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An iterative algorithm for finding a common element of the set of common fixed points of a finite family of asymptotically
nonextensive nonself mappings and the set of solutions for equilibrium problems is discussed. A strong convergence theorem
of common element is established in a uniformly smooth and uniformly convex Banach space.

1. Introduction

Let 𝐸 be a real Banach space with norm ‖ ⋅ ‖, let 𝐸∗ denote the
dual of 𝐸, and let ⟨𝑥, 𝑓⟩ denote the value of 𝑓 ∈ 𝐸

∗ at 𝑥 ∈ 𝐸.
Suppose that 𝐶 is a nonempty, closed convex subset of 𝐸. Let
𝑓 be a bifunction of 𝐶 × 𝐶 into 𝑅, where 𝑅 is the set of real
numbers. The equilibrium problem for 𝑓 : 𝐶 × 𝐶 → 𝑅 is to
find 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)

The set of solutions of (1) is denoted by 𝐸𝑃(𝑓). Given a
mapping 𝑇 : 𝐶 → 𝐸

∗, let 𝑓(𝑥, 𝑦) = ⟨𝑇𝑥, 𝑦 − 𝑥⟩ for all
𝑥, 𝑦 ∈ 𝐶. Then, 𝑝 ∈ 𝐸𝑃(𝑓) if and only if ⟨𝑇𝑝, 𝑦 − 𝑝⟩ ≥ 0 for
all 𝑦 ∈ 𝐶; that is, 𝑝 is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics
reduce to find a solution of (1). Some methods have been
proposed to solve the equilibrium problems; see [1–5].

Let 𝐽 be the normalized duality mapping from 𝐸 into 2𝐸
∗

given by

𝐽𝑥 = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 , ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} (2)

for all 𝑥 ∈ 𝐸. It is well known that if 𝐸 is uniformly
smooth, then 𝐽 is uniformly norm-to-norm continuous on

each bounded subset of 𝐸. It is also well known that 𝐸 is
uniformly smooth if and only if 𝐸∗ is uniformly convex.

Let 𝐶 be a nonempty closed convex subset of a Hilbert
space 𝐻 and let 𝑃

𝐶
: 𝐻 → 𝐶 be the metric projection of

𝐻 onto 𝐶; then 𝑃
𝐶
is nonexpansive. This fact actually char-

acterizes Hilbert spaces and consequently it is not available
in more general Banach spaces. In this connection, Alber [6]
recently introduced a generalized projection operatorΠ

𝐶
in a

Banach space 𝐸which is an analogue of the metric projection
in Hilbert spaces. Consider the functional defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2⟨𝑥, 𝐽𝑦⟩ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐸. (3)

Observe that, in a Hilbert space 𝐻, (3) reduces to 𝜙(𝑥, 𝑦) =
‖𝑥 − 𝑦‖

2

, 𝑥, 𝑦 ∈ 𝐻. The generalized projection Π
𝐶
: 𝐸 → 𝐶

is amap that assigns to an arbitrary point 𝑥 ∈ 𝐸 theminimum
point of the functional 𝜙(𝑥, 𝑦); that is, Π

𝐶
𝑥 = 𝑥, where 𝑥 is

the solution to the minimization problem

𝜙 (𝑥, 𝑥) = min
𝑦∈𝐶

𝜙 (𝑦, 𝑥) , (4)

existence and uniqueness of the operatorΠ
𝐶
follows from the

properties of the functional𝜙(𝑥, 𝑦) and strictmonotonicity of
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the mapping 𝐽. In Hilbert spaces,Π
𝐶
= 𝑃
𝐶
. It is obvious from

the definition of function 𝜙 that

(‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

≤ 𝜙 (𝑦, 𝑥) ≤ (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

, ∀𝑥, 𝑦 ∈ 𝐸, (5)

𝜙 (𝑥, 𝑦) = 𝜙 (𝑥, 𝑧) + 𝜙 (𝑧, 𝑦) + 2 ⟨𝑥 − 𝑧, 𝐽𝑧 − 𝐽𝑦⟩ ,

∀𝑥, 𝑦, 𝑧 ∈ 𝐸.

