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The European option pricing problem with transaction costs is investigated for a risky asset price model with Lévy jump. By the
aid of arbitrage pricing theory and the generalized Itô formula (which includes Poisson jump), the explicit solution to the risk asset
price model is given. According to arbitrage-free principle, we first discretize the continuous-time model. Then, in each small time
interval, the transaction costs are introduced. By using theΔ-hedging strategy, the explicit solutions of the European options pricing
formula with transaction costs are given for the risky asset price model with Lévy jump.

1. Introduction

Recently, the stochastic differential equation theory has found
more andmore applications inmany fields such as finance [1–
12] and control and filtering [13–25]. The option pricing with
transaction costs has been one of the important problems
and received increasing research attention. The development
of the option pricing problem is reviewed as follows. In
[1], the hedge strategy has been introduced initially to
solve the option pricing problem with transaction costs. In
[5], the option pricing problem with transaction costs has
been transformed into a stochastic optimal control issue.
Subsequently, a perfect hedge strategy has been proposed in
[8] to deal with CRR model with transaction costs and a
discrete algorithm has been given. In [26], the transaction
costs of European options have been proposed on the discrete
time points for three scenarios, that is, without transaction
costs, with proportional transaction costs and with concave
transaction costs. By using the stochastic dominance theory,
in [7], the upper/lower limit has been given for European
call option with transaction costs as well as its corresponding
volatility. In order to avoid solving a complicated stochastic
optimization problem, in [27], an effective algorithm on

Markov chain has been proposed to obtain the European
option price. For the case of random volatility, a nonlinear
differential equation has been constructed in [28] to price the
European option with transaction costs. Some efforts have
also been made on the American option pricing problems.
For example, the American option pricing problem has been
studied for the jumpdiffusionmodel with transaction costs in
[29], where the problem addressed has first been transformed
into a binary stochastic control problem and then solved
numerically.

It should be pointed out that, in the frictional financial
market, the models mentioned above have not taken the
risks into account. For the pricing problem with transaction
costs, we also need to consider the risk asset pricing model.
Since the B-S [2] option pricing formula put forward, option
pricing has been an important part of financial mathematics.
As early as 1976, Merton [11] noticed that when some
major message occurred, the risky asset price’s changing was
discontinuous and pointed out that the risky asset was driven
by a Brownian motion and a jump diffusion model. Aase
[30] presented Itô process and random point process mixture
model. Scott [4] built a jump-diffusionmodel with stochastic
volatility and interest rate and gave the European option
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pricing formula. Chan’s [31] cameupwith Lévy processmodel
and obtained the option pricing formula.

In this paper, the risk asset pricingmodel with Lévy jump
diffusion is considered and, following Leland’s [1] idea, a
more realistic pricing formula is given that hasmore practical
potential.

2. Problem Formulation and Preliminaries

The B-S model has been proposed in [2] where the B-S
model based European option pricing formula has been
obtained. In [11], the Poisson jump diffusion process has
been introduced to represent the stock price process, and
the corresponding European option pricing formula has been
derived. In this paper, wewill investigate the European option
pricing problem for the Merton’s model.

The following assumption is needed.

Assumption 1. Suppose that the following conditions are
satisfied:

(i) risk-free rate 𝑟 is a constant;
(ii) there is no dividend;
(iii) there are no transaction costs;
(iv) there is no arbitrage opportunity.

Consider the following asset model [32]:

𝑑𝑆 (𝑡)

𝑆 (𝑡−)
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 (𝑡) + ∫

∞

−1

𝑦𝑁 (𝑑𝑡, 𝑑𝑦) , (1)

where 𝑆(𝑡) is the price of risky asset; suppose 𝑆(𝑡) has a jump
at time 𝑡, and then 𝑦 is the size of this jump, which is also
𝑦 = 𝑆(𝑡)−𝑆(𝑡−); 𝜇 represents the rate of return; 𝜎 denotes the
volatility; 𝑊(𝑡) is a standard Brownian motion; 𝑁(𝑑𝑡, 𝑑𝑦) is
a Poisson measure with its intensity V(𝑑𝑡, 𝑑𝑦).

