏 𝑑𝑠 𝑑𝑟 𝑑𝜏

+
𝛽

𝛼
∫

(1+𝜂)/2

0

∫

(1+𝜂)/2

𝑟

𝑏 𝑑𝑠 𝑑𝑟

= 𝑏∫

𝑡

0

∫

(1+𝜂)/2

𝜏

(
1 + 𝜂

2
− 𝑟) 𝑑𝑟 𝑑𝜏 +

𝛽

𝛼
𝑏

× ∫

(1+𝜂)/2

0

(
1 + 𝜂

2
− 𝑟) 𝑑𝑟

≤ 𝑏∫

𝑡

0

1 + 𝜂

2
𝑑𝜏 +

𝛽

𝛼
𝑏(
1 + 𝜂

2
)

2

≤
𝑎𝑡

2 (1 + 𝜂)
−

𝑎𝑡
2

2(1 + 𝜂)
2
+
7

8
𝑎

=
𝑎𝑡 (1 + 𝜂 − 𝑡)

2(1 + 𝜂)
2

+
7

8
𝑎 = 𝑤0 (𝑡) ,

(51)

and, for 𝑡 ∈ [(1 + 𝜂)/2, 1], we have

𝑤1 (𝑡) = 𝑤1 (1 + 𝜂 − 𝑡) ≤ 𝑤0 (1 + 𝜂 − 𝑡) = 𝑤0 (𝑡) . (52)

Thus 𝑤0(𝑡) − 𝑤1(𝑡) ≥ 0, 𝑡 ∈ [0, 1].
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On the other hand, since, for 𝑡 ∈ [0, (1 + 𝜂)/2], we have

𝑤
󸀠󸀠

0
(𝑡) − 𝑤

󸀠󸀠

1
(𝑡)

= −
𝑎

(1 + 𝜂)
2

+ ∫

𝑡

(1+𝜂)/2

𝑞 (𝑠) 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤
󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠)) 𝑑𝑠

≤ −
𝑎

(1 + 𝜂)
2
+ 𝑏 ≤ 0,

(53)

and, for 𝑡 ∈ [(1 + 𝜂)/2, 1], we have

𝑤
󸀠󸀠

0
(𝑡) − 𝑤

󸀠󸀠

1
(𝑡) = 𝑤

󸀠󸀠

0
(1 + 𝜂 − 𝑡) − 𝑤

󸀠󸀠

1
(1 + 𝜂 − 𝑡) ≤ 0, (54)

it follows that𝑤󸀠󸀠
0
(𝑡)−𝑤

󸀠󸀠

1
(𝑡) ≤ 0 on [0, 1]. Hence𝑤0(𝑡)−𝑤1(𝑡)

is concave on [0, 1].
Also, since, for 𝑡 ∈ [𝜂, 1],

𝑤0 (𝑡) − 𝑤1 (𝑡) = 𝑤0 (1 + 𝜂 − 𝑡) − 𝑤1 (1 + 𝜂 − 𝑡) , (55)

then 𝑤0(𝑡) − 𝑤1(𝑡) is pseudosymmetric about 𝜂 on [0, 1]. So
𝑤1 ≤ 𝑤0, and hence from Lemma 5 it follows that 𝑇𝑤1 ≤
𝑇𝑤0; that is,𝑤2 ≤ 𝑤1. By induction, we can show without any
difficulty that

𝑤𝑛+1 ≤ 𝑤𝑛, 𝑛 = 0, 1, 2, . . . ; (56)

that is,

𝑤𝑛 − 𝑤𝑛+1 ∈ 𝑃, 𝑛 = 0, 1, 2, . . . . (57)

Thus 𝑤𝑛(𝑡) − 𝑤𝑛+1(𝑡) (𝑛 = 0, 1, 2, . . .) is concave on [0, 1] and
pseudosymmetric about 𝜂 on [0, 1]; consequently

𝑤
󸀠

𝑛
(𝑡) ≥ 𝑤

󸀠

𝑛+1
(𝑡) , 𝑡 ∈ [0,

1 + 𝜂

2
] , 𝑛 = 0, 1, 2, . . . , (58)

𝑤
󸀠

𝑛
(𝑡) ≤ 𝑤

󸀠

𝑛+1
(𝑡) , 𝑡 ∈ [

1 + 𝜂

2
, 1] , 𝑛 = 0, 1, 2, . . . , (59)

𝑤
󸀠󸀠

𝑛
(𝑡) ≤ 𝑤

󸀠󸀠

𝑛+1
(𝑡) , 𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . . (60)

From (50)–(60), it follows that

𝑤
(𝑖)

𝑛
(𝑡) 󴁂󴀱 𝑤

∗(𝑖)
(𝑡) (𝑛 󳨀→ ∞) on [0, 1] , 𝑖 = 0, 1, 2;

(61)

that is, 𝑤𝑛 → 𝑤
∗
(𝑛 → ∞). Let 𝑛 → ∞ in (49) to obtain

𝑤
∗
= 𝑇𝑤
∗
. (62)

Also, from (𝐻3), we have𝑤
∗
((1+𝜂)/2) = max𝑡∈[0,1]𝑤

∗
(𝑡) > 0.

