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We present a real symmetric tridiagonalmatrix of order 𝑛whose eigenvalues are {2𝑘}𝑛−1
𝑘=0

which also satisfies the additional condition
that its leading principle submatrix has a uniformly interlaced spectrum, {2𝑙 + 1}𝑛−2

𝑙=0
. Thematrix entries are explicit functions of the

size 𝑛, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-
mass inverse problem incorporating the test matrix is provided.

1. Introduction

We are motivated by the following inverse eigenvalue prob-
lem first studied by Hochstadt in 1967 [1]. Given two strictly
interlaced sequences of real values,

(𝜆
𝑖
)
𝑛

1
, (𝜆

𝑜

𝑖
)
𝑛−1

1
, (1)

with

𝜆
1
< 𝜆
𝑜
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< 𝜆
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< 𝜆
𝑜

2
< ⋅ ⋅ ⋅ < 𝜆

𝑛−1
< 𝜆
𝑜

𝑛−1
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𝑛
, (2)

find the 𝑛 × 𝑛, real, symmetric, and tridiagonal matrix, 𝐵,
such that 𝜆(𝐵) = (𝜆

𝑖
)
𝑛

1
are the eigenvalues of 𝐵, while 𝜆(𝐵𝑜) =

(𝜆
𝑜

𝑖
)
𝑛−1

1
are the eigenvalues of the leading principal submatrix

of 𝐵, where 𝐵𝑜 is obtained from 𝐵 by deleting the last row and
column. The condition on the dataset (2) is both necessary
and sufficient for the existence of a unique Jacobian matrix
solution to the problem (see [2], Section 4.3 or [3], Section 1.2
for a history of the problem and Section 3 of this paper for
additional background theory).

Anumber of different constructive procedures to produce
the exact solution of this inverse problem have been devel-
oped [4–9], but none provide an explicit characterization of
the entries of the solution matrix, 𝐵, in terms of the dataset
(2). Computer implementation of these procedures intro-
duces floating point error and associated numerical stability

issues. Loss of significant figures due to accumulation of
round-off error makes some of the known solution pro-
cedures undesirable. Determining the extent of round-off
error in the numerical solution, 𝐵, computed from a given
dataset requires a priori knowledge of the exact solution 𝐵.
In the absence of this knowledge, an additional numerical
computation of the forward problem to find the spectra 𝜆(𝐵)
and 𝜆(𝐵𝑜) allows comparison to the original data.

Test matrices, with known entries and known spectra,
are therefore helpful in comparing the efficacy of the various
solution algorithms in regard to stability. It is particularly
helpful when test matrices can be produced at arbitrary size.
However some existent test matrices given as a function of
matrix size 𝑛 suffer the following trait: when ordered by
size, the minimum spacing between consecutive eigenval-
ues is a decreasing function of 𝑛. This trait is potentially
undesirable since the reciprocal of this minimum separation
between eigenvalues can be thought of as a condition number
on the sensitivity of the eigenvectors (invariant subspaces)
to perturbation (see [10], Theorem 8.1.12). Some of the
algorithms for the inverse problem seem to suffer from
this form of ill-conditioning. From a motivation to avoid
confounding the numerical stability issue with potential
increased ill-conditioning of the dataset as a function of 𝑛,
the authors developed a test matrix which has equally spaced
and uniformly interlaced simple eigenvalues.
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In Section 2 we provide the explicit entries of such a
matrix,𝐴(𝑛). We claim that its eigenvalues are equally spaced
as

𝜆 (𝐴 (𝑛)) = {0, 2, 4, . . . , 2𝑛 − 2} , (3)

while its leading principal submatrix 𝐴𝑜(𝑛) has eigenvalues
uniformly interlaced with those of 𝐴(𝑛), namely,

𝜆 (𝐴
𝑜

(𝑛)) = {1, 3, 5, . . . , 2𝑛 − 3} . (4)

A short proof verifies the claims. In Section 3 we present
some background theory concerning Jacobian matrices, and
in Section 4 we apply our test matrix to a model of a physical
spring-mass system, an application which leads naturally to
Jacobian matrices.

