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In this communication, we characterize a measure of information of types 𝛼, 𝛽, and 𝛾 by taking certain axioms parallel to those
considered earlier by Havrda and Charvat along with the recursive relation𝐻
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); 𝛾, 𝛽), 𝛼 ̸= 𝛾 ̸= 𝛽, 𝛼, 𝛽, 𝛾 > 0. Some properties of this measure are also studied. This measure includes Shannon’s

information measure as a special case.

1. Introduction

Shannon’s measure of entropy for a discrete probability
distribution

𝑃 = (𝑝
1
, . . . , 𝑝

𝑛
) , 𝑝

𝑖
≥ 0,
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𝑖
log𝑝
𝑖
, (2)

has been characterized in severalways (seeAczél andDaróczy
[1]). Out of themany ways of characterization the two elegant
approaches are to be found in thework of (i) Faddeev [2], who
uses branching property namely,
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(3)

𝑛 = 3, 4, . . . for the above distribution𝑃, as the basic postulate,
and (ii) Chaundy andMcLeod [3], who studied the functional
equation
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(4)

Both of the above-mentioned approaches have been exten-
sively exploited and generalized.Themost general formof (4)
has been studied by Sharma and Taneja [4], who considered
the functional equation
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(5)
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We define the information measure as

𝐻
𝑛
(𝑝
1
, . . . , 𝑝
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; 𝛼, 𝛽, 𝛾)
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) ,
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(6)

for a complete probability distribution 𝑃 = (𝑝
1
, . . . , 𝑝

𝑛
), 𝑝
𝑖
≥

0, ∑
𝑛

𝑖=1
𝑝
𝑖
= 1.

Measure (6) reduces to entropy of type 𝛽 (or 𝛼) when 𝛼 =

𝛾 = 1 (or 𝛽 = 𝛾 = 1) given by

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛽) = (2

1−𝛽

− 1)

−1

[
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𝑖=1

𝑝
𝛽

𝑖
− 1] ,

𝛽 ̸= 1, 𝛽 > 0.

(7)

When 𝛽 → 1, measure (7) reduces to Shannon’s entropy [5],
namely,

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

2
) = −

𝑛

∑

𝑖=1

𝑝
𝑖
log
2
𝑝
𝑖
. (8)

The measure (7) was characterized by many authors by
different approaches. Havrda and Charvát [6] characterized
(7) by an axiomatic approach. Daróczy [7] studied (7) by a
functional equation. A joint characterization of the measures
(7) and (8) has been done by author in two different ways.
Firstly by a generalized functional equation having four
different functions and secondly by an axiomatic approach.
Later on Tsallis [8] gave the applications of (7) in Physics.

To characterize strongly interacting statistical systems
within a thermodynamical framework—complex system in
particular—it might be necessary to introduce generalized
entropies. A series of such entropies have been proposed in
the past, mainly to accommodate important empirical dis-
tribution functions to a maximum ignorance principles. The
understanding of the fundamental origin of these entropies
and its deeper relations to complex systems is limited.
Authors [9] explore this question fromfirst principle. Authors
[9] observed that the 4th Khinchin axiom is violated by
strongly interacting system in general and by assuming the
first threeKhinchin axioms derived a unique entropy and also
classified the known entropies with in equivalence classes.

For statistical system that violates the four Shannon-
Khinchin axioms, entropy takes a more general form than
the Boltzmann-Gibbs entropy.The framework of superstatis-
tics allows one to formulate a maximum entropy principle
with these generalized entropies, making them useful for
understanding distribution functions of non-Markovian or
nonergodic complex systems. For such systems where the
composability axiom is violated there exist only two ways
to implement the maximum entropy principle; one is using
the escort probabilities and the other is not. The two ways
are connected through a duality. Authors [10] showed that
this duality fixes a unique escort probability and derived a
complete theory of the generalized logarithms and also gave

the relationship between the functional forms of general-
ized logarithms and the asymptotic scaling behavior of the
entropy.

Suyari [11] has proposed a generalization of Shannon-
Khinchin axioms, which determines a class of entropies
containing the well-known Tsallis and Havrda-Charvat
entropies. Authors [12] showed that the class of entropy
functions determined by Suyari’s axioms is wider than the
one proposed by Suyari and generalized Suyari’s axioms
characterizing recently introduced class of entropies obtained
by averaging pseudoadditive information content.

In this communication, we characterized the measure (6)
by taking certain axioms parallel to those considered earlier
by Havrda and Charvát [6] along with the recursive relation
(9). Some properties of this measure are also studied.

