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Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods
with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional
function evaluations. Numerical comparisons are made to show the performance of the presented methods.

1. Introduction

Multipoint iterative methods for solving nonlinear equations
are of great practical importance since they overcome theo-
retical limits of one-point methods concerning the conver-
gence order and computational efficiency.The main goal and
motivation in constructing root-solvers is to achieve as high
as possible convergence order consuming as small as possible
function evaluations. Let 𝑓 be a sufficiently smooth function
of single variable in some neighborhood 𝐷 of 𝛼, where 𝛼
satisfies 𝑓(𝛼) = 0. Traub [1] considered the iterative function
of order two:

𝑥
𝑛+1

= 𝑥
𝑛
−

𝛽𝑓 (𝑥
𝑛
)
2

𝑓 (𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
)) − 𝑓 (𝑥

𝑛
)
, (1)

where 𝛽 ̸= 0 is a real constant. The choice 𝛽 = 1 produces
the well-known Steffensen method [2]. To improve the local
order of convergence, many modified methods have been
proposed in the open literature; see [3–11] and references
therein. Thukral developed a scheme of optimal order of
convergence eight [12], constructing a weight function as well
in the following form:
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=
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(5)

where 𝛽 ̸= 0 is a real constant. These methods belong to
the class of methods without memory. In this paper, we
use optimal multipoint method without memory by Thukral
as the base for constructing considerably faster methods
employing information from the current and previous iter-
ation without any additional evaluations of the function.
Following Traub’s classification (see [1, pp. 8-9]), this class of
root-finders is called methods with memory. Our main goal
is to present some multipoint methods with high efficiency
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index to find the approximation of the root 𝛼 of the nonlinear
equation 𝑓(𝑥) = 0. The acceleration of convergence rate
is attained by suitable variation of one free parameter in
each iterative step. This self-accelerating parameter is cal-
culated using information from the current and previous
iteration by applying Newton’s interpolating polynomials.
Since considerable acceleration of convergence is obtained
without additional function evaluations, the computational
efficiency of improved multipoint methods is significantly
increased. The efficacy of the methods is tested on a number
of numerical examples.

2. Multipoint Methods with Memory

In [13], Sharma et al. have presented three methods through
the following forms of 𝛽

𝑛
:

𝛽
𝑛
= −

1
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= −
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)
, (6)
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𝛽
𝑛
= −

1

̄𝑓󸀠 (𝛼)
= −

1

𝑁󸀠
4
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, (8)

for 𝑛 = 1, 2, . . ., where ̄𝑓󸀠(𝛼) denotes an approximation to
𝑓󸀠(𝛼), and
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are Newton’s interpolatory polynomials of the third degree,
set through four available approximations:
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Now, we replace constant parameters 𝛽 in the iterative
formula (5) by the varying 𝛽

𝑛
defined by (6), (7), and (8).

Then, the multipoint methods with memory, following from
(5), become
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𝑥
𝑛+1

= 𝑧
𝑛
− (1 −

𝑓(𝑧
𝑛
)

𝑓(𝑤
𝑛
)
)
−1

× (1 −
𝑓(𝑦
𝑛
)
3

𝑓(𝑤
𝑛
)
2

𝑓 (𝑥
𝑛
)
)(

𝑓 [𝑥
𝑛
, 𝑦
𝑛
] 𝑓 (𝑧
𝑛
)

𝑓 [𝑦
𝑛
, 𝑧
𝑛
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𝑛
, 𝑧
𝑛
]
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(12)

where 𝜙
𝑘
for 𝑘 = 1, 2, 3 is defined by (2), (3), and (4),

respectively.

3. Convergence Theorems

Theorem 1. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxi-
mation 𝑥

0
is sufficiently close to 𝛼 and the parameter 𝛽

𝑛
in

(12) is recursively calculated by the forms given in (6)–(8),
where 𝜙

𝑘
for 𝑘 = 1 is defined by (2), then the 𝑅-order of

convergence of the Steffensen-like method with memory (12)
with the corresponding expressions (6)–(8) of 𝛽

𝑛
is at least

10.7202, 11, and 11.2915, respectively.