This together with the concavity of 𝑤∗ implies that

𝑤
∗
(𝑡) ≥

𝑤
∗
((1 + 𝜂) /2) − 0

((1 + 𝜂) /2) − 0
𝑡 =

2

1 + 𝜂
𝑤
∗
(
1 + 𝜂

2
) 𝑡 > 0,

𝑡 ∈ (0,
1 + 𝜂

2
] .

(63)

Again using the fact that 𝑤∗ is pseudosymmetric about 𝜂 on
[0, 1], we have

𝑤
∗
(𝑡) > 0, 𝑡 ∈ [

1 + 𝜂

2
, 1] . (64)

Hence 𝑤∗(𝑡) > 0 on (0, 1]. Therefore, from Lemma 2, 𝑤∗ is a
concave pseudosymmetric positive solution of BVP (5), (6).

Let V0(𝑡) ≡ 0 on [0, 1]; then V0 ∈ 𝑃𝑎. Set

V𝑛+1 = 𝑇V𝑛, 𝑛 = 0, 1, 2, . . . . (65)

Then, from Lemma 3, the sequence {V𝑛} is well defined. Since
V1 ∈ 𝑃𝑎 ⊂ 𝑃, we have V1 ≥ 0 = V0, and thus from Lemma 5 it
follows that

V2 = 𝑇V1 ≥ 𝑇V0 = V1. (66)

By induction we can show that

V𝑛+1 ≥ V𝑛, 𝑛 = 0, 1, 2, . . . . (67)

Similarly to {𝑤𝑛}, we can show that there exists V∗ ∈ 𝑃𝑎 such
that V𝑛 → V∗ (𝑛 → ∞). Taking limit in (65), we get V∗ =
𝑇V∗. Obviously, V(𝑡) > 0 on (0, 1]. Therefore, from Lemma 2,
V∗ is a concave pseudosymmetric positive solution of BVP (5),
(6). This completes the proof of the theorem.

4. An Example

Consider the following third-order four-point boundary
value problem:

𝑢
󸀠󸀠󸀠
(𝑡) + 3 (3𝑡 − 2)

× (𝑒
−𝑢/8

+
64

64 + 𝑢󸀠2
+ arctan 𝑢

󸀠󸀠

16
+
𝜋

2
) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) −
1

2
𝑢
󸀠
(0) = 0,

𝑢
󸀠
(
1

3
) + 𝑢
󸀠
(1) = 0,

𝑢
󸀠󸀠
(
2

3
) = 0.

(68)

Let

𝑓 (𝑡, 𝑢, V, 𝑤)

= 3 (3𝑡 − 2) (𝑒
−𝑢/8

+
64

64 + V2
+ arctan 𝑤

16
+
𝜋

2
) .

(69)

Then 𝑓 ∈ 𝐶 ([0, 1] × [0, +∞) × R × (−∞, 0],R). It is easy to
see that BVP (68) corresponds to BVP (5), (6) when 𝑞(𝑡) ≡ 1,
𝛼 = 1, 𝛽 = 1/2, and 𝜂 = 1/3.
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Next we verify that all conditions of Theorem 6 are
satisfied. In fact, obviously the conditions (𝐻0), (𝐻2), and
(𝐻3) hold. In addition, by the definition of 𝑓, we have

𝑓 (1 + 𝜂 − 𝑡, 𝑢, −V, 𝑤)

= 3 (2 − 3𝑡) (𝑒
−𝑢/8

+
64

64 + (−V)2
+ arctan 𝑤

16
+
𝜋

2
)

= −3 (3𝑡 − 2) (𝑒
−𝑢/8

+
64

64 + V2
+ arctan 𝑤

16
+
𝜋

2
)

= −𝑓 (𝑡, 𝑢, V, 𝑤) , 𝑡 ∈ [
1

3
, 1] ,

𝑓 (𝑡, 𝑢, V, 𝑤) ≤ 0 on [0,
2

3
] × [0, +∞)

2
× (−∞, 0] .