From (1), we further have

𝑆 (𝑡) = 𝑆 (0) exp {𝜎𝑊 (𝑡) + (𝑟 −
1

2
𝜎
2

) 𝑡}

𝑁(𝑡)

∏

𝑖=1

(𝑈
𝑖
+ 1) ,

(2)

where 𝑟 is risk-free rate.
We introduce the following lemmas that will be used to

obtain the main results.

Lemma 2 (see [33]). Let 𝑌(𝑡) ∈ R be a Lévy-Itô integration
described as follows:

𝑑𝑌 (𝑡) = 𝐺 (𝑡) 𝑑𝑡 + 𝐹 (𝑡) 𝑑𝑊 (𝑡) + ∫
|𝑥|<1

𝐻(𝑡, 𝑥) �̃� (𝑑𝑡, 𝑑𝑥)

+ ∫
|𝑥|≥1

𝐾 (𝑡, 𝑥)𝑁 (𝑑𝑡, 𝑑𝑥) ,

(3)

where �̃�(𝑑𝑡, 𝑑𝑥) is a compensated Poisson measure and the
continuous part 𝑌𝑐(𝑡) of process satisfies

𝑑𝑌
𝑐

(𝑡) = 𝐺 (𝑡) 𝑑𝑡 + 𝐹 (𝑡) 𝑑𝑊 (𝑡) . (4)

Then, for any 𝑓 ∈ 𝐶
2

(R ×R), 𝑡 ≥ 0, 𝑓(𝑌(𝑡)) is also a Lévy-Itô
integration and satisfies

𝑓 (𝑌 (𝑡)) − 𝑓 (𝑌 (0))

= ∫

𝑡

0

𝜕𝑓

𝜕𝑦
(𝑌 (𝑠−)) 𝑑𝑌

𝑐

(𝑠)

+
1

2
∫

𝑡

0

𝜕
2

𝑓

𝜕𝑦2
(𝑌 (𝑠−)) 𝑑 [𝑌

𝑐

, 𝑌
𝑐

] (𝑠)

+ ∫

𝑡

0

∫
|𝑥|≥1

[𝑓 (𝑌 (𝑠−) + 𝐾 (𝑠, 𝑥)) − 𝑓 (𝑌 (𝑠−))]𝑁 (𝑑𝑠, 𝑑𝑥)

+ ∫

𝑡

0

∫
|𝑥|≥1

[𝑓 (𝑌 (𝑠−) + 𝐻 (𝑠, 𝑥)) − 𝑓 (𝑌 (𝑠−))] �̃� (𝑑𝑠, 𝑑𝑥)

+ ∫

𝑡

0

∫
|𝑥|<1

[𝑓 (𝑌 (𝑠−) + 𝐻 (𝑠, 𝑥)) − 𝑓 (𝑌 (𝑠−))

−𝐻 (𝑠, 𝑥)
𝜕𝑓

𝜕𝑦
(𝑌 (𝑠−))] V (𝑑𝑥) 𝑑𝑠.

(5)

Set

∫

∞

0

∫

∞

−1

𝑦𝑁 (𝑑𝑡, 𝑑𝑦) =

𝑁(𝑡)

∑

𝑗=1

𝑈
𝑗
, (6)

with probability, and denote

𝑁(𝑡) =

𝑀

∑

𝑚=1

𝑁
𝑚
(𝑡) , (7)

where𝑁(𝑡),𝑁
1
(𝑡), . . . , 𝑁

𝑀
(𝑡), 0 ≤ 𝑡 ≤ 𝑇 are Poisson processes

with respective intensities 𝜆, 𝜆
1
, . . . , 𝜆

𝑀
and (𝑈

𝑗
)
𝑗≥1

represents
the independent and identically distributed random variables
taking values in the set {𝑦

1
, . . . , 𝑦

𝑀
}.

Defining 𝑝(𝑦
𝑚
) = 𝜆
𝑚
/𝜆, we have the following lemma.

Lemma 3 (see [34]). Let 𝑉(𝑡, 𝑆) be the risk-neutral price of a
European call paying 𝑉(𝑇, 𝑆(𝑇)) = (𝑆(𝑇) −𝐾)

+

= max(𝑆(𝑇) −
𝐾, 0) at time 𝑇, where𝐾 is a strike price. If the risky asset price
model satisfies (1), then we have

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2

+ 𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)] − 𝑟𝑉 = 0.