Proof. Let {𝑥
𝑛
} be a sequence of approximations generated

by an iterative method with memory (12). If this sequence
converges to the zero 𝛼 of 𝑓 with the 𝑅-order (≥ 𝑟) of (12),
then we write [11]

𝑒
𝑛+1

∼ 𝐷
𝑛,𝑟

𝑒𝑟
𝑛
, 𝑒

𝑛
= 𝑥
𝑛
− 𝛼, (13)

where 𝐷
𝑛,𝑟

tends to the asymptotic error constant 𝐷
𝑟
of (12)

when 𝑛 → ∞. Therefore,

𝑒
𝑛+1

∼ 𝐷
𝑛,𝑟

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
𝑟

= 𝐷
𝑛,𝑟

𝐷𝑟
𝑛−1,𝑟

𝑒𝑟
2

𝑛−1
. (14)

Assume that the iterative sequences {𝑤
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} have

the 𝑅-orders 𝑞, 𝑝, and 𝑠, respectively; then, bearing in mind
(13), we obtain

𝑒
𝑛
∼ 𝐷
𝑛,𝑞

𝑒𝑞
𝑛
= 𝐷
𝑛,𝑞

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
𝑞

= 𝐷
𝑛,𝑞

𝐷
𝑞

𝑛−1,𝑟
𝑒
𝑟𝑞

𝑛−1
, (15)

𝑒
𝑛
∼ 𝐷
𝑛,𝑝

𝑒𝑝
𝑛
= 𝐷
𝑛,𝑝

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
𝑝

= 𝐷
𝑛,𝑝

𝐷
𝑝

𝑛−1,𝑟
𝑒
𝑟𝑝

𝑛−1
, (16)

𝑒
𝑛
∼ 𝐷
𝑛,𝑠
𝑒𝑠
𝑛
= 𝐷
𝑛,𝑠
(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
𝑠

= 𝐷
𝑛,𝑠
𝐷𝑠
𝑛−1,𝑟

𝑒𝑟𝑠
𝑛−1

. (17)

Let 𝜙
𝑘
for 𝑘 = 1 be defined by (2). We now obtain the order

of convergence of the methods with memory (12), where
𝛽
𝑛
is calculated from (6). The error relations with the self-

accelerating parameter 𝛽
𝑛
for (12) are in what follows (where

𝑐
𝑖
= 𝑓(𝑖)(𝛼)/(𝑖!𝑓󸀠(𝛼)), 𝑖 = 2, 3, . . .):

𝑒
𝑛
= 𝑤
𝑛
− 𝛼 ∼ (1 + 𝛽

𝑛
𝑓󸀠 (𝛼)) 𝑒

𝑛
, (18)

𝑒
𝑛
= 𝑦
𝑛
− 𝛼 ∼ 𝑐

2
(1 + 𝛽

𝑛
𝑓󸀠 (𝛼)) 𝑒

2

𝑛
, (19)

𝑒
𝑛
= 𝑧
𝑛
− 𝛼 ∼ 𝑐

𝑛,4
(1 + 𝛽

𝑛
𝑓󸀠 (𝛼))

2

𝑒4
𝑛
, (20)

𝑒
𝑛+1

= 𝑥
𝑛+1

− 𝛼 ∼ 𝑐
𝑛,8

(1 + 𝛽
𝑛
𝑓󸀠 (𝛼))

3

𝑒8
𝑛
. (21)

In order to find the error relation for (12), we need to find the
expression for 1+𝛽

𝑛
𝑓󸀠(𝛼). Using a symbolic software such as

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 8 with the use of (6), we attain that

1 + 𝛽
𝑛
𝑓󸀠 (𝛼) ∼ 𝑐

4
𝑒
𝑛−1

ẽ
𝑛−1

𝑒
𝑛−1

. (22)

According to (13), (16), (17), (19), and (22), we obtain

𝑒
𝑛
∼ 𝑐
2
𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒2
𝑛

∼ 𝑐
2
𝑐
4
𝑒
𝑛−1

𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
2

∼ 𝑐
2
𝑐
4
𝐷
𝑛−1,𝑝

𝐷
𝑛−1,𝑠

𝐷2
𝑛−1,𝑟

𝑒
1+𝑝+𝑠+2𝑟

𝑛−1
.