The measure (6) satisfies a recursive relation as follows:
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where 𝑝
1
+ 𝑝
2
> 0, 𝐴

(𝛼,𝛾)
= (2
(𝛾−𝛼)/𝛾

− 1), and 𝐴
(𝛽,𝛾)

=

(2
(𝛾−𝛽)/𝛾

− 1).
Consider

𝐻(𝑝
1
, 𝑝
2
, . . . , 𝑝
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𝐻 (𝑝
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, . . . , 𝑝
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(10)

Proof.
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𝑛
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, . . . , 𝑝
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+ ⋅ ⋅ ⋅ + (𝑝
𝛼/𝛾

𝑛
− 𝑝
𝛽/𝛾

𝑛
) }



Abstract and Applied Analysis 3

= (2
(𝛾−𝛼)/𝛾
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1
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2
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}

+ (2
(𝛾−𝛼)/𝛾

− 2
(𝛾−𝛽)/𝛾

)

−1

{(𝑝
1
+ 𝑝
2
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𝛽/𝛾
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𝛽/𝛾

1
− 𝑝
𝛽/𝛾

2
}

= (2
(𝛾−𝛼)/𝛾

− 2
(𝛾−𝛽)/𝛾

)

−1

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

× [

𝑝
𝛼/𝛾

1

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

+

𝑝
𝛼/𝛾

2

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

− 1]

+ (2
(𝛾−𝛼)/𝛾

− 2
(𝛾−𝛽)/𝛾

)

−1

(𝑝
1
+ 𝑝
2
)
𝛽/𝛾

× [1 −

𝑝
𝛽/𝛾

1

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

−

𝑝
𝛽/𝛾

2

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

]

=

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(𝑝
1
+ 𝑝
2
)
𝛼/𝛾

𝐻
2
(

𝑝
1

𝑝
1
+ 𝑝
2

,

𝑝
2

𝑝
1
+ 𝑝
2

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

(𝑝
1
+ 𝑝
2
)
𝛽/𝛾

× 𝐻
2
(

𝑝
1

𝑝
1
+ 𝑝
2

,

𝑝
2

𝑝
1
+ 𝑝
2

; 𝛾, 𝛽) ,

(11)

which proves (9).

2. Set of Axioms

For characterizing a measure of information of types 𝛼, 𝛽,
and 𝛾 associated with a probability distribution 𝑃 =

(𝑝
1
, . . . , 𝑝

𝑛
), 𝑝
𝑖
≥ 0, ∑𝑛

𝑖=1
𝑝
𝑖
= 1, we introduce the following

axioms:

(1) 𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾) is continuous in the region

𝑝
𝑖
≥ 0,

𝑛

∑

𝑖=1

𝑝
𝑖
= 1, 𝛼, 𝛽, 𝛾 > 0; (12)

(2) 𝐻
2
(1, 0; 𝛼, 𝛽, 𝛾) = 0;

(3) 𝐻
2
(1/2, 1/2; 𝛼, 𝛽, 𝛾) = 1, 𝛼, 𝛽, 𝛾 > 0;

(4)

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑖−1
, 0, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

= 𝐻
𝑛−1

(𝑝
1
, . . . , 𝑝

𝑖−1
, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾) ,

(13)

for every 𝑖 = 1, 2, . . . , 𝑛;

(5)

𝐻
𝑛+1

(𝑝
1
, . . . , 𝑝

𝑖−1
, V
𝑖
1

, V
𝑖
2

, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

− 𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑖−1
, 𝑝
𝑖
, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

=

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑝
𝛼/𝛾

𝑖
𝐻
2
(

V
𝑖
1

𝑝
𝑖

,

V
𝑖
2

𝑝
𝑖

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑝
𝛽/𝛾

𝑖
𝐻
2
(

V
𝑖
1

𝑝
𝑖

,

V
𝑖
2

𝑝
𝑖

; 𝛾, 𝛽) ,

𝛼 ̸= 𝛾 ̸= 𝛽, 𝛼, 𝛽, 𝛾 > 0,

(14)

for every V
𝑖
1

+ V
𝑖
2

= 𝑝
𝑖
> 0, 𝑖 = 1, 2 . . . , 𝑛, where 𝐴

(𝛼,𝛾)
=

(2
(𝛾−𝛼)/𝛾

− 1) and 𝐴
(𝛽,𝛾)

= (2
(𝛾−𝛽)/𝛾

− 1), 𝛼 ̸= 𝛾 ̸= 𝛽.

