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A perfect achievement has been made for wavelet density estimation by Dohono et al. in 1996, when the samples without any noise
are independent and identically distributed (i.i.d.). But in many practical applications, the random samples always have noises,
and estimation of the density derivatives is very important for detecting possible bumps in the associated density. Motivated by

Dohono’s work, we propose new linear and nonlinear wavelet estimators flinm),
samples have size-bias. It turns out that the linear estimation E(||

£lm) ; ati (m)
Sfor for density derivatives £ when the random

£(m)

lin

- f ) ) for f m ¢ Bj) q(A, L) attains the optimal covergence

rate when r > p, and the nonlinear one E(|| Fim _ f ) P) does the same if r < p.

lin

1. Introduction

Wavelet analysis plays important roles in both pure and
applied mathematics such as signal processing, image com-
press, numerical solution, and local fractional calculus [1, 2].
One of which is to estimate an unknown density function
based on random samples [3-8]. The perfect achievement
was made by Dohono et al. [9], when the iid. samples
X, X,, ..., X, have not any noise. On the other hand, Besov
spaces contain many functional spaces (e.g., Holder spaces
and Sobolev spaces with noninteger exponents) as their
special examples. In some statistical models, the error is
measured in L? norm [9-13].

In practice, it usually happens that getting the direct
sample from a random variable is impossible. In this paper,
we want to consider the true density function fx(x). But we
can only observe the samples Y}, i = 1,2,...,n, for the size-
biased data; that is,

() = LS5 W

4
where g(y) is the so-called bias function, y = E(g(X)) < oo.
In many cases, a linear g is recommended, but, in general,
the form of g should be studied via additional experiments.
The purpose of this paper is to estimate the derivatives of

the true density functions f)((m), m =0,1,2,...; we study the

optimal convergence rate of wavelet estimators in L norm
over Besov spaces.

Size-biased data arise when an observation depends on
samples magnitude. Several examples of model (1) can be
found in the literature [14]. For instance, in [15], it is shown
that the distribution of the concentration of alcohol in the
blood of intoxicated drivers is of interest; since the drunken
drivers have a larger chance of being arrested, the collected
data are size-biased.

The estimation problem for biased data (1) has been
discussed in some papers. In 1982, Vardi [16] considered the
nonparametric maximum likelihood estimation for f X(x).In
1991, Jones [17] discussed the mean squared error properties
of the kernel density estimation. In 2004, Efromovich [18]
developed the Efromovich-Pinsker adaptive Fourier estima-
tor. It was based on a block shrinkage algorithm and achieved
the minimax rate of convergence under the L, risk over the
Besov class B, ,.

In 2010, Ramirez and Vidakovic [14] proposed a linear
wavelet estimator and discussed the consistency of function
in L, [0, 1] under the mean integrated squared error (MISE)
sense. But the wavelet estimator in paper [14] contained
the unknown parameter y. In the same year, Chesneau [10]
constructed a nonlinear wavelet estimator and evaluated the
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L, risk in the Besov space B; . But about the estimation of
the density derivatives about model (1), to our knowledge, we
have not seen any result. Estimation of the derivatives of a
density is very important in detecting possible bumps.

The current paper is organized as follows. In Section 2,
we briefly describe the preliminaries on wavelets and Besov
space. The linear estimator and its convergence rate are pre-
sented in Section 3. In order to discuss optimality, Section 4
is devoted to give the lower bound for an arbitrary estimator.
In Section 5, we consider nonlinear wavelet estimator and
its optimal convergence rate. Our estimations improve the
theorems in [10, 13, 14, 18].

2. Wavelets and Besov Spaces

In this section, we will recall some useful and well-known
concepts and lemmas.

In order to construct a wavelet basis, we need a structure
in L*(R) which can decompose L*(R) into a direct sum of
mutually orthogonal spaces.

Definition I (see [19]). A multiresolution analysis (MRA) of
L*(R) is a set of increasing, closed linear subspaces Vi Vi,
forall j € Z, called scaling spaces, satisfying

(@) N°%, V; = 10}, U%, V; = LA(R);

(b) f() € V, ifand only if f(2/-) € Viall j € Z;

(o) f(-) e Vyifand onlyif f(- — k) € V forall k € Z;

(d) there exists a function ¢(-) € V; such that {¢(- - k)} is

an orthogonal basis in V;,. The function ¢(-) is called
the scaling function of the multiresolution analysis.

With the standard notation f in wavelet analysis, there
exists a corresponding wavelet function y(x) = Zk(—l)khl,k
$1(), I = (@, 1), such that for fixed j, {y;  (H)}iez is an
orthonormal basis of W; which is the orthogonal complement
of the space V;in Vj,; (Vj,, = V;@W,). For fixed J € N, both
{@r(x), ‘/’j,k(x)}jzj,kez and {‘l/j,k(x)}j,kez are orthonormal
bases of L*(R).

As usual, L P([R) (p = 1) denotes the classical Lebesgue
space on the real line R. Although wavelet bases are constr-
ucted for L, (R), most of them constitute unconditional bases
for L P(R).