(8)

Lemma 4. One has ∀0 ≤ 𝑡 < 𝑇, the call option’s final value
condition is 𝑉(𝑇, 𝑆(𝑇)) = (𝑆(𝑇) − 𝐾)

+

= max(𝑆(𝑇) − 𝐾, 0).
Then, with the help of Lemma 2.3.4 in [34], one has

𝑉 (𝑡, 𝑆 (𝑡)) = 𝑐 (𝑡, 𝑆 (𝑡)) , (9)
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where 𝑐(𝑡, 𝑆(𝑡)) is the call option price given by

𝑐 (𝑡, 𝑆 (𝑡)) =

∞

∑

𝑗=0

𝑒
−𝜆(𝑇−𝑡)

𝜆
𝑗

(𝑇 − 𝑡)
𝑗

𝑗!
E [𝑥𝑁 (𝑑

+
(𝜏, 𝑥))

−𝐾𝑒
−𝑟𝜏

𝑁(𝑑
−
(𝜏, 𝑥))] ,

(10)

with 𝑑
±
= (log(𝑆/𝐾) + (𝑟 ± (1/2)𝜎

2

)(𝑇 − 𝑡))/𝜎√𝑇 − 𝑡.

In an unstable financial market, investors use some
financial instruments to hedge risks and price its value. The
basic idea is to construct a portfolio to hedge risks. Similarly,
Δ-hedge can also be used in the process of pricing option.
We take the risky asset price model following the geometric
Brownian motion, for example, and describe the Δ-hedge
idea about the derivation of option pricing formula.

Assume that the asset price model is given by
𝑑𝑆 (𝑡)

𝑆 (𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 (𝑡) . (11)

Suppose that there is no arbitrage opportunity. We con-
struct a portfolio Π := 𝑉 − Δ𝑆, where Δ is the shares of risky
asset. Note that, in the interval (𝑡, 𝑡 + 𝑑𝑡), Π is not risky and
the Δ is not changeable. Hence, the return rate of portfolio
can be given by

Π
𝑡+𝑑𝑡

− Π
𝑡

Π
𝑡

= 𝑟𝑑𝑡. (12)

Then, we have
𝑑𝑉 (𝑡) − Δ𝑑𝑆 (𝑡) = 𝑟Π

𝑡
𝑑𝑡 = 𝑟 (𝑉 − Δ𝑆) 𝑑𝑡. (13)

On the other hand, by using Itô formula, it can be
obtained that

𝑑𝑉 (𝑡) = (
𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
+ 𝜇𝑆

𝜕𝑉

𝜕𝑆
)𝑑𝑡 + 𝜎𝑆

𝜕𝑉

𝜕𝑆
𝑑𝑊 (𝑡) .

(14)
Substituting (14) into (13) yields

(
𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
+ 𝜇𝑆

𝜕𝑉

𝜕𝑆
− Δ𝜇𝑆)𝑑𝑡

+ (𝜎𝑆
𝜕𝑉

𝜕𝑆
− Δ𝜎𝑆)𝑑𝑊(𝑡) = 𝑟 (𝑉 − Δ𝑆) 𝑑𝑡.

(15)

Since there is no risk, the coefficient of the random term
𝑑𝑊(𝑡) in (15) should be zero; that is,

Δ =
𝜕𝑉

𝜕𝑆
, (16)

and hence (15) becomes
𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0. (17)

Finally, according to the condition of the final value
𝑉(𝑇, 𝑆(𝑇)) = (𝑆(𝑇) − 𝐾)

+

= max(𝑆(𝑇) − 𝐾, 0), we can obtain
the call option pricing formula

𝑐 (𝑡, 𝑆) = 𝑆𝑁 (𝑑
+
) − 𝐾𝑒

−𝑟(𝑇−𝑡)

𝑁(𝑑
−
) , (18)

where 𝑑
±
= (log(𝑆/𝐾) + (𝑟 ± (1/2)𝜎

2

)(𝑇 − 𝑡))/𝜎√𝑇 − 𝑡.