Theorem 1. If 𝛼 ̸= 𝛽 ̸= 𝛾; 𝛼, 𝛽, 𝛾 > 0, then the axioms (1)–(5)
determine a measure given by

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) ,

𝛼 ̸= 𝛾 ̸= 𝛽, 𝛼, 𝛽, 𝛾 > 0,

(15)

where 𝐴
(𝛼,𝛾)

= (2
(𝛾−𝛼)/𝛾

− 1) and 𝐴
(𝛽,𝛾)

= (2
(𝛾−𝛽)/𝛾

− 1).
Before proving the theorem we prove some intermediate

results based on the above axioms.

Lemma 2. If V
𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑚 and ∑

𝑚

𝑘=1
V
𝑘
= 𝑝
𝑖
> 0,

then

𝐻
𝑛+𝑚−1

(𝑝
1
, . . . , 𝑝

𝑖−1
, V
1
, . . . , V

𝑚
, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

= 𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑝
𝛼/𝛾

𝑖
𝐻
𝑚
(

V
1

𝑝
𝑖

, . . . ,

V
𝑚

𝑝
𝑖

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑝
𝛽/𝛾

𝑖
𝐻
𝑚
(

V
1

𝑝
𝑖

, . . . ,

V
𝑚

𝑝
𝑖

; 𝛾, 𝛽) .

(16)

Proof. Toprove the lemma,we proceed by induction. For𝑚 =

2, the desired statement holds (cf. axiom (4)). Let us suppose
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that the result is true for numbers less than or equal to𝑚, we
will prove it for𝑚 + 1. We have

𝐻
𝑛+𝑚

(𝑝
1
, . . . , 𝑝

𝑖−1
, V
1
, . . . , V

𝑚+1
, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

= 𝐻
𝑛+1

(𝑝
1
, . . . , 𝑝

𝑖−1
, V
1
, 𝐿, 𝑝
𝑖+1

, . . . , 𝑝
𝑛
; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝐿
𝛼/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝐿
𝛽/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛾, 𝛽)

(where 𝐿 = V
2
+ ⋅ ⋅ ⋅ + V

𝑚+1
)

= 𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑝
𝛼/𝛾

𝑖
𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑝
𝛽/𝛾

𝑖
𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛾, 𝛽)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝐿
𝛼/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝐿
𝛽/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛾, 𝛽)

= 𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾) +

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

× {𝑝
𝛼/𝛾

𝑖
𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛼, 𝛾)

+ 𝐿
𝛼/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛼, 𝛾)}

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

{𝑝
𝛽/𝛾

𝑖
𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛾, 𝛽)

+𝐿
𝛽/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛾, 𝛽)} ,

where 𝑝
𝑖
= V
1
+ 𝐿 > 0.

(17)

One more application of induction premise yields

𝐻
𝑚+1

(

V
1

𝑝
𝑖

, . . . ,

V
𝑚+1

𝑝
𝑖

; 𝛼, 𝛽, 𝛾)

= 𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

𝐿

𝑝
𝑖

)

𝛼/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛼, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

𝐿

𝑝
𝑖

)

𝛽/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛾, 𝛽) .

(18)

For 𝛽 = 𝛾, (18) reduces to

𝐻
𝑚+1

(

V
1

𝑝
𝑖

, . . . ,

V
𝑚+1

𝑝
𝑖

; 𝛼, 𝛾)

= 𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛼, 𝛾) + (

𝐿

𝑝
𝑖

)

𝛼/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛼, 𝛾) .

(19)

Similarly for 𝛼 = 𝛾, (18) reduces to

𝐻
𝑚+1

(

V
1

𝑝
𝑖

, . . . ,

V
𝑚+1

𝑝
𝑖

; 𝛾, 𝛽)

= 𝐻
2
(

V
1

𝑝
𝑖

,

𝐿

𝑝
𝑖

; 𝛾, 𝛽) + (

𝐿

𝑝
𝑖

)

𝛽/𝛾

𝐻
𝑚
(

V
2

𝐿

, . . . ,

V
𝑚+1

𝐿

; 𝛾, 𝛽) .

(20)

Expression (17) together with (19) and (20) gives the desired
result.