Lemma 2 (see [20]). Let ¢ be a compactly supported, orthon-
ormal scaling function and y the corresponding wavelet. Then
for any f(x) € L,(R) with1 < p < oo, the following
expansion:

Z“Lk‘l’kk (x) + Z Zﬁj,k‘/’j,k (x) @)

kez j=] kez

converges to f(x) for almost everywhere x € R, where

Ak = JR f )@ (x)dx,
3)
Bix = JR f )y, (x)dx.
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Lemma 3 (see [3]). If the scaling function ¢ satisfies
ess sup Y .z lp(x—k)| < oo, then for any sequence {A }rc7 €
l,, one has

CrlIAf, 297277 < < G 2977, (g

r

Z/‘k?’j,k
k

where C; = (10,1ll9l") ™", C, = (16,19l 1 <
p<oo 1/p+1l/g=1

Letting 1 < p,q < 00, s := n+ «a, « € (0,1], the Besov
spaces B; q(IR) are defined by

B, (R)={f|feL,®R),f" eL,(R),w}(f"1)
(5)
=& ()t |lell; < oo}
with the associated norm ||f||B;q = ”f"P + ||f(”)||P+
IIw;(f",t)/t“IIq, where w;(f,t) = supylflx +2h) —
2f(x+h) + f(x)l » denotes the smoothness modulus of f,
©° q l/q
and ”8”; = (_[0 |£(t)| (dt/t)) > 1< q < 00,
esssup,|e(t)|, g = oo.
Between the different Besov spaces, the following embed-

ding conclusions are established [3]. Lets > 0,1 < p,gq,7 <
00; then

(i) B;q — B;OO — B;Lép,s > 1/p;

(ii) Bj, <= By, 7 < pys' =s=1/r+1/p,
where A < B denotes that the Banach space A is contin-
uously embedding in the Banach space B; that is, there exists a
constant ¢ > 0 such that, foranyu € A, wehave [|lu]z < cllull 5.

A scaling function ¢(x) is called ¢-regular, if p(x) has con-

tinuous derivatives of order ¢, and its corresponding wavelet
y(x) has vanishing moments of order #; that is,

Jxky/(x)dx:O, k=0,1,....t- L. (6)

One of advantages of wavelets is that they can characterize
Besov spaces.

Lemma 4 (see [3]). Let ¢(x) be a compact supported, t-regular
orthonormal scaling function with the corresponding wavelet

y(x)and 0 <s < t. If f € L,(R), agy := (f, @oi)> B = (f>
Vjk)» and 1 < p, g < 00, then the following are equivalent:

() f € B, (R)
(ii) (2j5||P]-f - fllp)j20 € 1, where P; is the projection ope-
rator to Vs that is, P, f := Y, (f, @) Pjis

i(s+1/2—-1 .
(iid) flov I, + 127 /P>||ﬁj.||P}j>o|| < +00. In this case,
=4

If VA

{2j<s+1/z—1/p> " B; “ }
lip

B, ~ "“o~“p + ol
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Note 1. The notation A < B indicates that A < ¢B with a
positive constant ¢, which is independent of Aand B.If A < B
and B < A, we write A ~ B.

In this paper, the Besov balls B (A, L) are defined by

B (AL ={f1f B, ®).|fly <Llsuppf|<4}.

(8)

3. Linear Estimator

In this section, we will give a linear estimator for density
derivatives f)((d) in Besov spaces Ej q(A, L).

The linear wavelet estimator of the derivative of a density
fx(y) is defined as follows:

f)(gl)in (y) = Z&],k(pl,k (), 9)
k
where
& (V) _ n
= (-1 , = (10
Fr= ) nia g(v;) 3 Yy (1/g(Y))) (10)

The following inequalities play important roles in this
paper.
Lemma 5 (see [3] (Rosenthal inequality)). Let X,..., X, be
independent random variables such that E(X;) = 0 and | X;| <
M; then there exists a constant C(p) > 0 such that

() E(YL, XlP) < Cp)MP?2YL EIX D) +

(T EXDY), p>2,
(i) E(I L, Xi1P) < Cp)(EL, EXD)P2 0 < p<2.

About the defined coefficients in (9), although E(&; ;) # oty 4
we have the following estimation.

Lemma 6. If2/ < n, then, forany 1 < p < co, one has E|&;; -
apl? < n PP,
Proof. By the definitions of &j;, &y, and triangular inequality,
one observes that

|a1k_“1k|

n ¢\ (V)

-\ ),lgW) ~

- (d)

Al penetn O _ <1_1>

B M<(1 n5 g(Yi) “’k>+”a’k woa

< ‘ (—) (d)() “]k+|ﬁ“1k|"___’-
ns g(v;) pou

an
Since g, < g(y) < g2 for any y € R, one has that

—_ , =Eg(X) =2 g,
H= ,1(1/9(Y)) D> IS 9( ) 91 (12)

and oy, = JA (d)(y)qS]k(y)dy Thanks to embedding theorem
B, — IBZOL{I, for any s > 1/r, one gets || fll, < [l fll g1 <
[ fllg .Itiseasy tosee |fi/ul, |fil, loy; | are bounded. Usir;ogmthe
convgiity inequality, one obtains