2. Main Result

Let 𝐴(𝑛) be an 𝑛 × 𝑛 real symmetric tridiagonal matrix with
entries

𝑎
𝑖𝑖
= 𝑛 − 1, 𝑖 = 1, 2, . . . , 𝑛

𝑎
𝑖,𝑖+1

=

1

2

√𝑖 (2𝑛 − 𝑖 − 1), 𝑖 = 1, 2, . . . , 𝑛 − 2

𝑎
𝑛−1,𝑛

= √
𝑛 (𝑛 − 1)

2

(5)

and let 𝐴𝑜(𝑛) be the principal submatrix of 𝐴(𝑛), that is, the
(𝑛 − 1) × (𝑛 − 1) matrix obtained from 𝐴(𝑛) by deleting the
last row and column.

Theorem 1. 𝐴(𝑛) has eigenvalues {0, 2, . . . , 2𝑛 − 2} and 𝐴𝑜(𝑛)
has eigenvalues {1, 3, . . . , 2𝑛 − 3}.

Proof. By induction, when 𝑛 = 2

𝐴 (2) = [

1 1

1 1
] (6)

has eigenvalues 0,2, and 𝐴𝑜(2) has eigenvalue 1. Assume the
result holds for 𝑛. So 𝐴(𝑛) has eigenvalues {0, 2, . . . , 2𝑛 − 2}.
Let 𝐵 = 𝐴

𝑜

(𝑛 + 1) − 𝑛𝐼 and 𝐴 = 𝐴(𝑛) − (𝑛 − 1)𝐼. Then 𝐵 and
𝐴 are similar via 𝐵𝑅 = 𝑅𝐴 where 𝑅 is upper triangular, with
entries

𝑟
𝑖𝑗
=

{
{
{
{
{

{
{
{
{
{

{

√

𝑘 (𝑗 − 1)! (2𝑛 − 𝑗 − 1)!

(𝑖 − 1)! (2𝑛 − 𝑖 + 1)!

𝑖, 𝑗 have same parity and 𝑗 ≥ 𝑖,

0 otherwise,

(7)

𝑘 = {

2 𝑗 ̸= 𝑛,

1 𝑗 = 𝑛.

(8)

Therefore 𝐴𝑜(𝑛 + 1) has eigenvalues {1, 3, . . . , 2𝑛 − 1}.

Now we show that 𝐴(𝑛 + 1) has eigenvalues {2𝑛} ∪

{eigenvalues of 𝐴(𝑛)}. Let 𝐶 = 𝐴(𝑛 + 1) − 2𝑛𝐼. Factorize
𝐶 = −𝐿𝐿

𝑇, where 𝐿 is lower bidiagonal. We find

𝑙
𝑖𝑖
= √

2𝑛 − 𝑖 + 1

2

; 𝑙
𝑖+1,𝑖

= −√
𝑖

2

, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑙
𝑛𝑛
= √

𝑛 + 1

2

; 𝑙
𝑛+1,𝑛

= −√𝑛; 𝑙
𝑛+1,𝑛+1

= 0.

(9)

Therefore𝐶 has eigenvalue 0 and thus𝐴(𝑛+1) has eigenvalue
2𝑛.

Define𝐷 = 2𝑛𝐼 − 𝐿
𝑇

𝐿; so

𝐷 = [

𝐷
𝑜

𝑂

𝑂 2𝑛
] (10)

with

𝑑
𝑖𝑖
=

2𝑛 − 1

2

; 𝑑
𝑖+1,𝑖

=

1

2

√𝑖 (2𝑛 − 𝑖), 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑑
𝑛𝑛
=

𝑛 − 1

2

.