Lemma 3. If V
𝑖𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑚
𝑖
, ∑𝑚𝑖
𝑗=1

V
𝑖𝑗

= 𝑝
𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛, and ∑𝑛
𝑖=1

𝑝
𝑖
= 1, then

𝐻
𝑚
1
+⋅⋅⋅+𝑚

𝑛

(V
1 1
, V
1 2
, . . . , V

1𝑚
1

: ⋅ ⋅ ⋅ : V
𝑛 1
,

V
𝑛 2
, . . . , V

𝑛𝑚
𝑛

; 𝛼, 𝛽, 𝛾)

= 𝐻
𝑛
(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖
𝐻
𝑚
𝑖

(

V
𝑖 1

𝑝
𝑖

, . . . ,

V
𝑖 𝑚
𝑖

𝑝
𝑖

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖
𝐻
𝑚
𝑖

(

V
𝑖 1

𝑝
𝑖

, . . . ,

V
𝑖 𝑚
𝑖

𝑝
𝑖

; 𝛾, 𝛽) .

(21)

Proof. Proof of this lemma directly follows from Lemma 2.

Lemma 4. If 𝐹(𝑛; 𝛼, 𝛽, 𝛾) = 𝐻
𝑛
(1/𝑛, . . . , 1/𝑛; 𝛼, 𝛽, 𝛾), then

𝐹 (𝑛; 𝛼, 𝛽, 𝛾) =

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝐹 (𝑛; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝐹 (𝑛; 𝛾, 𝛽) ,

(22)

where 𝐹(𝑛; 𝛼, 𝛾) = 𝐴
−1

(𝛼,𝛾)
(𝑛
(𝛾−𝛼)/𝛾

− 1), 𝛼 ̸= 𝛾, and

𝐹 (𝑛; 𝛾, 𝛽) = 𝐴
−1

(𝛽,𝛾)
(𝑛
(𝛾−𝛽)/𝛾

− 1) , 𝛽 ̸= 𝛾. (23)
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Proof. Replacing in Lemma 3 𝑚
𝑖
by 𝑚 and putting V

𝑖𝑗
=

1/𝑚𝑛, 𝑖 = 1, 2, 𝑛, 𝑗 = 1, 2, 𝑚, where 𝑚 and 𝑛 are positive
integer, we have

𝐹 (𝑚𝑛; 𝛼, 𝛽, 𝛾) = 𝐹 (𝑚; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

1

𝑚

)

(𝛼−𝛾)/𝛾

𝐹 (𝑛; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

(

1

𝑚

)

(𝛽−𝛾)/𝛾

𝐹 (𝑛; 𝛾, 𝛽) ,

(24)

𝐹 (𝑚𝑛; 𝛼, 𝛽, 𝛾) = 𝐹 (𝑛; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

1

𝑛

)

(𝛼−𝛾)/𝛾

𝐹 (𝑚; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

(

1

𝑛

)

𝛽/𝛾−1

𝐹 (𝑚; 𝛾, 𝛽) .

(25)

Putting 𝑚 = 1 in (24) and using 𝐹(1; 𝛼, 𝛽, 𝛾) = 0 (by axiom
(2)), we get

𝐹 (𝑛; 𝛼, 𝛽, 𝛾) =

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝜆)

− 𝐴
(𝛽,𝛾)

𝐹 (𝑛; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝐹 (𝑛; 𝛾, 𝛽) ,

(26)

which is (22).
Comparing the right hand sides of (24) and (25), we get

𝐹 (𝑚; 𝛼, 𝛽, 𝛾) +

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

1

𝑚

)

𝛼/(𝛼−𝛾)

𝐹 (𝑛; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

(

1

𝑚

)

𝛽/(𝛽−𝛾)

𝐹 (𝑛; 𝛾, 𝛽)

= 𝐹 (𝑛; 𝛼, 𝛽, 𝛾) +

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

(

1

𝑛

)

𝛼/(𝛼−𝛾)

𝐹 (𝑚; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

(

1

𝑛

)

𝛽/(𝛽−𝛾)

𝐹 (𝑚; 𝛾, 𝛽) .

(27)

Equation (27) together with (22) gives

𝐴
(𝛼,𝛾)

{[1 − (

1

𝑛

)

𝛼/𝛾−1

] 𝐹 (𝑚; 𝛼, 𝛾)

+ [(

1

𝑚

)

𝛼/𝛾−1

− 1] 𝐹 (𝑛; 𝛼, 𝛾)}

= 𝐴
(𝛽,𝛾)

{[1 − (

1

𝑛

)

𝛽/𝛾−1

] 𝐹 (𝑚; 𝛾, 𝛽)

+ [(

1

𝑚

)

𝛽/𝛾−1

− 1] 𝐹 (𝑛; 𝛾, 𝛽)} .