3. Main Results

As an earlier derivation of option pricing is implemented
under some “idealised” conditions, its applications are lim-
ited. In order to loosen these restrictions, the transaction
costs are introduced in the derivation of option pricing. For
example, the hedging strategy has been considered in [2]
when transaction costs occur at discrete time points, and the
explicit formula of the call option price with transaction costs
has been put forward. In [29], the European option pricing
problem with the transaction costs has been studied for the
jump diffusion model. In this section, we aim to give the
European option pricing formula with transaction costs for
the Lévy jump case.

In the interval (𝑡, 𝑡 + 𝛿𝑡) with a sufficiently small 𝛿 > 0,
the profit is given by

𝛿Π = 𝛿𝑉 − Δ𝛿𝑆 − 𝑘 |𝜐| 𝑆, (19)

where 𝑘 is the transaction cost ratio and 𝜐 is the number
of risky asset changing. Hence, it is easily known that the
transaction costs are 𝑘|𝜐|𝑆.

Our main results are given as follows.

Theorem 5. For the risky asset price model (1),𝑉(𝑡, 𝑆) satisfies

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
− 𝑘𝜎𝑆

2



𝜕
2

𝑉

𝜕𝑆2



√
2

𝜋𝛿𝑡

− 𝑘𝑆



𝜕
2

𝑉

𝜕𝑆2



E

∫
∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦)


𝛿𝑡

+ 𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)] − 𝑟𝑉 = 0.

(20)

Proof. By using Taylor’s formula, it follows from (16) that

𝜐 = Δ (𝑆 + 𝛿𝑆, 𝑡 + 𝛿𝑡) − Δ (𝑆, 𝑡)

=
𝜕𝑉

𝜕𝑆
(𝑆 + 𝛿𝑆, 𝑡 + 𝛿𝑡) −

𝜕𝑉

𝜕𝑆
(𝑆, 𝑡)

=
𝜕𝑉

𝜕𝑆
(𝑆, 𝑡) + 𝛿𝑆

𝜕
2

𝑉

𝜕𝑆2
(𝑆, 𝑡) + 𝛿𝑡

𝜕
2

𝑉

𝜕𝑆𝜕𝑡
(𝑆, 𝑡)

+ 𝑜 (𝛿𝑡) −
𝜕𝑉

𝜕𝑆
(𝑆, 𝑡)

= 𝛿𝑆
𝜕
2

𝑉

𝜕𝑆2
(𝑆, 𝑡) + 𝛿𝑡

𝜕
2

𝑉

𝜕𝑆𝜕𝑡
(𝑆, 𝑡) + 𝑜 (𝛿𝑡) ,
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𝜐 =
𝜕
2

𝑉

𝜕𝑆2
(𝜇𝑆𝛿𝑡 + 𝜎𝑆𝛿𝑊 (𝑡)

+∫

∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦))

+ 𝛿𝑡
𝜕
2

𝑉

𝜕𝑆𝜕𝑡
(𝑆, 𝑡) + 𝑜 (𝛿𝑡) .

(21)

Then, we have

𝜐 ≈ 𝜎𝑆
𝜕
2

𝑉

𝜕𝑆2
𝛿𝑊 (𝑡) +

𝜕
2

𝑉

𝜕𝑆2
∫

∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦) . (22)

According to no arbitrage principle E(𝛿Π) = 𝑟Π𝛿𝑡 and
Lemma 2, we have

E (𝛿Π) = (
𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2

+𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)])𝛿𝑡

− 𝑘𝜎𝑆
2

E



𝜕
2

𝑉

𝜕𝑆2
𝛿𝑊 (𝑡)



− 𝑘𝑆E



𝜕
2

𝑉

𝜕𝑆2
∫

∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦)



= (
𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2

+𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)])𝛿𝑡

− 𝑘𝜎𝑆
2



𝜕
2

𝑉

𝜕𝑆2



E |𝛿𝑊 (𝑡)|

− 𝑘𝑆



𝜕
2

𝑉

𝜕𝑆2



E


∫

∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦)



.