(6)

𝜙 (𝑥, 𝑦) = ⟨𝑥, 𝐽𝑥 − 𝐽𝑦⟩ + ⟨𝑦 − 𝑥, 𝐽𝑦⟩

≤ ‖𝑥‖
󵄩󵄩󵄩󵄩𝐽𝑥 − 𝐽𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦, 𝑧 ∈ 𝐸.

(7)

Let 𝐶 be a nonempty subset of 𝐸 and let 𝑇 : 𝐶 → 𝐸 be
a mapping. The set of fixed points of 𝑇 is denoted by 𝐹(𝑇).
𝑇 : 𝐶 → 𝐸 is called asymptotically nonextensive if and only
if there exists a sequence {𝑘

𝑛
} ⊂ [1,∞) with lim

𝑛→∞
𝑘
𝑛
= 1,

such that

𝜙 (𝑇(Π
𝐶
𝑇)
𝑛−1

𝑥, 𝑇(Π
𝐶
𝑇)
𝑛−1

𝑦) ≤ 𝑘
𝑛
𝜙 (𝑥, 𝑦) ,

∀𝑥, 𝑦 ∈ 𝐶, 𝑛 ≥ 1.

(8)

Asymptotically nonextensivemappings coincidewith asymp-
totically nonexpansive mappings in Hilbert spaces.

In [7], Chidume et al. studied the fixed point problem
of an asymptotically nonextensive nonself mapping and
obtained weak convergence theorem. Recently, in [8], liu
introduced the following iterative scheme for approximating
a common fixed point of two asymptotically nonextensive
nonself mappings in a uniformly smooth and uniformly
convex Banach space:

𝑦
𝑛
= Π
𝐶
(𝐽
−1

(𝛽
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐽𝑆(Π

𝐶
𝑆)
𝑛−1

𝑥
𝑛
)) ,

𝑥
𝑛+1

= Π
𝐶
(𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇(Π

𝐶
𝑇)
𝑛−1

𝑦
𝑛
)) .

(9)

Liu obtained strong convergence theorem.
Inspired and motivated by the facts above, the purpose

of this paper is to prove a strong convergence theorem for
finding a common element of the set of common fixed points
of a finite family of asymptotically nonextensive nonself
mappings and the set of solutions for equilibrium problems
in a uniformly smooth and uniformly convex Banach space.

2. Preliminaries

Let𝐸 be a real Banach space.When {𝑥
𝑛
} is a sequence in𝐸, we

denote strong convergence of {𝑥
𝑛
} to 𝑥 ∈ 𝐸 by 𝑥

𝑛
→ 𝑥 and

weak convergence by 𝑥
𝑛
⇀ 𝑥. 𝐸 is said to have the Kadec-

Klee property if and only if for a sequence {𝑥
𝑛
} of 𝐸 satisfying

that 𝑥
𝑛
⇀ 𝑥 ∈ 𝐸 and ‖𝑥

𝑛
‖ → ‖𝑥‖, then 𝑥

𝑛
→ 𝑥. It is

known that if 𝐸 is uniformly convex, then 𝐸 has the Kadec-
Klee property.

A mapping 𝑇 : 𝐶 → 𝐶 is said to be closed; if for any
sequence {𝑥

𝑛
} ⊂ 𝐶with 𝑥

𝑛
→ 𝑥 and𝑇𝑥

𝑛
→ 𝑦, then𝑇𝑥 = 𝑦.

Lemma 1. Let 𝐸 be a uniformly smooth and strictly convex
Banach space which enjoys the Kadec-Klee property, let 𝐶 be
a nonempty, closed, and convex subset of 𝐸, and let 𝑇 : 𝐶 →

𝐸 be an asymptotically nonextensive nonself mapping with a
sequence {𝑘

𝑛
} ⊂ [1,∞) such that 𝑇 is closed. Then 𝐹(𝑇) is

closed and convex.