(28)

Putting 𝑛 = 2 in (28) and using 𝐹(2, 𝛼, 𝛽, 𝛾) =

𝐻
2
(1/2, 1/2; 𝛼, 𝛽, 𝛾) = 1, we get

𝐴
(𝛼,𝛾)

{(1 − 2
1−𝛼/𝛾

) 𝐹 (𝑚; 𝛼, 𝛾) − (1 − (

1

𝑚

)

𝛼/𝛾−1

)}

= 𝐴
(𝛽,𝛾)

{(1 − 2
1−𝛽/𝛾

) 𝐹 (𝑚; 𝛾, 𝛽) − (1 − (

1

𝑚

)

𝛽/𝛾−1

)}

= 𝐶 (say) .
(29)

That is, 𝐴
(𝛼,𝛾)

{(1 − 2
1−𝛼/𝛾

)𝐹(𝑚; 𝛼, 𝛾) − (1 − (1/𝑚)
𝛼/𝛾−1

)} = 𝐶,
where 𝐶 is an arbitrary constant.

For𝑚 = 1, we get 𝐶 = 0.
Thus, we have

𝐹 (𝑚; 𝛼, 𝛾) =

1 − 𝑚
1−𝛼/𝛾

1 − 2
1−𝛼/𝛾

= 𝐴
−1

(𝛼,𝛾)
(𝑚
1−𝛼/𝛾

− 1) , 𝛼 ̸= 𝛾.

(30)

Similarly,

𝐹 (𝑚; 𝛾, 𝛽) =

1 − 𝑚
1−𝛽/𝛾

1 − 2
1−𝛽/𝛾

= 𝐴
−1

(𝛽,𝛾)
(𝑚
1−𝛽/𝛾

− 1) , 𝛽 ̸= 𝛾,

(31)

which is (23).
Now (22) together with (23) gives

𝐹 (𝑛; 𝛼, 𝛽, 𝛾) =

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝐹 (𝑛; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝐹 (𝑛; 𝛾, 𝛽)

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

(𝑛
1−𝛼/𝛾

− 𝑛
1−𝛽/𝛾

) .

(32)

Proof of the Theorem. Weprove the theorem for rationals and
then the continuity axiom (1) extends the result for reals. For
this let 𝑚 and 𝑟



𝑖
’s be positive integers such that ∑𝑛

𝑖=1
𝑟
𝑖
= 𝑚

and if we put 𝑝
𝑖
= 𝑟
𝑖
/𝑚, 𝑖 = 1, 2, . . . , 𝑛 then an application of

Lemma 3 gives

𝐻
𝑚
(

1

𝑚

, . . . ,

1

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟
1

, . . . ,

1

𝑚

, . . . ,

1

𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟
𝑛

; 𝛼, 𝛽, 𝛾)

= 𝐻
𝑛
(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

+

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖
𝐻
𝑟
𝑖

(

1

𝑟
𝑖

, . . . ,

1

𝑟
𝑖

; 𝛼, 𝛾)

+

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖
𝐻
𝑟
𝑖

(

1

𝑟
𝑖

, . . . ,

1

𝑟
𝑖

; 𝛾, 𝛽) .

(33)
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That is,

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾)

= 𝐹 (𝑚; 𝛼, 𝛽, 𝛾)

−

𝐴
(𝛼,𝛾)

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖
𝐹 (𝑟
𝑖
; 𝛼, 𝛾)

−

𝐴
(𝛽,𝛾)

𝐴
(𝛽,𝛾)

− 𝐴
(𝛼,𝛾)

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖
𝐹 (𝑟
𝑖
; 𝛾, 𝛽) .

(34)

Equation (34) together with (23) and (32) gives

𝐻
𝑛
(𝑝
1
, . . . , 𝑝

𝑛
; 𝛼, 𝛽, 𝛾) =

1

𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) ,

𝛼 ̸= 𝛾 ̸= 𝛽, 𝛼, 𝛽, 𝛾 > 0.

(35)

which is (15).
This completes the proof of the theorem.