(23)

Similarly, by (13), (16), (17), (20), and (22), we can write

𝑒
𝑛
∼ 𝑐
𝑛,4

(𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
2

𝑒4
𝑛

∼ 𝑐
𝑛,4

(𝑐
4
𝑒
𝑛−1

𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
2

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
4

∼ 𝑐
𝑛,4

𝑐2
4
𝑒2
𝑛−1

𝐷2
𝑛−1,𝑝

𝑒
2𝑝

𝑛−1
𝐷2
𝑛−1,𝑠

𝑒2𝑠
𝑛−1

𝐷4
𝑛−1,𝑟

𝑒4𝑟
𝑛−1

∼ 𝑐
𝑛,4

𝑐2
4
𝐷2
𝑛−1,𝑝

𝐷2
𝑛−1,𝑠

𝐷4
𝑛−1,𝑟

𝑒
2+2𝑝+2𝑠+4𝑟

𝑛−1
.

(24)

Combining (13), (16), (17), (21), and (22) yields

𝑒
𝑛+1

∼ 𝑐
𝑛,8

(𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
3

𝑒8
𝑛

∼ 𝑐
𝑛,8

(𝑐
4
𝑒
𝑛−1

𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
3

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
8

∼ 𝑐
𝑛,8

𝑐3
4
𝑒3
𝑛−1

𝐷3
𝑛−1,𝑝

𝑒
3𝑝

𝑛−1
𝐷3
𝑛−1,𝑠

𝑒3𝑠
𝑛−1

𝐷8
𝑛−1,𝑟

𝑒8𝑟
𝑛−1

∼ 𝑐
𝑛,8

𝑐3
4
𝐷3
𝑛−1,𝑝

𝐷3
𝑛−1,𝑠

𝐷8
𝑛−1,𝑟

𝑒
3+3𝑝+3𝑠+8𝑟

𝑛−1
.

(25)

Equating the exponents of the error 𝑒
𝑛−1

in pairs of relations
(19) and (23), (20) and (24), and then (21) and (25), we arrive
at the following system of equations:

𝑟𝑝 − 1 − 𝑝 − 𝑠 − 2𝑟 = 0,

𝑟𝑠 − 2 − 2𝑝 − 2𝑠 − 4𝑟 = 0,

𝑟2 − 3 − 3𝑝 − 3𝑠 − 8𝑟 = 0.

(26)

Positive solution of this system is 𝑝 = (1/6)(7 + √109), 𝑠 =

(1/3)(7 + √109), and 𝑟 = (1/2)(11 + √109) = 10.7202.
Therefore, the 𝑅-order of the methods with memory (12),
when 𝛽

𝑛
is calculated by (6), is at least 10.7202.

Now, using a symbolic software such as 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 8
with the use of (7), we attain that

1 + 𝛽
𝑛
𝑓󸀠 (𝛼) ∼ 𝑐

4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

. (27)

Combining (13), (15), (16), (17), (18), and (27), we obtain

𝑒
𝑛
∼ 𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛

∼ 𝑐
4
𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

∼ 𝑐
4
𝐷
𝑛−1,𝑞

𝐷
𝑛−1,𝑝

𝐷
𝑛−1,𝑠

𝐷
𝑛−1,𝑟

𝑒
𝑞+𝑝+𝑠+𝑟

𝑛−1
.

(28)
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In the similar way, we find the following error relations:

𝑒
𝑛
∼ 𝑐
2
𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒2
𝑛

∼ 𝑐
2
𝑐
4
𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
2

∼ 𝑐
2
𝑐
4
𝐷
𝑛−1,𝑞

𝐷
𝑛−1,𝑝

𝐷
𝑛−1,𝑠

𝐷2
𝑛−1,𝑟

𝑒
𝑞+𝑝+𝑠+2𝑟

𝑛−1
,

(29)

𝑒
𝑛
∼ 𝑐
𝑛,4

(𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
2

𝑒4
𝑛

∼ 𝑐
𝑛,4

(𝑐
4
𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
2

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
4

∼ 𝑐
𝑛,4

𝑐2
4
𝐷2
𝑛−1,𝑞

𝑒
2𝑞

𝑛−1
𝐷2
𝑛−1,𝑝

𝑒
2𝑝

𝑛−1
𝐷2
𝑛−1,𝑠

𝑒2𝑠
𝑛−1

𝐷4
𝑛−1,𝑟

𝑒4𝑟
𝑛−1

∼ 𝑐
𝑛,4

𝑐2
4
𝐷2
𝑛−1,𝑞

𝐷2
𝑛−1,𝑝

𝐷2
𝑛−1,𝑠

𝐷4
𝑛−1,𝑟

𝑒
2𝑞+2𝑝+2𝑠+4𝑟

𝑛−1
,

(30)