Proof. Take 𝑥, 𝑦 ∈ 𝐹(𝑇), 𝑡 ∈ (0, 1). Put 𝑧 := 𝑡𝑥 +

(1 − 𝑡)𝑦. Using the same argument presented in the proof
of [9, Theorem 2.1, page 854-855], we can obtain that
lim
𝑛→∞

𝑇(Π
𝐶
𝑇)
𝑛−1

𝑧 = 𝑧. By the continuity of Π
𝐶
, we have

lim
𝑛→∞

(Π
𝐶
𝑇)
𝑛

𝑧 = 𝑧. (10)

Therefore,

lim
𝑛→∞

((Π
𝐶
𝑇)
𝑛

𝑧 − 𝑇(Π
𝐶
𝑇)
𝑛

𝑧) = 0. (11)

By (10), (11) and the closedness of 𝑇, we have 𝑧 ∈ 𝐹(𝑇) which
implies that 𝐹(𝑇) is convex.

Let 𝑥
𝑛
∈ 𝐹(𝑇) and 𝑥

𝑛
→ 𝑞; then, we have 𝑥

𝑛
−𝑇𝑥
𝑛
→ 0.

It follows from the closedness of 𝑇 that 𝑞 ∈ 𝐹(𝑇).This implies
that 𝐹(𝑇) is closed.

Lemma 2 (see [6]). Let 𝐸 be a reflexive, strictly convex, and
smooth Banach space; let 𝐶 be a nonempty, closed, and convex
subset of 𝐸. Then the following conclusions hold:

(1) 𝜙(𝑦, Π
𝐶
𝑥) + 𝜙(Π

𝐶
𝑥, 𝑥) ≤ 𝜙(𝑦, 𝑥), for all 𝑦 ∈ 𝐶, and

𝑥 ∈ 𝐸;
(2) if 𝑥 ∈ 𝐸 and 𝑧 ∈ 𝐶, then 𝑧 = Π

𝐶
𝑥 if and only if ⟨𝑧 −

𝑦, 𝐽𝑥 − 𝐽𝑧⟩ ≥ 0, for all 𝑦 ∈ 𝐶;
(3) for 𝑥, 𝑦 ∈ 𝐸, 𝜙(𝑦, 𝑥) = 0 if and only if 𝑥 = 𝑦.

Lemma 3 (see [10]). Let 𝐸 be a uniformly convex and smooth
Banach space and let {𝑦

𝑛
}, {𝑧
𝑛
} be two sequences of 𝐸. If

𝜙(𝑦
𝑛
, 𝑧
𝑛
) → 0 and either {𝑦

𝑛
} or {𝑧

𝑛
} is bounded, then

𝑦
𝑛
− 𝑧
𝑛
→ 0.

Lemma 4 (see [11]). Let 𝐸 be a smooth and uniformly convex
Banach space and let 𝑟 > 0. Then there exists a strictly
increasing, continuous, and convex function 𝑔 : [0, 2𝑟] → 𝑅

such that 𝑔(0) = 0 and

󵄩󵄩󵄩󵄩𝑡𝑥 +(1 − 𝑡) 𝑦
󵄩󵄩󵄩󵄩

2

≤𝑡‖𝑥‖
2

+ (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝑡 (1 − 𝑡) 𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

(12)

for all 𝑥, 𝑦 ∈ 𝐵
𝑟
and 𝑡 ∈ [0, 1], where 𝐵

𝑟
= {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}.

For solving the equilibrium problem, let us assume that a
bifunction 𝑓 : 𝐶 × 𝐶 → 𝑅 satisfies the following conditions:

(A1)𝑓(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2)𝑓 is monotone; that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0 for
all 𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim
𝑡→0

𝑓 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝑓 (𝑥, 𝑦) ; (13)

(A4) for each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝑓(𝑥, 𝑦) is convex and lower
semicontinuous.
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Lemma 5 (see [12]). Let 𝐶 be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space 𝐸, let 𝑓 be
a bifunction from𝐶×𝐶 to𝑅 satisfying (A1)–(A4), and for 𝑟 > 0
and 𝑥 ∈ 𝐸, define a mapping 𝑇

𝑟
: 𝐸 → 𝐶 as follows:

𝑇
𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(14)

Then the following conclusions hold:

(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐸,

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦⟩ ≤ ⟨𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩; (15)

(3) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝑓);

(4) 𝐸𝑃(𝑓) is closed and convex;

(5) 𝜙(𝑞, 𝑇
𝑟
𝑥) + 𝜙(𝑇

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑞, 𝑥), for all 𝑞 ∈ 𝐹(𝑇

𝑟
).