3. Properties of Entropy of Types 𝛼, 𝛽, and 𝛾

The measure 𝐻
𝑛
(𝑃; 𝛼, 𝛽, 𝛾), where 𝑃 = (𝑝

1
, . . . , 𝑝

𝑛
), 𝑝
𝑖
≥ 0,

∑
𝑛

𝑖=1
𝑝
𝑖
= 1, is a probability distribution, as characterized in

the preceding section and satisfies certain properties, which
are given in the following theorems:

Theorem 5. The measure 𝐻
𝑛
(𝑃; 𝛼, 𝛽, 𝛾) is nonnegative for

𝛼 ̸= 𝛾 ̸= 𝛽, 𝛼, 𝛽, 𝛾 > 0.

Proof.
Case 1. 𝛼 > 𝛾; 𝛽 < 𝛾 ⇒ 𝛼/𝛾 > 1, 𝛽/𝜆 < 1;

⇒

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖
< 1,

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖
> 1,

⇒

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) < 0.

(36)

Since, 𝛼 > 𝛾 and 𝛽 < 𝛾, we get

(2
1−𝛼/𝛾

− 2
1−𝛽/𝛾

)

−1
𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) > 0. (37)

Case 2. Similarly for 𝛼 < 𝛾 and 𝛽 > 𝛾, we get

(2
1−𝛼/𝛾

− 2
1−𝛽/𝛾

)

−1
𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
> 0. (38)

Therefore from Case 1, Case 2, and axiom (2), we get

𝐻
𝑛
(𝑃; 𝛼, 𝛽, 𝛾) ≥ 0. (39)

This completes the proof of theorem.

Definition 6. We will use the following definition of a convex
function.

A function𝑓(⋅) over the points in a convex set𝑅 is convex
∩ if for all 𝑟

1
, 𝑟
2
∈ 𝑅 and 𝜇 ∈ (0, 1)

𝜇𝑓 (𝑟
1
) + (1 − 𝜇) 𝑓 (𝑟

2
) ≤ 𝑓 (𝜇𝑟

1
+ (1 − 𝜇) 𝑟

2
) . (40)

The function 𝑓(⋅) is convex ∪ if (40) holds with ≥ in place of
≤.

Theorem7. Themeasure𝐻
𝑛
(𝑃; 𝛼, 𝛽, 𝛾) is convex∩ function of

the probability distribution 𝑃 = (𝑝
1
, . . . , 𝑝

𝑛
), 𝑝
𝑖
≥ 0, ∑𝑛

𝑖=1
𝑝
𝑖
=

1, when either 𝛼 > 𝛾and 𝛽 ≤ 𝛾 or 𝛽 > 𝛾and 𝛼 ≤ 𝛾.

Proof. Let there be 𝑟 distributions

𝑃
𝑘
(𝑋) = {𝑝

𝑘
(𝑥
1
) , . . . , 𝑝

𝑘
(𝑥
𝑛
)} ,

𝑛

∑

𝑖=1

𝑝
𝑘
(𝑥
𝑖
) = 1,

𝑘 = 1, 2, . . . , 𝑟,

(41)

associated with the random variable 𝑋 = (𝑥
1
, . . . , 𝑥

𝑛
).

Consider 𝑟 numbers (𝑎
1
, . . . , 𝑎

𝑟
) such that 𝑎

𝑘
≥ 0 and

∑
𝑟

𝑘=1
𝑎
𝑘
= 1 and define

𝑃
𝑜
(𝑋) = {𝑝

𝑜
(𝑥
1
) , . . . , 𝑝

𝑜
(𝑥
𝑛
)} , (42)

where

𝑝
𝑜
(𝑥
𝑖
) =

𝑟

∑

𝑘=1

𝑎
𝑘
𝑝
𝑘
(𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛. (43)

Obviously, ∑𝑛
𝑖=1

𝑝
𝑜
(𝑥
𝑖
) = 1 and thus 𝑃

𝑜
(𝑥) is a bonafide

distribution of𝑋.
Let 𝛼 > 𝛾 and 0 < 𝛽 ≤ 𝛾, then we have
𝑟

∑

𝑘=1

𝑎
𝑘
𝐻
𝑛
(𝑝
𝑘
; 𝛼, 𝛽, 𝛾) − 𝐻

𝑛
(𝑃
𝑜
(𝛼, 𝛽, 𝛾))

=

𝑟

∑

𝑘=1

𝑎
𝑘
𝐻
𝑛
(𝑝
𝑘
; 𝛼, 𝛽, 𝛾)

− (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1
{
{

{
{

{

[

[

𝑟

∑

𝑗=1

𝑎
𝑗
𝑝
𝑗

]

]

𝛼/𝛾

−
[

[

𝑟

∑

𝑗=1

𝑎
𝑗
𝑝
𝑗

]