(11)

Now 𝐷
𝑜 has the same eigenvalues as 𝐴(𝑛) since they are

similar matrices via 𝑆𝐷𝑜 = 𝐴(𝑛)𝑆 where 𝑆 is upper triangular
with entries

𝑠
𝑖𝑖
= √2𝑛 − 𝑖; 𝑠

𝑖,𝑖+1
= −√𝑖, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑠
𝑛𝑛
= √2𝑛; 𝑠

𝑖𝑗
= 0, otherwise.

(12)

Therefore 𝐴(𝑛 + 1) has eigenvalues {2𝑛} ∪ {eigenvalues
of 𝐴(𝑛)}.

3. Discussion

A real, symmetric 𝑛 × 𝑛 tridiagonal matrix 𝐵 is called a
Jacobian matrix when its off-diagonal elements are nonzero
([2], page 46). We write

𝐵 =

[

[
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[

[

[

[

[
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𝑎
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𝑎
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d
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𝑎
𝑛−1

−𝑏
𝑛−1

0 0 ⋅ ⋅ ⋅ 0 −𝑏
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𝑎
𝑛

]

]

]

]

]

]

]

]

]

]

. (13)

The similarity transformation, 𝐵 = 𝑆
−1

𝐵𝑆, where 𝑆 = 𝑆
−1

is the alternating sign matrix, 𝑆 = diag(1, −1, 1, −1, . . . ,
(−1)
𝑛−1

), produces a Jacobian matrix 𝐵 with entries same as
𝐵 except for the sign of the off-diagonal elements, which are
all reversed. If instead we use the self-inverse sign matrix,

𝑆
(𝑚)

= diag(1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−1, −1, . . . , −1), to transform 𝐵, then 𝐵

is a Jacobian matrix identical to 𝐵 except for a switched sign
on the𝑚th off-diagonal element. In regard to the spectrum of
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the matrix, there is therefore no loss of generality in accepting
the convention that a Jacobian matrix is expressed with
negative off-diagonal elements; that is, 𝑏

𝑖
> 0, for all 𝑖 =

1, . . . , 𝑛 − 1 in (13).
While Cauchy’s interlace theorem [11] guarantees that

the eigenvalues of any square, real, symmetric (or even
Hermitian) matrix will interlace those of its leading (or
trailing) principal submatrix, the interlacing cannot be strict,
in general [12]. However, specializing to the case of Jacobian
matrices restricts the interlacing to strict inequalities. That
is, Jacobian matrices possess distinct eigenvalues, and the
eigenvalues of the leading (or trailing) principal submatrix
are also distinct and strictly interlace those of the original
matrix (see [2], Theorems 3.1.3 and 3.1.4. See also [10]
exercise P8.4.1, page 475: when a tridiagonal matrix has
algebraically multiple eigenvalues, the matrix fails to be

Jacobian). The inverse problem is also well-posed: there is
a unique (up to the signs of the off-diagonal elements)
Jacobian matrix 𝐵 having given spectra specified as per (2)
(see [2], Theorem 4.2.1, noting that the interlaced spectrum
of 𝑛 − 1 eigenvalues (𝜆𝑜)𝑛−1

1
can be used to calculate the last

components of each of the 𝑛 orthonormalized eigenvectors
of 𝐵 via equation 4.3.31). Therefore, the matrix 𝐴(𝑛) in
Theorem 1 is the unique Jacobian matrix with eigenvalues
equally spaced by two, starting with smallest eigenvalue
zero, whose leading principal submatrix has eigenvalues also
equally spaced by two, starting with smallest eigenvalue one.

As a consequence of the theorem, we now have the
following.

Corollary 2. The eigenvalues of the real, symmetric 𝑛 × 𝑛

tridiagonal matrix

𝑊
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑎 −𝑐√
𝑛 − 1

2

0 0 ⋅ ⋅ ⋅ 0

−𝑐√
𝑛 − 1

2

𝑎 −𝑐√
2𝑛 − 3

2

0 ⋅ ⋅ ⋅ 0

0 −𝑐√
2𝑛 − 3

2

𝑎 −𝑐√
3𝑛 − 6

2

d
...