E|&1k—“}k|P
d) P
a9 (Vi) Il_ll
<E<(1) Z g(v)  MTE
¢ (1;) Proap
<2P'E 1 ‘A__
<() n& () M TIE #)
¢\ (Y;) 1 1)p
1 —
He ),lgW) ol ]
=T, +T,,
(13)
where
n ¢\ (V) ! ‘1 1P
T, = E|(- —ay|, T,=E=--|.
=B n& g(v) K P oE u
(14)
(i) To estimate T}:
P
T—E dMZ (Y) —(X]k
» (15)

=F

1&g ¢ (Y)
Z;<““”gw>‘%k’

1

denote §; := (—l)dy(qS;i) (Y;)/g(Y;)) — ay;.. Note that {{;} are
i.i.d. samples, and EE; = 0. Moreover, for any given integer
m > 2, one has

(d)
v 9&9
(d) ) m=2
|ty () @)
< (L) gy |0 )]
2(1/2+d])(m g ( )( ( 1))
U (d)
A
L5i5¢ ) fy () dy
_ L (d) 29(y) fx(»)
- JA g(y) ) H B
= fo (J’ (d) )) dy



4
= [ A2 g0 2y =)y
<24
(16)
Therefore,
" o) |
Elél E\(- l)d Ik(Yl) — %y
d ¢]k ( i)

E\(-1)"u

S ¢ )
<2 + |oc]k|

< 2](1/2+d)m—].

“g )

By Rosenthal’s inequality Lemma 5,
(a) if 1 < p < 2, one has

Lo P n , pI2
_Zfi < ”_p<ZE|Ei| )
ni3 i1

P21,

T, =E

- nfp(nEmz)p/z <

(b) if p > 2, one gets

n n pl2
<n’C |:ZE|£,~|P + <ZE|Ei|2> ]

p

n

1
ZZE:‘

i=1

T,=E

n p2
< n P (n2 V2P +n1’< E|E.|2) <n P2),
o o $

(19)
(ii) To estimate the term T, since
RS LA B U T O
T2—:E|:——‘ =E-)——-=
g op n5g(Y;) u
(20)

2w i)

let n; .= 1/g(Y;) — 1/u. It is easy to see Ey; = 0, and, for any

integer m > 2, one obtains
1 m
<t (bl i)
g(Y3) (21)

C(m).

m

1 1
g(v;)

Eln” E]

<2"(g," +g)") =
Similarly, by Rosenthal’s inequality Lemma 5,

(a) for 1 < p <2, m = 2, one gets

r n p/2
T
i=1

(22)
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(b) for p > 2, thatis, 1 — p < —p/2,and m = p, one has

p n n p/2
_ 2
PG (p) <ZE|f1i|P : (zﬂm ) )
i=1 i=1

<sn Py n PP g P2,

n

1
;Zm

i=1

T,=E

(23)

Summarizing the above estimation about T', T,, one obtains
that E|&; — oy [P < n P22, O

Theorem 7. Let scaling function ¢(x) be compactly supported

and t-regular. If f}(dl)n be the estimator defined in (9), then for

1<r, p,g<oo,1/r<s<t—d,onehas

s' p/(1+2(s"+d))

RO

sup E" Xlin y)

WDeps JAL)

wheres' =s—(1/r — 1/p),.

Proof. Firstly, using triangular inequality and convexity
inequality, we decompose E|| ,;((d) (y) - f)((d)( y)II}}: into the bias
term and the stochastic term; that is,

B|78. 0) - 79 O,
<E(|78 0) -PAL O,
AB L - 0N,) e
<2 (E| 70, 0) - B AL O,

L 0l,)-

For the bias term || P; fx )( ¥ - fx (d)( y)IIp, one can estimate it
as follows.

+|2 A7 (v) -

(i) When r = p, Lemma 4 reduces to

|P A ()

Lo <27 (26)

(ii) When r < p, using Besov space embedding theorems
qu — B;q,s' =s—-1/r+1/p, one has

sup £ () - £ )]
B (AL)
, @)
< s BTG A0, <27

@ 5
eBy, (AL)
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(iii) When r > p, Holder’s inequality and Lemma 4 tell us
that

lo 2 ) - £ O,

J'Plfx (») - £ ()| dy

<(] s
x (L 1dy>1_P/r

" P] (d) ) (d)

- £ )" e

Peose,

Hence, for 1 < r < 00, one obtains that

swp [P () - AP O] <27

_ (29)
@B (AL

Next, we estimate the stochastic term E| f}(d)(y)
Prfy @ y)IIi. Clearly, due to Lemmas 3 and 6, one gets

p

Z (&]k - “}k) oygs ()

k

E” th(y) P] (d) (y)"

p

< 2(1/2*//17)172:13|(&”C _ ‘X]k)lp
k

< n_P/22](1/2+d)P.
(30)

1/(1+2(s"+d))

By choosing J such that 2/® ~ » , one obtains that

7(d) (d) p
sup E" th _fx (J’)Hp
VB (AL)
—Js' —p/2,J(1/2+d (31)
S2]P+le/2](/ )P

< n_S’p/(HZ(S,er)).