]

𝛽/𝛾

}
}

}
}

}

≤

𝑟

∑

𝑘=1

𝑎
𝑘
𝐻
𝑛
(𝑝
𝑘
; 𝛼, 𝛽, 𝛾)

− (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

(

𝑟

∑

𝑗=1

𝑎
𝑗
𝑝
𝛼/𝛾

𝑗
−

𝑟

∑

𝑗=1

𝑎
𝑗
𝑝
𝛽/𝛾

𝑗
) = 0,

(by Jensen’s inequality) .
(44)

⇒ ∑
𝑟

𝑘=1
𝑎
𝑘
𝐻
𝑛
(𝑝
𝑘
; 𝛼, 𝛽, 𝛾) − 𝐻

𝑛
(𝑃
𝑜
; 𝛼, 𝛽, 𝛾) ≤ 0,

that is,∑𝑟
𝑘=1

𝑎
𝑘
𝐻
𝑛
(𝑝
𝑘
; 𝛼, 𝛽, 𝛾) ≤ 𝐻

𝑛
(𝑃
𝑜
; 𝛼, 𝛽, 𝛾), for𝛼 > 𝛾, 0 <

𝛽 ≤ 𝛾.
By symmetry in 𝛼, 𝛽, and 𝛾 the above result is true for

𝛽 > 𝛾 and 0 < 𝛼 ≤ 𝛾.
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Theorem 8. The measure𝐻
𝑛
(𝑝; 𝛼, 𝛽, 𝛾) satisfies the following

relations:

(i) Generalized-Additive:

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) = 𝐺
𝑛
(𝑃; 𝛼, 𝛽, 𝛾)𝐻

𝑚
(𝑄; 𝛼, 𝛽, 𝛾)

+ 𝐺
𝑚
(𝑄; 𝛼, 𝛽, 𝛾)𝐻

𝑛
(𝑃; 𝛼, 𝛽, 𝛾) ,

𝛼, 𝛽, 𝛾 > 0,

(45)

where

𝐺
𝑛
(𝑃; 𝛼, 𝛽, 𝛾) =

1

2

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
) ,

𝛼, 𝛽, 𝛾 > 0.

(46)

(ii) Subadditive: for 𝛼, 𝛽 > 𝛾, the measure𝐻
𝑛
(𝑝; 𝛼, 𝛽, 𝛾) is

subadditive; that is,

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) ≤ 𝐻
𝑛
(𝑃; 𝛼, 𝛽, 𝛾)

+ 𝐻
𝑚
(𝑄; 𝛼, 𝛽, 𝛾) ,

(47)

where 𝑃 = (𝑝
1
, . . . , 𝑝

𝑛
), 𝑄 = (𝑞

1
, . . . , 𝑞

𝑚
) and

𝑃 ∗ 𝑄 = (𝑝
1
𝑞
1
, . . . , 𝑝

1
𝑞
𝑚
, . . . , 𝑝

𝑛
𝑞
1
, . . . , 𝑝

𝑛
𝑞
𝑚
) (48)

are complete probability distributions.

Proof of (i). We have

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) = (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

×

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[(𝑝
𝑖
𝑞
𝑗
)

𝛼/𝛾

− (𝑝
𝑖
𝑞
𝑗
)

𝛽/𝛾

]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[(𝑝
𝑖
𝑞
𝑗
)

𝛼/𝛾

− (𝑝
𝑖
𝑞
𝑗
)

𝛽/𝛾

+𝑝
𝛼/𝛾

𝑖
𝑞
𝛽/𝛾

𝑗
− 𝑝
𝛼/𝛾

𝑖
𝑞
𝛽/𝛾

𝑗
]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[𝑝
𝛼/𝛾

𝑖
𝑞
𝛼/𝛾

𝑗
− 𝑝
𝛽/𝛾

𝑖
𝑞
𝛽/𝛾

𝑗

+𝑝
𝛼/𝜆

𝑖
𝑞
𝛽/𝛾

𝑗
− 𝑝
𝛼/𝛾

𝑖
𝑞
𝛽/𝛾

𝑗
]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[𝑝
𝛼/𝛾

𝑖
(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)

−𝑞
𝛽/𝛾

𝑗
(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

[

[

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)

−

𝑚

∑

𝑗=1

𝑞
𝛽/𝛾

𝑗

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)
]

]

.