𝑒
𝑛+1

∼ 𝑐
𝑛,8

(𝑐
4
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
3

𝑒8
𝑛

∼ 𝑐
𝑛,8

(𝑐
4
𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
3

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
8

∼ 𝑐
𝑛,8

𝑐3
4
𝐷3
𝑛−1,𝑞

𝑒
3𝑞

𝑛−1
𝐷3
𝑛−1,𝑝

𝑒
3𝑝

𝑛−1
𝐷3
𝑛−1,𝑠

𝑒3𝑠
𝑛−1

𝐷8
𝑛−1,𝑟

𝑒8𝑟
𝑛−1

∼ 𝑐
𝑛,8

𝑐3
4
𝐷3
𝑛−1,𝑞

𝐷3
𝑛−1,𝑝

𝐷3
𝑛−1,𝑠

𝐷8
𝑛−1,𝑟

𝑒
3𝑞+3𝑝+3𝑠+8𝑟

𝑛−1
.

(31)

Comparing the exponents of 𝑒
𝑛−1

on the right hand sides of
(18) and (28), (19) and (29), (20) and (30), and then (21) and
(31), we arrive at the following system of equations:

𝑟𝑞 − 𝑞 − 𝑝 − 𝑠 − 𝑟 = 0,

𝑟𝑝 − 𝑞 − 𝑝 − 𝑠 − 2𝑟 = 0,

𝑟𝑠 − 2𝑞 − 2𝑝 − 2𝑠 − 4𝑟 = 0,

𝑟2 − 3𝑞 − 3𝑝 − 3𝑠 − 8𝑟 = 0.

(32)

Positive solution of this system is 𝑞 = 2, 𝑝 = 3, 𝑠 = 6, and
𝑟 = 11. Therefore, the 𝑅-order of the methods with memory
(12), when 𝛽

𝑛
is calculated by (7), is at least 11.

Using a symbolic software such as 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 8 with
the use of (8), we attain that

1 + 𝛽
𝑛
𝑓󸀠 (𝛼) ∼ 𝑐

5
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

. (33)

Using (33) and previously derived relations, we obtain the fol-
lowing error relations for the intermediate approximations:

𝑒
𝑛
∼ 𝑐
5
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛

∼ 𝑐
5
𝑒
𝑛−1

𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

∼ 𝑐
5
𝐷
𝑛−1,𝑞

𝐷
𝑛−1,𝑝

𝐷
𝑛−1,𝑠

𝐷
𝑛−1,𝑟

𝑒
1+𝑞+𝑝+𝑠+𝑟

𝑛−1
,

(34)

𝑒
𝑛
∼ 𝑐
2
𝑐
5
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒2
𝑛

∼ 𝑐
2
𝑐
5
𝑒
𝑛−1

𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
2

∼ 𝑐
2
𝑐
5
𝐷
𝑛−1,𝑞

𝐷
𝑛−1,𝑝

𝐷
𝑛−1,𝑠

𝐷2
𝑛−1,𝑟

𝑒
1+𝑞+𝑝+𝑠+2𝑟

𝑛−1
,

(35)

𝑒
𝑛
∼ 𝑐
𝑛,4

(𝑐
5
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
2

𝑒4
𝑛

∼ 𝑐
𝑛,4

(𝑐
5
𝑒
𝑛−1

𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
2

(𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
4

∼ 𝑐
𝑛,4

𝑐2
5
𝑒2
𝑛−1

𝐷2
𝑛−1,𝑞

𝑒
2𝑞

𝑛−1
𝐷2
𝑛−1,𝑝

𝑒
2𝑝

𝑛−1
𝐷2
𝑛−1,𝑠

𝑒2𝑠
𝑛−1

𝐷4
𝑛−1,𝑟

𝑒4𝑟
𝑛−1

∼ 𝑐
𝑛,4

𝑐2
5
𝐷2
𝑛−1,𝑞

𝐷2
𝑛−1,𝑝

𝐷2
𝑛−1,𝑠

𝐷4
𝑛−1,𝑟

𝑒
2+2𝑞+2𝑝+2𝑠+4𝑟

𝑛−1
.