0 0 d d d 0

...
... d −𝑐√

(𝑛 − 2) (𝑛 + 1)

4

𝑎 −𝑐√
𝑛 (𝑛 − 1)

2

0 0 ⋅ ⋅ ⋅ 0 −𝑐√
𝑛 (𝑛 − 1)

2

𝑎

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(14)

form the arithmetic sequence,

𝜆 (𝑊
𝑛
) = {𝑎

𝑜
+ 2𝑐(𝑖 − 1)}

𝑛

𝑖=1
, (15)

while the eigenvalues of its leading principal submatrix, 𝑊𝑜
𝑛
,

form the uniformly interlaced sequence

𝜆 (𝑊
𝑜

𝑛
) = {𝑎

𝑜
+ 𝑐 + 2𝑐(𝑖 − 1)}

𝑛−1

𝑖=1
,

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑎
𝑜
+ 𝑐 (𝑛 − 1) .

(16)

The form and properties of 𝑊
𝑛
were first hypothesised

by the third author while programming Fortran algorithms
to reconstruct band matrices from spectral data [3]. Initial
attempts to prove the spectral properties of𝑊

𝑛
by both he and

his graduate supervisor (the first author) failed. Later, the first
author produced the short induction argument ofTheorem 1,
in July 1996. Alas, the fax on which the argument was
communicated to the third author was lost in a cross-border
academic move, and so the matter languished until recently.
In summer of 2013, the second and third authors assigned the
problem of this paper as a summer undergraduate research
project, “hypothesize, and then verify, if possible, the explicit
entries of an 𝑛 × 𝑛 symmetric, tridiagonal matrix with
eigenvalues (15), such that the eigenvalues of its principal
submatrix are (16).” Meanwhile the misplaced fax from the
first author’s proof was found during an office cleaning. The
student, A.De Serre-Rothney, was able to complete both parts

of the problem. His proof is now found in [13].Though longer
than the one presented here, his proof utilizes the spectral
properties of another tridiagonal (nonsymmetric)matrix, the
so-calledKac-Sylvester matrix,𝐾

𝑛
, of size (𝑛+1)×(𝑛+1), with

eigenvalues 𝜆(𝐾
𝑛
) = {2𝑘 − 𝑛}

𝑛

𝑘=0
[14–17]:

𝐾
𝑛
=

[

[

[

[

[

[

[

[

[

[

𝑛 𝑛 − 1 0 0 ⋅ ⋅ ⋅ 0

1 𝑛 𝑛 − 2 0 ⋅ ⋅ ⋅ 0

0 2 𝑛 𝑛 − 3 d
...

0 0 d d d 0

...
... d 𝑛 − 2 𝑛 1

0 0 ⋅ ⋅ ⋅ 0 𝑛 − 1 𝑛

]

]

]

]

]

]

]

]

]

]

. (17)

The referee has pointed out the connection between
the spectra (3) and (4) and the classical orthogonal Hahn
polynomials of a discrete variable [18]. Using (3) as nodes
with weights

𝜔
𝑖−1

=

∏
𝑛−1

𝑗=1
(𝜆
𝑖
− 𝜆
𝑜

𝑗
)

∏
𝑛

1≤𝑗≤𝑛, 𝑗 ̸= 𝑖
(𝜆
𝑖
− 𝜆
𝑗
)

, 𝑖 = 1, . . . , 𝑛, (18)

determine the Hahn polynomials, ℎ−1/2,−1/2
𝑘

(𝑥/2, 𝑛), 𝑘 =

0, 1, . . . , 𝑛 − 1, whose three-term recurrence coefficients are
the entries of a Jacobi matrix with eigenvalues (3), hence
similar to our 𝐴(𝑛).
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k1 k2 k3 k4 kn

m1 m2 m3 mn

· · ·

(a)

k1 k2 k3 k4 kn

m1 m2 m3

· · ·

(b)

Figure 1: Spring-mass system: (a) right hand end free, (b) right hand
end fixed.