O

Remark 8. Theorem 7 can be considered as natural extension
of [14] ifd = 0, p = r = 2. Moreover, the next part shows the
optimality of our linear estimation for r > p.

4. Lower Bound and Optimality

This section is devoted to showing that the linear estimator
defined in (9) attains the optimal covergence rate for » > p.
The idea of proof is motivated by [21].

Lemma 9 (Varshamov-Gilbert Lemma [5]). Let © :=
(&15---> &)} € € {0, 1}; then there exists a subset {2, ..., M
of ® with &* = (0,...,0) such that M > 2" and Y |¢; -
el >m/8,0<i#j< M.

{e =

Lemma 10 (Fano’s lemma [22]). Let (Q, X, P,.) be probability
measurable spacesand A, € N, k=0,1,...,mIfA,NA, =¢
for Yk v, one has

sup P, (A%) > min {l, Vmexp (—36_1 - Km)} , o (32)
0<ks<m 2

where A5 stands for the complement of Ak, =
info_,,, (1/m) Y, . K(P,P,) and K(P,P,) stands for
Kullback distance in [5].

Based on the above lemmas, we have the following lower
bound estimation.

Theorem 11. Letfd) € B JAL) withl <1,g<00,1<p<
oo and s > 1/r; there exzst two constants g, and g, such that
0< g, <glx)<g, <oo. Iff(d) is any estimator off)(f) with
i.i.d. random samples, then

J?(d) f(d) "

sup
eB; (AL)

(s=1/r+1/p)/ 2(s=1/r+d)+1)
> max <ln_n> e , n—s/(2(5+d)+1)
n

<1n n )(s—l/r+1/p)/(2(s—1/r+d)+1) (1 ¥ Zd) p
_ n T 2(s+d)+ 1

s/ QD+ (1+2d)p
’ 2(s+d)+1°
(33)

Proof. (i) Firstly, we prove

(s=1/r+1/p)/(2(s=1/r+d)+1)
) od) Inn
wp B - 40,2 (%))
WeB; (AL) n
(34)
It is sufficient to construct h;(x) such that h](cd) € Eiq(A, L)
and
lnn (s=1/r+1/p)/(2(s—=1/r+d)+1)
sup £ 710 -7, = (%) &

Suppose that ¢ is a compactly supported, t(t > s + d)
regular and orthonormal scaling function and y is the corre-
sponding wavelet with suppy < [0,1),] € N'. Assume
h(x) € BY(A,L/2),h(x)lpyy = C, > 0. Define A; :=
{0,1,2,...,(27 = D), 271}, a; = 27764412710 gang

Iy (x) = h (x) + a;yy () T{k# 271},

Obviously, h,; = h(x) and hy (x) € Bj;*(A, L); that is, h” (x)
€ qu(A, L). Moreover, supp ¥/, N supp s = 0 for k, k' ¢ A,

,

)“ — 2*j(5+1/P*1/f)
p

ke Aj. (36)

and k #k’. So, one gets

[ =21, = oy (w3 - v32)

(37)
=1

> v vl



Clearly, A, := {If¥ - ¥ I, < 1;/2} satisfies A N Ap = 0
for k # k'. Then, Fano’s Lemma 10 tells us that

supP; (A%) > min {l, V2J exp (—3e_1 - sz)} - (38)
keAj k 2
On the other hand, one has

|7 - el = 5, (17500, = )

2
(39)
1j
= 5 B, (A%)-
Then
s (17 07 0,
11' 1 c
> ZsupP, (AY%) (40)
zkeAj vk
szm{ \/_exp( : —sz)},
where x,; = infl/ezA Yy KBy (i P,;’YV). Next, one shows

that x,; < gZCEInaJ /gl.
Recall that
P i (x)
K - j ()1 2L g
( ) fz fl fzn (x)

- gjfl (x;)In }2 Ef;dx, =nK (P,P,),

1

(41)

where f'(x) = fi(x))fi(x,) - fi(x,), i = 1,2. Note that,

Inu <u-1,ifu > 0, one has
K (P}, P}) =an1 (x)In h (x)d

L

(42)
<n | lh 0 sl ax
Since h,f(x) = g(x)h(x)/u and supp |h(x) — h(x)| c [0,1),

v = o2 K (P, 2)

<27 ¥ k(B0
keA jk#271

> 7
<2n ) .Jg(x)h(x)

keA ke #271
Xvwwum_mwmwrd
H H

J“JZ' vl dx

<Byin Y g
U keak#21l

92 1 2

==C, na;.

9
(43)
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Taking 2/ ~ (n/In p) !/ @ls+d=1/n)+1)
pp 22 Inn. One can choose C such that
? < Clnnand Cg,[4(s +d - 1/r) +2] < C,g,. Therefore

- - -1 2
\2ie ™0 > \[2ie=9:C0 a1,

2
, then na r =

(44)
n—gZC(;IC/gl > 1.