(23)

Note that 𝛿𝑊(𝑡) ∼ 𝑁(0, 𝛿𝑡) which implies

E |𝛿𝑊 (𝑡)| =
1

√2𝜋𝑆𝑡
∫

+∞

−∞

|𝑥| 𝑒
−𝑥
2
/2𝛿𝑡

𝑑𝑥

=
2

√2𝜋𝑆𝑡
∫

+∞

0

|𝑥| 𝑒
−𝑥
2
/2𝛿𝑡

𝑑𝑥

= √
2𝛿𝑡

𝜋
.

(24)

Therefore, we have the following equation:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2
− 𝑘𝜎𝑆

2



𝜕
2

𝑉

𝜕𝑆2



√
2

𝜋𝛿𝑡

− 𝑘𝑆



𝜕
2

𝑉

𝜕𝑆2



E

∫
∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦)


𝛿𝑡

+ 𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)] − 𝑟𝑉 = 0.

(25)

This completes the proof.

FromTheorem 5, the following theorem is obtained.

Theorem 6. For 0 ≤ 𝑡 < 𝑇, the call option price with
transaction costs 𝑐(𝑡, 𝑆(𝑡)) satisfies

𝑐 (𝑡, 𝑆 (𝑡)) =

∞

∑

𝑗=0

𝑒
−𝜆(𝑇−𝑡)

𝜆
𝑗

(𝑇 − 𝑡)
𝑗

𝑗!
E [𝑥𝑁 (𝑑

+
(𝜏, 𝑥))

−𝐾𝑒
−𝑟𝜏

𝑁(𝑑
−
(𝜏, 𝑥))] ,

(26)

where

𝑥 = 𝑆 (𝑡)

𝑗

∏

𝑖=1

(𝑈
𝑖
+ 1) ,

𝜏 = 𝑇 − 𝑡,

�̃�
2

= 𝜎
2

− 2𝑘𝜎√
2

𝜋𝛿𝑡
−

2𝑘E

∫
∞

−1

𝑦𝑆 (𝑡−)𝑁 (𝛿𝑡, 𝛿𝑦)


𝑆𝛿𝑡
,

𝑑
±
(𝜏, 𝑥) =

log (𝑥/𝐾) + (𝑟 − (1/2) �̃�
2

) 𝜏

�̃�√𝜏
.

(27)

Proof. According to the definition of �̃� and Theorem 5, we
have

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
�̃�
2

𝑆
2
𝜕
2

𝑉

𝜕𝑆2

+ 𝜆[

𝑀

∑

𝑚=1

𝑝 (𝑦
𝑚
) 𝑉 (𝑡, (𝑦

𝑚
+ 1) 𝑆) − 𝑉 (𝑡, 𝑆)] − 𝑟𝑉 = 0.

(28)

Then, it follows from Lemmas 3 and 4 that

𝑐 (𝑡, 𝑆 (𝑡)) =

∞

∑

𝑗=0

𝑒
−𝜆(𝑇−𝑡)

𝜆
𝑗

(𝑇 − 𝑡)
𝑗

𝑗!
E [𝑥𝑁 (𝑑

+
(𝜏, 𝑥))

−𝐾𝑒
−𝑟𝜏

𝑁(𝑑
−
(𝜏, 𝑥))] ,

(29)

which completes the proof.
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Remark 7. In [9], the standard geometric Brownian motion
model has been considered and the European option pricing
formula with transaction costs has been obtained through the
Δ-hedge. The call option price given in [9] satisfies 𝑐(𝑡, 𝑆) =

𝑆𝑁(𝑑


1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)

𝑁(𝑑


2
) where 𝑑

1
and 𝑑



2
are the same as 𝑑

+

and 𝑑
−
defined in Theorem 6, but 𝜎 is different from �̃� in

this paper. In terms of comparison of the call option price
formula given in this paper and [9], it can be seen that the
results derived in this paper extend the ones in [9] and our
results are more practically useful.

4. Conclusions

In this paper, the European option pricing problem with
transaction costs has been studied. In order to make the
pricing more practical, we have chosen the Lévy jump
diffusion model instead of the standard geometric Brownian
motion model. By using the Δ-hedged strategy, the explicit
call option pricing formula has been obtained for the Lévy
jump case. Our results have extended the ones in the existing
literature.
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