4. A Spring-Mass Model Problem

One simple problem where symmetric tridiagonal matrices
arise naturally is the inverse problem for the spring-mass
system shown in Figure 1. In this case the squares of the
natural frequencies of free vibration for system (a) are the
eigenvalues of a Jacobi matrix 𝐵, while those for system (b)
are the eigenvalues of its principal minor 𝐵𝑜.

Specifically, let 𝐶 be the stiffness matrix, and let𝑀 be the
mass (inertia) matrix for the system in Figure 1(a):

𝐶 =

[

[

[

[

[

[

𝑘
1
+ 𝑘
2

−𝑘
2

−𝑘
2

𝑘
2
+ 𝑘
3

−𝑘
3

⋅ ⋅ ⋅

−𝑘
𝑛−1

𝑘
𝑛−1

+ 𝑘
𝑛
−𝑘
𝑛

−𝑘
𝑛

𝑘
𝑛

]

]

]

]

]

]

,

𝑀 =

[

[

[

[

[

[

𝑚
1

𝑚
2

⋅

𝑚
𝑛−1

𝑚
𝑛

]

]

]

]

]

]

.

(19)

Then the squares of the natural frequencies of the systems
in Figure 1 satisfy (𝐶 − 𝜆𝑀)x = 0 and (𝐶𝑜 − 𝜆

𝑜

𝑀
𝑜

)x𝑜 = 0,
where 𝐶𝑜 is obtained from 𝐶 by deleting the last row and
column. The solutions can be ordered 0 < 𝜆

1
< 𝜆
0

1
<

𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑛−1
< 𝜆
𝑜

𝑛−1
< 𝜆
𝑛
. We can also rewrite the

systems as (𝐵 − 𝜆𝐼)u = 0 and (𝐵
𝑜

− 𝜆
𝑜

𝐼)u𝑜 = 0 where
𝐵 = 𝑀

−1/2

𝐶𝑀
−1/2 and u = 𝑀

1/2x. Note that the squares of
the natural frequencies of the systems are the eigenvalues of
𝐵 and 𝐵𝑜.

Suppose that the matrix 𝐵(𝑛) := 𝐴(𝑛) + 𝐼 was to
arise from a spring-mass system like in Figure 1; that is,
we are considering the system whose squares of the natural
frequencies are the equally spaced values {1, 3, . . . , 2𝑛 − 1}

for system (a) and {2, 4, . . . , 2𝑛 − 2} for system (b). The
system in Figure 1 is the simplest possible discrete model
for a rod vibrating in longitudinal motion and more closely
approximates the continuous system as 𝑛 → ∞. In a physical
system, we expect clustering of frequencies. The test matrix
𝐵(𝑛) does not share this phenomenon and so we expect the
stiffnesses andmasses associatedwith it to become unrealistic

as 𝑛 → ∞. To demonstrate this, we will explicitly solve for
the stiffnesses and masses associated with 𝐵(𝑛).

With 𝐵(𝑛) = 𝐴(𝑛) + 𝐼 we note that

𝐵
𝑖𝑖
= 𝑎
𝑖
= 𝑛, 𝑖 = 1, . . . , 𝑛

𝐵
𝑖,𝑖+1

= −𝑏
𝑖
= −

1

2

√𝑖 (2𝑛 − 𝑖 − 1), 𝑖 = 1, . . . 𝑛 − 2

𝐵
𝑛−1,𝑛

= −𝑏
𝑛−1

= −√
𝑛 (𝑛 − 1)

2

(20)

with eigenvalues {2𝑘 + 1}
𝑛−1

𝑘=0
, while 𝐵

𝑜

(𝑛) has eigenvalues
{2𝑘}
𝑛−1

𝑘=1
.