( n >[4(s+al—1/r)+2]‘1
Inn

One has

r]' Y [
supE ("ﬁ(ld) (x) - h,((d) (x)"P) > é:gzPhYk (A%) = Cy;.

keA;
(45)
Noting that ; = 27 HEE P |y ) I, one gets
£(d) (d)
supE (| 7 (0 - 1" (0] )
keA;
(46)
In g \ S+/=1N/@lstd=1/r)+1)
(%)
n
(ii) Next, we prove
2 ” s/ @(std+D)
' (47)

@ eB; (A L)

Similarly, it is sufficient to construct h,i(x),i = 0,1,...,M
such that 1" (x) € B;, (A, L) and

sup B[ £ () = P ()] 2w g
Similarly to prove (i), suppose that h(x) € Bs+d(A L/2),

h(x)ly = Co > 0. Defining a; := 2~ J(”dﬂ/z), A, o=
{0,1,2,...,(2/ = 1)1} and

;e
he (x) = h(x)+a; Y. & (%),
];ézj

i=0,1,..., M, (49)

with & = (8;;)keﬁ- e {0, 1}2]. Moreover, since €, € {0, 1}, one
7 . .

knows that ), .z le|” <2/ and
J

1/r
2j(s+d+1/2—1/r)~a~j i|” <1. (50)
kel

By Lemma 10, ||a; Zkezj s;;t//jk(x)H < C. Hence hifl)(x) €

s+d
By

Eiq(A, L). According to Lemma 9, there exist (...,
such that M > 2*~® and

My
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Since supp u;jk Nsuppy = 0 for k # K e Zj, this leads to
d d —j -
I = K = 27 27y} and

|1 - K

—js . q-1/p —
, 22787y, = (52)

Clearly, the sets A, :
M, satisfy Ay N Ay
one has

F(d) (d) .
{f, —hs,. ||p < 11]-/2},1 =0,1,..,
@ for VI #i. Using Fanos Lemma 10,

sup Py (A )>m1n{; \/Mexp(—

0<i<M ¢

3¢ - KM)} » (53)

where k), := inf0<V<M(l/M) Z#‘,K(P"
get Ky < (92/g1)C, 2] due to the s1m11ar arguments as

(i).

Taking 2~ nl/(2(5+d)+1)) then nﬁ? = s+ g

, P, ), and one can

One can choose a constant C > 0 such that m’ijz. < C <
(91/329,)Cy. By M > 22/_3, then one obtains
VEIe ™ 3 20D 0Ghaa! 5y (s4)

On the other hand, 7, := 8_1/p||1p||P2_js ~ S/ poq

uces to
sup E (|79~ h%) )= sup VB! (A%) = Cy (59)
0<i<M " e lip o<i<M 2 € J

Therefore, one gets the following desired result:
sup E“ S /@) 1)

7d) _ (d) "
Deps (AL 3

(56)
O

Note thats’ = s,ifr > p. Then we have the following coro-
llary.

Corollary 12. If r > p, the linear estimator (9) attains the
optimal covergence rate.

5. Nonlinear Estimator

In this paper, the nonlinear wavelet estimator is defined as
follows:

Fnon () = Zak,k%o (y) + ZZﬁ]kak (»), 67

J=Jo k
where
Ly @,
&.k::(—l) ¢ ( ) /§k d“ ( 1),
o 1= (Yl) ! nt:l g(Yl)
. n
O L e ()
(58)

The hard thresholding wavelet coefficients are E]*k = ﬁjkl

{Iﬁjkl > A}, where
(AR n

1, .
1{|By] = 2} = {0 Al x AchJd\/i. (59)
N ik .

About the wavelet coefficients, we can get the following
lemmas whose proof is very similar to Lemma 6 and we omit
it.

Lemma 13. If 2/ < n, then, for any 1 < p < oo, one has
E|ﬁjk _ /3jk|P < P2 pJdp,

Lemma 14 (see [3] (Bernstein inequality)). Let X, X,,...,
X, be independent random variables such that |X;| < M <
00, E(X;) = 0,1 := Y| E(X}); then

n AZ
P X Al<2 -], VA>0.
(; i ) e"p( z<bz+MA/3>> g

(60)
Lemma 15. If j2/ < n, then, for any w > 0, there exists a cons-
tant ¢ > 0 such that

('ﬁ]k ﬁjk| >A= czfd\/’]1> <27, (61)

Proof. One can easily get

A< W2gn —<gi\
u
IR T N Vi
|Bix = Bl
14 (l)dﬂz%k ~ B | + 3B (l_l>
H ns g(v) " i woB
(d)
1 aMVik (Y)
< é(“” ow F >

1¢ 1 1

' Ei_zl(g(n) ‘ﬁ)

+

>

1 n
1;;&

l n
;;’11'

(62)
where & = (=1)(uy) (Y)/g(¥) = B 1 = 1/9(Y) = 1/

So, one obtains that

P(|Bx — Bix| > A)

A
A

n

25

i=1

1"
R 25>

1; > /\) 63)

(i)




Now, we estimate P(|(1/n) Y., & > A/2). Clearly, E§; = 0

and EEIZ < 2% of. Moreover, one has

@ (y,
|EI| _ ( l)d[’u//]k ( ) (—l)dE [’u//],k ( 1)
g(v) g(v)
64
< 2g2g;1 . 2j(1/2+d) 'lw(d) || ( )