(36)

In the similar fashion, we find the final error relation (21)
which is given by

𝑒
𝑛+1

∼ 𝑐
𝑛,8

(𝑐
5
𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

𝑒
𝑛−1

)
3

𝑒8
𝑛

∼ 𝑐
𝑛,8

(𝑐
5
𝑒
𝑛−1

𝐷
𝑛−1,𝑞

𝑒
𝑞

𝑛−1
𝐷
𝑛−1,𝑝

𝑒
𝑝

𝑛−1
𝐷
𝑛−1,𝑠

𝑒𝑠
𝑛−1

)
3

× (𝐷
𝑛−1,𝑟

𝑒𝑟
𝑛−1

)
8

∼ 𝑐
𝑛,8

𝑐3
5
𝑒3
𝑛−1

𝐷3
𝑛−1,𝑞

𝑒
3𝑞

𝑛−1
𝐷3
𝑛−1,𝑝

𝑒
3𝑝

𝑛−1
𝐷3
𝑛−1,𝑠

𝑒3𝑠
𝑛−1

𝐷8
𝑛−1,𝑟

𝑒8𝑟
𝑛−1

∼ 𝑐
𝑛,8

𝑐3
5
𝐷3
𝑛−1,𝑞

𝐷3
𝑛−1,𝑝

𝐷3
𝑛−1,𝑠

𝐷8
𝑛−1,𝑟

𝑒
3+3𝑞+3𝑝+3𝑠+8𝑟

𝑛−1
.

(37)

Comparing the exponents of 𝑒
𝑛−1

on the right hand sides of
(18) and (34), (19) and (35), (20) and (36), and then (21) and
(37), we arrive at the following system of equations:

𝑟𝑞 − 𝑞 − 𝑝 − 𝑠 − 𝑟 − 1 = 0,

𝑟𝑝 − 𝑞 − 𝑝 − 𝑠 − 2𝑟 − 1 = 0,

𝑟𝑠 − 2𝑞 − 2𝑝 − 2𝑠 − 4𝑟 − 2 = 0,

𝑟2 − 3𝑞 − 3𝑝 − 3𝑠 − 8𝑟 − 3 = 0.

(38)

Positive solution of this system is 𝑞 = (1/3)(1 + 2√7), 𝑝 =

(2/3)(2+√7), 𝑠 = (4/3)(2+√7), and 𝑟 = 2(3+√7) = 11.2915.
Therefore, the 𝑅-order of the methods with memory (12),
when 𝛽

𝑛
is calculated by (8), is at least 11.2915.

Theorem 2. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxi-
mation 𝑥

0
is sufficiently close to 𝛼 and the parameter 𝛽

𝑛
in

(12) is recursively calculated by the forms given in (6)–(8),
where 𝜙

𝑘
for 𝑘 = 2 is defined by (3), then the 𝑅-order of

convergence of the Steffensen-like method with memory (12)
with the corresponding expressions (6)–(8) of 𝛽

𝑛
is at least 10,

10.2426, and 10.4721, respectively.

Proof. The proof of this theorem is similar to the proof of
Theorem 1; hence, it is omitted.
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Table 1: Families of three-pointmethodswithmemory, for example,
𝑓
1
(𝑥).

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐

𝜙
1

(12), (6) 0.665𝑒 − 4 0.186𝑒 − 43 0.374𝑒 − 468 10.737
(12), (7) 0.665𝑒 − 4 0.718𝑒 − 44 0.592𝑒 − 484 11.011
(12), (8) 0.665𝑒 − 4 0.471𝑒 − 44 0.321𝑒 − 487 11.038

𝜙
2

(12), (6) 0.665𝑒 − 4 0.468𝑒 − 40 0.800𝑒 − 402 10.007
(12), (7) 0.665𝑒 − 4 0.231𝑒 − 40 0.996𝑒 − 406 10.021
(12), (8) 0.665𝑒 − 4 0.276𝑒 − 40 0.579𝑒 − 405 10.023

𝜙
3

(12), (6) 0.665𝑒 − 4 0.186𝑒 − 43 0.374𝑒 − 468 10.737
(12), (7) 0.665𝑒 − 4 0.718𝑒 − 44 0.592𝑒 − 484 11.011
(12), (8) 0.665𝑒 − 4 0.471𝑒 − 44 0.321𝑒 − 487 11.038

Table 2: Families of three-point methods with memory, for exam-
ple, 𝑓

2
(𝑥).