(49)

Also

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾)

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[(𝑝
𝑖
𝑞
𝑗
)

𝛼/𝛾

− (𝑝
𝑖
𝑞
𝑗
)

𝛽/𝛾

]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[(𝑝
𝑖
𝑞
𝑗
)

𝛼/𝛾

− (𝑝
𝑖
𝑞
𝑗
)

𝛽/𝛾

+𝑝
𝛽/𝛾

𝑖
𝑞
𝛼/𝛾

𝑗
− 𝑝
𝛽/𝛾

𝑖
𝑞
𝛼/𝛾

𝑗
]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[𝑝
𝛼/𝛾

𝑖
𝑞
𝛼/𝛾

𝑗
− 𝑝
𝛽/𝛾

𝑖
𝑞
𝛽/𝛾

𝑗

+𝑝
𝛽/𝛾

𝑖
𝑞
𝛼/𝛾

𝑗
− 𝑞
𝛼/𝛾

𝑗
]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

[𝑞
𝛼/𝛾

𝑗
(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)

−𝑝
𝛽/𝛾

𝑖
(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)]

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

[

[

𝑚

∑

𝑗=1

𝑞
𝛼/𝛾

𝑗

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)

−

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖

𝑛

∑

𝑖=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)] .

(50)

Adding (49) and (50), we get

2𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾)

= (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

[

[

𝑛

∑

𝑖=1

𝑝
𝛼/𝛾

𝑖

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)

−

𝑚

∑

𝑗=1

𝑞
𝛽/𝛾

𝑗

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)
]

]
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+ (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

[

[

𝑚

∑

𝑗=1

𝑞
𝛼/𝛾

𝑗

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
)

−

𝑛

∑

𝑖=1

𝑝
𝛽/𝛾

𝑖

𝑛

∑

𝑖=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
)]

=

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
) (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

×

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
− 𝑞
𝛽/𝛾

𝑗
)

+

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
) (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

×

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) ,

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾)

=

1

2

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
) (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

×

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
− 𝑞
𝛽/𝛾

𝑗
)

+

1

2

𝑚

∑

𝑗=1

(𝑞
𝛼/𝛾

𝑗
+ 𝑞
𝛽/𝛾

𝑗
) (𝐴
(𝛼,𝛾)

− 𝐴
(𝛽,𝛾)

)

−1

×

𝑛

∑

𝑖=1

(𝑝
𝛼/𝛾

𝑖
− 𝑝
𝛽/𝛾

𝑖
) .

(51)

Using (46)

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝑠) = 𝐺
𝑛
(𝑃; 𝛼, 𝛽, 𝛾)𝐻

𝑚
(𝑄; 𝛼, 𝛽, 𝛾)

+ 𝐺
𝑚
(𝑄; 𝛼, 𝛽, 𝛾)𝐻

𝑛
(𝑃; 𝛼, 𝛽, 𝛾) ,

(52)

which is (45). This completes the proof of part (i).

Proof of (ii). From part (i), we have

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) = 𝐺
𝑛
(𝑃; 𝛼, 𝛽, 𝛾)𝐻

𝑚
(𝑄; 𝛼, 𝛽, 𝛾)

+ 𝐺
𝑚
(𝑄; 𝛼, 𝛽, 𝛾)𝐻

𝑛
(𝑃; 𝛼, 𝛽, 𝛾) .

(53)

As 𝐺
𝑛
(𝑃; 𝛼, 𝛽, 𝛾) = (1/2)∑

𝑛

𝑖=1
(𝑝
𝛼/𝛾

𝑖
+ 𝑝
𝛽/𝛾

𝑖
) ≤ 1, for 𝛼, 𝛽 ≥ 𝛾,

𝐻
𝑛𝑚

(𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) ≤ 𝐻
𝑚
(𝑄; 𝛼, 𝛽, 𝛾) + 𝐻

𝑛
(𝑃; 𝛼, 𝛽, 𝛾) .

(54)

This proves the subadditivity.

4. Conclusion

In addition to well-known information measure of Shannon,
Renyi’s, Havrda-Charvat, Vajda [13], Darcózy, we have char-
acterized a measure which we call 𝛼, 𝛽, and 𝛾 information
measure. We have given some basic axioms and properties
with recursive relation. The Shannon’s [5] measure included
in the 𝛼, 𝛽, and 𝛾 information measure for the limiting case
𝛼 = 𝛾 = 1 and 𝛽 → 1; 𝛽 = 𝛾 = 1 and 𝛼 → 1. This measure
is generalization of Havrda-Charvat entropy.
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