— M, 212

where M, := 2g,9; @ |- By Bernstein’s inequality and
A = c2/*\[j]n, j2/ < n, one knows that

i=1
n(/\/2)2 )

Y&
<2 - :
exp ( 2 (0% + M, - 224} /6)

=2 exp - nC222jd (]/n) /4
2(22 + M, - 20072+ 25 []n]6)

=2ex (—CZ¢ )
P 2(1+M1c/6)1'

(65)
Taking ¢; > 0 such that (/4)/2(1 + M,c/6) > w, then
1< A Cwi i
Pl[-)YE&|>= <2 <279, 66
(1) e o

Next, we estimate P(|(1/7) Z:‘zl n;l > A/2). It is easy to know
that

E”’:E<ﬁ)_E<i) Jg(y)fY(y)dy_H

:J 1 g(y)fx(y)dy_l
g(y) u u

1 1
=;fo(y)dy—;=0,

2
1 1
=L 1)
g(y;) wu

2
1 1 4

<2| E|—— < — = 5

(lgm) ) PR

1 1 .,
I I
=\ " wl Tl Fay S0 M

(67)
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Since j2/ < n, Bernstein’s inequality tells us that

(.

Zm

n(1/2)*
) S 2exp < 2 (02 + M,A/3) )

( nc?2%% (j/n) /4 )
=2exp| — -
2 (0% + Myc24+[j]n/3)

24
209 (-5 i)

(68)
Taking ¢, > 0 such that (c2/4)/2(0§ + M,c/3) > w, one gets

17[
p(_
1’11:1

Zﬂi

> %) <2 <27, (69)

Letting ¢ = max{c, ¢}, by (66) and (69), one obtains that
P(IBjx = Bjyl > 1) <279 O

Lemmal6. Suppose that the parameters j, j;, A of the wavelet
estimator defined in (57) satisfy the assumptions:

- s 1+2d)p
In 1) P~ )/ EEHDTD. ( ,
((nn) n) 2(s+d)+1
2(172/P)/Q(s=1/r+d)+1) (I+2d)p (70)
’ T2(G+d)+1]
18 Qlstd)+D) N (1+2d)p
’ 2(s+d)+1°
20 n \1@Gs=1/r+d)+1) (1+2d) p (71)
(E) T 2(s+d)+ 1
then one has
ZZ( ]k ﬁ]k)lp]k
j=jo k
- 1+2d)p
1 G s/(2(s+d)+1)’ N ( ’
(nn)n 2(s+d)+1
72
(In n)c4n—s'/(2(s—1/r+d)+1) _ (1+24d) p (72)
S ’ 2(s+d)+ 1’
(ln_n >sl/(2(sl/r+d)+1) (1 n 261) p
n ’ 2(s+d)+1’

where ¢, ¢, are positive constants.
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Proof. According to Lemma 3, one obtains that

Z Z ( Jk ﬂJk) ll’Jk

Jj=jo k

-

J=Jo

(73)

;( jk ﬁ]k) l//]k

p

1/p
—@ﬁ).

= BuI{Bjil > A}, one has

i X
< E22J(1/2—1/P)< /3
~ P’

J=Jo

Recalling that E;k

Z Z ( Jk Blk) 1/’Jk

j=jo k

1/p
< E(ZW o (Zlﬁ]k )

J=Jo

* (I {|Bjk| > b [Bil 2 %}
aflg> 1l < 2])

Sy )

J=Jo
(T{IBil < A |Bi| < 21}

(74)

Bl = 18l u})).
Note that
! {'31'"' > o[ < %} <1 {'@k - Byl > %}
H|Bil = 2.[Bi| > 22} <1 {|ﬁ,~k ~ Bl > %}

and one gets |Ejk = Bl = 1Bl - Iﬁjk| > |Bjl/2; that is,
1Bl < 21Bjk = Bkl it 1Bkl < A, 1Bkl > 2A. Therefore,

ZZ( Jk ﬁ]k) V’Jk

(75)

j=jo k
1/p

<EZZ’(1/2 1/p)<2',3]k ﬁ1k| I{'ﬁ1k| = })

J=Jo

1/p

+E22](1/2 VP <Z|/3]k ﬁ]k' I{|ﬁﬂ< 'BJk' ) })

J=Jo

1/p
+ 22](1/2 1/P)<Z'ﬂjk|p "Bjk' < 2/\ )
j=jo

=i ey + ey + €53,
(76)

where

1p
_EZZJ(I/Z l/p)<2|ﬁjk Bl 1{|ﬁjk|> })

j=Jo

i
ey = EY 2/0/27IP
Jj=Jo

1/p
3 = A
x (;'ﬁjk _ﬁjk|PI {'ﬁjk _/3jk| > E}) >
1/p
221(1/2 1/p) <Z|/3]k|P |/31k| - 2)L ) .

j=Jo
(77)

(i) Firstly, we estimate

1 1/p
ey; 1= ]Z:Zj(l/zl/p)<Z|ﬁjk|pI{|ﬁjk| < 2)&}) . (78)
k

j=Jo

Let& = (1/2)((r/p)(2s+1+2d) — (1+2d)). By [{|B;] < 2)} <
QA/IB#DP™ (r < p), one obtains that

p-r\ /P
ez Fmn(ylsf(2) )
=Jo 'ﬁ1k|

1/p
) (79)