Let u = ⟨𝑚
1/2

1
, . . . , 𝑚

1/2

𝑛
⟩

𝑇

with 𝑚
𝑖
> 0 for all 𝑖. Let 𝑚 =

∑
𝑛

𝑖=1
𝑚
𝑖
= u𝑇u. We wish to solve

𝐵 (𝑛) u = ⟨𝑚
−1/2

1
𝑘
𝑖
, 0, . . . , 0⟩

𝑇 (21)

for (𝑚
𝑖
)
𝑛

𝑖=1
and 𝑘

1
.

The bottom, 𝑛th, equation is

𝑚
1/2

𝑛−1
=

−𝑛𝑚
1/2

𝑛

−𝑏
𝑛−1

= √2(

𝑛

𝑛 − 1

)

1/2

𝛼, (22)

where we choose 𝑚1/2
𝑛

= 𝛼. We will thus be able to express
𝑚
1/2

𝑖
in terms of the scaling parameter 𝛼.

The (𝑛 − 1)th equation is

𝑚
1/2

𝑛−2
=

𝛼𝑏
𝑛−1

− 𝑛𝑚
1/2

𝑛

−𝑏
𝑛−2

= 𝛼

√𝑛 (𝑛 − 1) /2 − 𝑛√2√𝑛/ (𝑛 − 1)

− (1/2)√(𝑛 − 2) (𝑛 + 1)

= 𝛼√2(

𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)

)

1/2

.

(23)

The 𝑖th equation, for 𝑖 ̸= 1, 𝑛 − 1, 𝑛, is

−𝑏
𝑖−1
𝑚
1/2

𝑚−𝑖
+ 𝑛𝑚
1/2

𝑖
− 𝑏
𝑖
𝑚
1/2

𝑖+1
= 0. (24)

Then

𝑚
1/2

𝑖−1
=

2𝑛𝑚
1/2

𝑖
− (𝑖(2𝑛 − 𝑖 − 1))

1/2

𝑚
1/2

𝑖+1

((𝑖 − 1)(2𝑛 − 𝑖))
1/2

. (25)

Now suppose

𝑚
1/2

𝑛−𝑖
= 𝛼√2(

𝑛 (𝑛 + 1) ⋅ ⋅ ⋅ (𝑛 + 𝑖 − 1)

(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑖)

)

1/2

(26)
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for 𝑖 = 1, 2, . . . , 𝑗. Then cases 𝑖 = 1, 2 are already verified, and
the strong inductive assumption applied in (25) with 𝑖 − 1 =

𝑛 − (𝑗 + 1) implies 𝑖 = 𝑛 − 𝑗. So

𝑚
𝑛−𝑗−1

= (2𝑛𝛼√2(

𝑛(𝑛 + 1) ⋅ ⋅ ⋅ (𝑛 + 𝑗 − 1)

(𝑛 − 1)(𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑗)

)

1/2

−((𝑛 − 𝑗)(𝑛 + 𝑗 − 1))
1/2

𝑚
1/2

𝑛−𝑗+1
)

× (((𝑛 − 𝑗 − 1)(𝑛 + 𝑗))
1/2

)

−1

= 𝛼√2(

𝑛 (𝑛 + 1) ⋅ ⋅ ⋅ (𝑛 + 𝑗 − 1)

(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑗)

)

1/2

× [(2𝑛(

𝑛 + 𝑗 − 1

𝑛 − 𝑗

)

1/2

−((𝑛 − 𝑗)(𝑛 + 𝑗 − 1))
1/2

)

×(((𝑛 − 𝑗 − 1)(𝑛 + 𝑗))
1/2

)

−1

]

= 𝛼√2(

𝑛 (𝑛 + 1) ⋅ ⋅ ⋅ (𝑛 + 𝑗 − 1)

(𝑛 − 1)(𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑗)

)

1/2

× [

2𝑛 − (𝑛 − 𝑗)

((𝑛 − 𝑗 − 1)(𝑛 + 𝑗))
1/2

]