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐

𝜙
1

(12), (6) 0.104𝑒 − 3 0.127𝑒 − 39 0.868𝑒 − 425 10.725
(12), (7) 0.104𝑒 − 3 0.116𝑒 − 39 0.419𝑒 − 436 11.027
(12), (8) 0.104𝑒 − 3 0.261𝑒 − 40 0.259𝑒 − 443 11.010

𝜙
2

(12), (6) 0.106𝑒 − 3 0.499𝑒 − 36 0.142𝑒 − 360 10.040
(12), (7) 0.106𝑒 − 3 0.476𝑒 − 36 0.507𝑒 − 360 10.016
(12), (8) 0.106𝑒 − 3 0.223𝑒 − 36 0.254𝑒 − 363 10.005

𝜙
3

(12), (6) 0.104𝑒 − 3 0.127𝑒 − 39 0.868𝑒 − 425 10.725
(12), (7) 0.104𝑒 − 3 0.116𝑒 − 39 0.419𝑒 − 436 11.027
(12), (8) 0.104𝑒 − 3 0.261𝑒 − 40 0.259𝑒 − 443 11.010

Theorem 3. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxi-
mation 𝑥

0
is sufficiently close to 𝛼 and the parameter 𝛽

𝑛
in

(12) is recursively calculated by the forms given in (6)–(8),
where 𝜙

𝑘
for 𝑘 = 3 is defined by (4), then the 𝑅-order of

convergence of the Steffensen-like method with memory (12)
with the corresponding expressions (6)–(8) of 𝛽

𝑛
is at least

10.7202, 11, and 11.2915, respectively.

Proof. The proof of this theorem is similar to the proof of
Theorem 1; hence, it is omitted.

4. Numerical Results

In this section, we demonstrate the convergence behavior of
the methods with memory (12), where 𝛽

𝑛
is calculated by one

of formulas (6)–(8) and 𝜙
𝑘
for 𝑘 = 1, 2, 3 is defined by (2)–

(4), respectively. Numerical computations reported here have
been carried out in a𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 8.0 environment. Tables 1
and 2 show the difference of the root𝛼 and the approximation
𝑥
𝑛
to 𝛼, where 𝛼 is the exact root computed with 800

significant digits (Digits := 800). To check the theoretical

order of convergence, we calculate the computational order
of convergence 𝑟

𝑐
using the following formula [14]:

𝑟
𝑐
≈

log 󵄨󵄨󵄨󵄨𝑓 (𝑥
𝑛
) /𝑓 (𝑥

𝑛−1
)
󵄨󵄨󵄨󵄨

log 󵄨󵄨󵄨󵄨𝑓 (𝑥
𝑛−1

) /𝑓 (𝑥
𝑛−2

)
󵄨󵄨󵄨󵄨
, (39)

taking into consideration the last three approximations in
the iterative process. We use the following examples (selected
from [11]):

𝑓
1
(𝑥) = 𝑒𝑥

2

+𝑥 cos𝑥−1 sin𝜋𝑥 + 𝑥 log (𝑥 sin𝑥 + 1) ,

𝛼 = 0, 𝑥
0
= 0.6, 𝛾

0
= −0.1,

𝑓
2
(𝑥) = log (𝑥2 − 2𝑥 + 2) + 𝑒𝑥

2

−5𝑥+4 sin (𝑥 − 1) ,

𝛼 = 1, 𝑥
0
= 1.35, 𝛾

0
= −0.1.

(40)

It is obvious from the tables that recursive calculation by the
Newton interpolation (8) gives the best results.

5. Conclusion

In this paper, Newton’s interpolatory polynomials of the third
and fourth degrees are applied for constructing considerably
faster methods employing information from the current
and previous iteration without any additional evaluations of
the function. 11.29151/4 = 1.83311 has been obtained as
the highest possible computational efficiency index for the
new methods with memory. The efficacy of the methods
is tested on a number of numerical examples. The results
show that this method is very useful to find an acceptable
approximation of the exact solution of nonlinear equations.
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