Z 2](1/2 1/P)(2/\)(P ’)/P<

Jj=Jo

j
_ Zl2j<1/z—1/p>m)<pfr>/p|| B
Ty

Jj=Jo

On the other hand, f’ ¢ B (R) implies ;] <
27 JHR2UN Taking A = 2/ \[j/n ~ 2/ \[(Inn)/n, j, - jo ~

Inn, one has
j1
0y < z 2](1/2—1/17)/\(P—?’)/PZ—J(S'H/2—1/?’)(7’/}7)

J=Jo

2
- (ln_n) P/ PZZ J1/2)[(r/ p)@s+142d)~(1+2d)]
n

j=Jo
lnp\@D2P i (80)
_ &
-(51) e
J=Jo

(p-nip ,
< (hl?) (2771 {E > 0} + 2771 € < 0}

+(jy - jo+ 1) I{E=0}).

Note that & > 0 ifand only if r > (1 + 2d)p/(2(s + d) + 1).
When & = 0, thatis, p = r(2s + 1 + 2d)/(1 + 2d), one can
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compute SIQGs=1/r+d)+1) = (p—r)/2p. From (70), (71),
one obtains that

- 1+2d)p
1 G s/(2(s+d)+1), (—’
(i 2(s+d)+1
¢y, —s'[(2(s=1/r+d)+1) B M
623S<(ln1’l) n > r_2(s+d)+1, (81)
<1nn>5’/(2(51/r+d)+1) (1 + 2d)P
h ’ 2(s+d)+1’

where ¢, ¢, are positive constants.

(ii) We estimate

. 1/p
J1
i(1/2-1 5 p A
€21 = EZZJ( / /p)(Z'ﬁjk _ﬁjk| I {'ﬁjk| 2 5}) .
j=jo k
(82)
Due to Lemma 13, one has
E|Bj. - ﬁjk|p s PP, (83)

Using I{Iﬁjkl > A/2} < (Iﬂjkl/(A/Z))r and Jensen’s inequality,
it can be proved that

i R » A 1/p
Ty
k

J=Jo

- i , 1\
< sz“/z‘l/"’(ZE|/3;k—ﬁjk| I{|/31k| > 5})
k

J=Jo

I |ﬁk| \MP
< ZZJ(I/zl/p)<an/2<A_;2>>

J=jo k
_ jzl2}(1/2*1/P)n*1/22jd/\77/p“ﬁ "V/P
- il
J=Jo
(84)
Similar to the proof of e,s, by [ < 27/¢*/271/) and A ~
: 1% 23 OY Pl <
c2/*\/(nn)/n, j, - j, ~ Inn, one gets

J1
ey < Z n—1/22j(1/2—1/p+d)2—jd(r/p)2—j(s+1/2—1/r)(r/p)
Jj=Jo

r/2p
x ( i) (85)
Inn
i
=0 PP (1n ) TI2P Z 27k,
Jj=Jo

Observing that e,; < e,5, one obtains that

(I+2d)p
205 +d)+ 1

(ln n)c3n—s/(2(s+d)+1))

o _ 1+ Zd) p
I )= QG-+ _ (—
(Inn)*n 2(s+d)+1 (86)

>

€1 S 7

(I+2d)p
2(s+d)+1°

>

n

< Inn >s’/(2(s—l/r+d)+1)
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(iii) Finally, we estimate

i
ey = EY 21012710
J=Jo

1/p
X (%'Bjk —/J’jk|PI {|/§jk —Bjk| > %]’) :
(87)

Let1 < q',q < coand 1/q + 1/q' = 1. Thanks to Jensen’s
inequality and Holer’s inequality, one has

€2

i ~ P ~ A Ve
= EZZJ(I/ZI/P)< |ﬁjk _ﬁjk| I{|[3jk —[J’jk| > E})
k
k

Jj=Jo

< izi(l/z—l/p)< E <|/§jk - ﬁjk|p1 {|B]‘k ) ﬁjk' . %}))W

J=Jo

< jzlzj(l/zfl/p) (Z(Em]k _ ﬁjk|qp)1/q
k

Jj=Jo
Ll 2 /4
(o a-sl= 1))
1

< Y (Z(Ellik - /”jk|qp)1/q
k

J=o
(2 (B84 > %))Uq’)l/p.