= 𝛼√2(

𝑛 (𝑛 + 1) ⋅ ⋅ ⋅ (𝑛 + 𝑗 − 1)(𝑛 + 𝑗)

(𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑗) (𝑛 − 𝑗 − 1)

)

1/2

(27)

which verifies, by strong induction, the closed form for 𝑚1/2
𝑛−𝑖

given by (26).
Finally, the first equation of (21) is

𝑛𝑚
1/2

1
− 𝑏
1
𝑚
1/2

2
= 𝑚
−1/2

1
𝑘
1

(28)

and so

𝑘
1
= 𝑛𝑚
1
− 𝑏
1
(𝑚
1
𝑚
2
)
1/2

. (29)

We note that the values𝑚
𝑛−𝑖

can be written as

𝑚
𝑛−𝑖

= 2𝛼
2 (𝑛 + 𝑖 − 1)! (𝑛 − 𝑖 − 1)!

((𝑛 − 1)!)
2

(30)

for 𝑖 = 1, . . . , 𝑛 − 1, and

𝑚
𝑛
= 𝛼
2 (𝑛 + 0 − 1)! (𝑛 − 0 − 1)!

((𝑛 − 1)!)
2

= 𝛼
2

. (31)

Since 𝐶 = 𝑀
1/2

𝐵(𝑛)𝑀
1/2, then

𝑘
𝑖+1

= −𝐶
𝑖,𝑖+1

= −𝑚
1/2

𝑛−(𝑛−𝑖)
𝐵
𝑖,𝑖+1

𝑚
1/2

𝑛−(𝑛−𝑖−1)

= 𝛼
2

(

𝑖! (2𝑛 − 𝑖 − 1)!

((𝑛 − 1)!)
2

) ,

(32)

𝑘
1
= 𝛼
2 (2𝑛 − 1)!

((𝑛 − 1)!)
2
. (33)

From (26)we have𝑚
1
/𝑚
𝑛
= 2((2𝑛−2)!/((𝑛 − 1)!)

2

)which
goes to infinity as 𝑛 → ∞ and from (32) we see that 𝑘

1
/𝑘
𝑛
=

(2𝑛 − 1)!/(𝑛 − 1)!𝑛! which also goes to infinity as 𝑛 → ∞.
This is not a model of a physical rod, as expected.

5. Conclusion

A family of 𝑛 × 𝑛 symmetric tridiagonal matrices,𝑊
𝑛
, whose

eigenvalues are simple and uniformly spaced and whose
leading principle submatrix has uniformly interlaced, simple
eigenvalues has been presented (14). Members of the family
are characterized by a specified smallest eigenvalue 𝑎

𝑜
and gap

size 𝑐 between eigenvalues.Thematrices are termed Jacobian,
since the off-diagonal entries are all nonzero. The matrix
entries are explicit functions of the size 𝑛, 𝑎

𝑜
, and 𝑐; so the

matrices can be used as a test matrices for eigenproblems,
both forward and inverse. The matrix 𝑊

𝑛
for specified

smallest eigenvalue 𝑎
𝑜
and gap 𝑐 is unique up to the signs of

the off-diagonal elements.
In Section 4, the form of 𝑊

𝑛
was used as an explicit

solution of a spring-mass vibration model (Figure 1), and
the inverse problem to determine the lumped masses and
spring stiffnesses was solved explicitly. Both the lumped
masses𝑚

𝑛−𝑖
given by (30) and spring stiffnesses 𝑘

𝑛−𝑖
from (32)

show superexponential growth. Consequently 𝑚
𝑛
/𝑚
1
, 𝑘
𝑛
/𝑘
1

become vanishingly small as 𝑛 → ∞. As a result, the spring-
mass system of Figure 1 cannot be used as a discretizedmodel
for a physical rod in longitudinal vibration, as the model
becomes unrealistic in the limit as 𝑛 → ∞.
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