3. Main Results

Theorem 6. Let 𝐶 be a nonempty closed convex subset of a
uniformly smooth and uniformly convex Banach space 𝐸. Let
𝑓 be a bifunction from 𝐶 × 𝐶 to 𝑅 satisfying (A1)–(A4), and
let 𝑁 be some positive integer. Let 𝑆

𝑖
: 𝐶 → 𝐸 be a closed

asymptotically nonextensive nonself mapping with sequence
{𝑘
𝑛,𝑖
} ⊂ [1,∞) such that ∑∞

𝑛=1
(𝑘
𝑛,𝑖
− 1) < ∞ for every

1 ≤ 𝑖 ≤ 𝑁. Suppose that Ω = ⋂
𝑁

𝑖=1
𝐹(𝑆
𝑖
) ∩ 𝐸𝑃(𝑓) is nonempty

and bounded. Let {𝑥
𝑛
} be a sequence generated by the following

manner:

𝑥
0
∈ 𝐸, 𝐶

1
= 𝐶,

𝑥
1
= Π
𝐶
1

𝑥
0
,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛,0
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
) ,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) + 𝜃
𝑛
} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
0
,

(16)

where 𝜃
𝑛
= (𝑘
𝑛
− 1)sup

𝑧∈Ω
𝜙(𝑧, 𝑥

𝑛
), 𝑘
𝑛
= max{𝑘

𝑛,𝑖
}. {𝛼
𝑛,𝑖
} is a

real number sequence in (0, 1) for every 0 ≤ 𝑖 ≤ 𝑁, {𝑟
𝑛
} is a

real number sequence in [𝑎,∞), where 𝑎 is some positive real
number. Assume that ∑𝑁

𝑖=0
𝛼
𝑛,𝑖
= 1 and lim inf

𝑛→∞
𝛼
𝑛,0
𝛼
𝑛,𝑖
>

0 for every 1 ≤ 𝑖 ≤ 𝑁. Then {𝑥
𝑛
} converges strongly to Π

Ω
𝑥
0
.

Proof. First, we show that 𝐶
𝑛
is closed and convex. From the

definitions of 𝐶
𝑛
, it is obvious 𝐶

𝑛
is closed. Moreover, since

𝜙(𝑧, 𝑢
𝑛
) ≤ 𝜙(𝑧, 𝑥

𝑛
) + 𝜃
𝑛
is equivalent to 2⟨𝑧, 𝐽𝑥

𝑛
− 𝐽𝑢
𝑛
⟩ ≤

‖𝑥
𝑛
‖
2

−‖𝑢
𝑛
‖
2

+𝜃
𝑛
, it follows that𝐶

𝑛
is convex. From Lemmas

1 and 5, we have thatΩ is closed and convex.Then {𝑥
𝑛
} is well

defined.

Next, we prove Ω ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Ω ⊂ 𝐶

1
= 𝐶 is

obvious. Suppose thatΩ ⊂ 𝐶
𝑛
for some 𝑛 ≥ 2; for each 𝑧 ∈ Ω,

from Lemma 5, we have

𝜙 (𝑧, 𝑢
𝑛
)

= 𝜙 (𝑧, 𝑇
𝑟
𝑛

𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑦

𝑛
)

= ‖𝑧‖
2

− 2⟨𝑧, 𝛼
𝑛,0
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
⟩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛,0
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ‖𝑧‖
2

− 2𝛼
𝑛,0
⟨𝑧, 𝐽𝑥

𝑛
⟩ − 2

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
⟨𝑧, 𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
⟩

+ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝜙 (𝑧, 𝑆

𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
)

≤ 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝑘
𝑛,𝑖
𝜙 (𝑧, 𝑥

𝑛
)

≤ 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝑘
𝑛
𝜙 (𝑧, 𝑥

𝑛
)

= 𝜙 (𝑧, 𝑥
𝑛
) + (1 − 𝛼

𝑛,0
) (𝑘
𝑛
− 1) 𝜙 (𝑧, 𝑥

𝑛
)

≤ 𝜙 (𝑧, 𝑥
𝑛
) + 𝜃
𝑛
.