(70)

Hence the condition (𝐻1) is also satisfied.
Now, we take 𝑎 = 16, 𝑏 = 9. Then

max
{

{

{

𝛽(1 + 𝜂)
2

4𝛼
(
7

8
−

1

2(1 + 𝜂)
2
)

−1

,

(1 + 𝜂)
3

8
+
𝛽(1 + 𝜂)

2

4𝛼
, (1 + 𝜂)

2}

}

}

=
16

9
,

(71)

and thus

𝑎 = max
{

{

{

𝛽(1 + 𝜂)
2

4𝛼
(
7

8
−

1

2(1 + 𝜂)
2
)

−1

,

(1 + 𝜂)
3

8
+
𝛽(1 + 𝜂)

2

4𝛼
, (1 + 𝜂)

2}

}

}

𝑏.

(72)

On the other hand, we also have

inf
𝑡∈(0,2/3]

𝑓 (𝑡, 16, 16, −16)

= inf
𝑡∈(0,2/3]

3 (3𝑡 − 2) (𝑒
−2
+

64

64 + 162
+ arctan (−1) + 𝜋

2
)

> −9 = −𝑏.

(73)

In summary, all conditions ofTheorem 6 are satisfied. Hence,
from Theorem 6, BVP (68) has concave pseudosymmetric
positive solution 𝑤∗, V∗ ∈ 𝑃 with

󵄩󵄩󵄩󵄩𝑤
∗󵄩󵄩󵄩󵄩∞ ≤ 16, lim

𝑛→∞
𝑇
𝑛
𝑤0 = 𝑤

∗
,

where 𝑤0 (𝑡) = −
9

2
𝑡
2
+ 6𝑡 + 14;

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩∞ ≤ 16, lim

𝑛→∞
𝑇
𝑛V0 = V∗, where V0 (𝑡) ≡ 0.

(74)
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[22] I. Rachůnková, “Periodic boundary value problems for third-
order differential equations,” Mathematica Slovaca, vol. 41, no.
3, pp. 241–248, 1991.

[23] B. Sun, J. Zhao, P. Yang, and W. Ge, “Successive iteration
and positive solutions for a third-order multipoint generalized
right-focal boundary value problem with p-Laplacian,” Nonlin-
ear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp.
220–230, 2009.

[24] Y. Sun, “Positive solutions for third-order three-point nonho-
mogeneous boundary value problems,” Applied Mathematics
Letters, vol. 22, no. 1, pp. 45–51, 2009.

[25] F. Wang and Y. Cui, “On the existence of solutions for singular
boundary value problem of third-order differential equations,”
Mathematica Slovaca, vol. 60, no. 4, pp. 485–494, 2010.

[26] Y. Wang and W. Ge, “Existence of solutions for a third order
differential equation with integral boundary conditions,” Com-
puters andMathematics with Applications, vol. 53, no. 1, pp. 144–
154, 2007.

[27] P. J. Y. Wong, “Constant-sign solutions for a system of third-
order generalized right focal problems,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 63, no. 5–7, pp. e2153–
e2163, 2005.

[28] Q. Yao, “Positive solutions of singular third-order three-point
boundary value problems,” Journal of Mathematical Analysis
and Applications, vol. 354, no. 1, pp. 207–212, 2009.

[29] P. Zhang, “Iterative solutions of singular boundary value
problems of third-order differential equation,” Boundary Value
Problems, vol. 2011, Article ID 483057, 10 pages, 2011.

[30] C. Zhou and D. Ma, “Existence and iteration of positive
solutions for a generalized right-focal boundary value problem
with p-Laplacian operator,” Journal of Mathematical Analysis
and Applications, vol. 324, no. 1, pp. 409–424, 2006.

[31] H. Pang, M. Feng, and W. Ge, “Existence and monotone
iteration of positive solutions for a three-point boundary value

problem,” Applied Mathematics Letters, vol. 21, no. 7, pp. 656–
661, 2008.

[32] B. Sun and W. Ge, “Successive iteration and positive pseudo-
symmetric solutions for a three-point second-order p-Laplacian
boundary value problems,” Applied Mathematics and Computa-
tion, vol. 188, no. 2, pp. 1772–1779, 2007.

[33] R. Avery and J. Henderson, “Existence of three positive pseudo-
symmetric solutions for a one dimensional p-Laplacian,” Jour-
nal of Mathematical Analysis and Applications, vol. 277, no. 2,
pp. 395–404, 2003.