1/p

(88)
According to Lemmas 13 and 15, one knows that
;i . . . LoN1/p
ey, < Z21(1/2—1/17)(zfn—P/szdPZ—wJ/q )
Jj=Jo
(89)

J
— 2 zl: 2j(1/2+d—w/pq')‘
Jj=Jo
Choosing large enough w such that 1/2+d < w/pq’, one gets

ey, < 2n71/22j0(1/2+d7w/pq') < p2ph(1/2+d). (90)

Taking 20 as in (70), one has

(In 7)o/ QDD (1+2d)p
’ 2(s+d)+ 1’
e, < 91
2 - Qs red)e) (1+2d)p o1
’ T2(s+d)+1°
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Putting (81), (86), and (91) together, one obtains that

Z Z ( ]k /)’Jk) ‘ka

j=Jo k

' (In )=/ Ee+DHD) (+2d)p

’ 2(s+d)+1’

(92)

o _ 1+ 2d) P

In n)ap s /G 1/r+d)+1)’ = (—,
S‘(nn)n 2(s+d)+1
<1nn>s'/(2(sl/r+d)+l) (1 + Zd) P

n ’ 2(s+d)+1°

Theorem 17. Let the scaling function </>(x) be orthonormal,
compactly supported, and t-regular. If Xmm(x) is the nonlinear
wavelet estimator defined in (57), and the assumptions (70),
(71), and (81) are satisfied. Then for any 1 < r < p < oo,
1/r < s <t—d, one has

7],

X,non
eB: (AL)
’(ln )P /@) (1+2d)p
’ 2(s+d)+ 1’
93
(In n)Gzns'/(Z(s—l/r+d)+1) _ (1+2d)p ©3)
< - ’ 2(s+d)+ 1
<lnn>s’/(z(s1/r+d)+1) (1 +2d) p
n ’ 2(s+d)+1’

wheres' =s—1/r +1/p, 0,, 0, are positive constants.

Proof By the definition of f\
fx in (2), one has

£(d) (d) =

Xpnon JXx T Z ((xjok - (xjok) ¢j0k

k

Xn on i (57) and the expansion of

J1

+ ZZ(ﬁ]k ﬁ]k) l//]k + ]1+1 )((d) ;éi)

j=Jjo k
(94)
Hence,
E” X,non }((d)“p
< B> (&~ i) bk
k P
1
ZZ( Jk 'Blk Vjk +” i+l éfd B (d)”
j=jo k
j4
=ie; +e, t+es,
(95)

11
where
eri= B D (&~ i) S|
k P
e:=E ZZ( Bix ﬁ]k) l’l/]k ) ©0
j=jo k
=[P £ - A0,
Firstly, we estimate
er = E| ) (@ = k) ik (97)
k

p

Thanks to Lemma 3 and Jensen’s inequality, one obtains that

1/p
io(1/2-1/p) _ P
e, 28 ? E(Z'(xjok —ag )
k

(98)
1/p
< 2]0(1/2—1/P)<ZE'&j0k _ (onk |P> )
k

ail? < nPl220% Since
f)((d)(x) and ¢(x) are compactly supported, then the number
of elements in {k : &k # 0} is O(270). Therefore,

Due to Lemma 6, one has E|a; . —

. _ . . 1/ _ .
e < 202D (9o bl )P 12 h1/2ed) - (99)

From (70), one has

(In 7)</ @lera) D) (I1+2d)p
2(s+d)+ 1’
e s 121D/ ls-1red)+1) (1+2d)p  (100)
T T 2(s+d)+ 17
Next, we estimate term
d) d
=P £ - 10, (100
I _ . ns s’
Whenr < p,s =s—1/r+1/p,onehas B,, — By, thanks to

the Besov spaces embedding theorem. By Lemma 4, one has

d d o
[ £ - £, <27 (102)
Taking 27t as in (71), it can be proved that
s/ @s+d)+1) (1+2d)p
’ 2(s+d)+ 1’
e; < g\ s (1+2d)p (103)
(7) T 2(s+d)+ 17



12

Finally, we estimate

Jj1
e, =E Z Z (/3]*k - ﬁjk) Yik (104)
j=io k P
Using Lemma 16, one has
j1
E| > > (Bi — Bix) vi
j=io k P
'(ln )/ Qsrd)+) (1+2d)p
’ 2(s+d)+1’
e (1+2d)p
) 1 ¢, —s [(2(s 1/r+d)+1)’ _ ,
< (nmn 2(s+d)+1
<ln n )S,/(Z(S_I/Hd)ﬂ) < (1+2d)p
" ,  r<——"
n 2(s+d)+1
(105)
By (100), (103), and (105), one obtains that
sup E“f)(?r)lon B )((d) "p
B (AL)
'an 1) s/ s (1+2d)p
< ] et /@ty _ (d+2d)p
= ’ 2(s+d)+1’
<ll’1ﬂ )S'/(Z(s—l/r+d)+1) (1 + Zd) p
(\ n ’ 2(s+d)+1°
O

Remark 18. Since r < p implies that s’ = s — 1/r + 1/p, one
can easily find s'/(2(s — 1/r +d) + 1) > s'/Q2(s' + d) + 1).
Then, Theorems 17 and 7 tell us that the nonlinear estimator
does better than the linear one. Moreover, Theorems 17 and 11
show that our nonlinear one attains the optimal. covergence
rate

Corollary 19. When r < p, the nonlinear estimator (57)
attains the optimal covergence rate up to a Inn factor.

Remark 20. Ifd = 0,r = p = 2, our estimation reduces to
Ramirez and Vidakovic’s result [14].

Remark 21. If d = 0, our results can be considered as the
natural extension of paper [10].

Remark 22. If g(x) = 1, model (1) reduces to the samples
without any noise; our results reduce to the estimations in
[13]. Even for p/(2(s + d) + 1) < r < p, our result is also
optimal covergence rate.
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