(17)

This implies that 𝑧 ∈ 𝐶
𝑛+1

, and so Ω ⊂ 𝐶
𝑛+1

. From 𝑥
𝑛
=

Π
𝐶
𝑛

𝑥
0
, one sees

⟨𝑥
𝑛
− 𝑢, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑢 ∈ 𝐶

𝑛
. (18)

SinceΩ ⊂ 𝐶
𝑛+1

, we arrive at

⟨𝑥
𝑛
− 𝑧, 𝐽𝑥

0
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑧 ∈ Ω. (19)

Next we show that the sequence {𝑥
𝑛
} is bounded. From

Lemma 2, we have

𝜙 (𝑥
𝑛
, 𝑥
0
) = 𝜙 (Π

𝐶
𝑛

𝑥
0
, 𝑥
0
)≤𝜙 (𝑧, 𝑥

0
) − 𝜙 (𝑧, 𝑥

𝑛
) ≤ 𝜙 (𝑧, 𝑥

0
) ,

(20)

for each 𝑧 ∈ Ω ⊂ 𝐶
𝑛
and for all 𝑛 ≥ 1.Therefore, the sequence

{𝜙(𝑥
𝑛
, 𝑥
0
)} is bounded. It follows from (5) that the sequence

{𝑥
𝑛
} is also bounded. By the assumption, we have

lim
𝑛→∞

𝜃
𝑛
= 0. (21)

On the other hand, noticing that 𝑥
𝑛
= Π
𝐶
𝑛

𝑥
0
and 𝑥

𝑛+1
=

Π
𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, one has

𝜙 (𝑥
𝑛
, 𝑥
0
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
0
) (22)
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for all 𝑛 ≥ 1. Therefore, {𝜙(𝑥
𝑛
, 𝑥
0
)} is nondecreasing. It

follows that the limit of {𝜙(𝑥
𝑛
, 𝑥
0
)} exists. By the definition

of 𝐶
𝑛
, one has that 𝐶

𝑚
⊂ 𝐶
𝑛
and 𝑥

𝑚
= Π
𝐶
𝑚

𝑥
0
∈ 𝐶
𝑛
for any

positive integer𝑚 ≥ 𝑛. It follows that

𝜙 (𝑥
𝑚
, 𝑥
𝑛
) = 𝜙 (𝑥

𝑚
, Π
𝐶
𝑛

𝑥
0
)

≤ 𝜙 (𝑥
𝑚
, 𝑥
0
) − 𝜙 (Π

𝐶
𝑛

𝑥
0
, 𝑥
0
)

= 𝜙 (𝑥
𝑚
, 𝑥
0
) − 𝜙 (𝑥

𝑛
, 𝑥
0
) .

(23)

Letting𝑚, 𝑛 → ∞ in (23), we have𝜙(𝑥
𝑚
, 𝑥
𝑛
) → 0. It follows

from Lemma 3 that 𝑥
𝑚
−𝑥
𝑛
→ 0 as𝑚, 𝑛 → ∞. Hence, {𝑥

𝑛
}

is a Cauchy sequence. Since 𝐸 is a Banach space and 𝐶 is a
closed and convex, one can assume that 𝑥

𝑛
→ 𝑥 ∈ 𝐶 as

𝑛 → ∞.
Next we show that 𝑥 ∈ ⋂

𝑁

𝑖=1
𝐹(𝑆
𝑖
). By taking 𝑚 = 1 in

(23), we have that

lim
𝑛→∞

𝜙 (𝑥
𝑛+1
, 𝑥
𝑛
) = 0. (24)

From Lemma 3, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (25)

Noticing that 𝑥
𝑛+1

∈ 𝐶
𝑛+1

, we obtain

𝜙 (𝑥
𝑛+1
, 𝑢
𝑛
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
) + 𝜃
𝑛
. (26)

It follows from (21) and (24) that

lim
𝑛→∞

𝜙 (𝑥
𝑛+1
, 𝑢
𝑛
) = 0. (27)

From Lemma 3, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (28)

Combining (25) with (28), we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (29)

It follows from 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞ that 𝑢

𝑛
→ 𝑥, 𝑎𝑠 𝑛 →

∞. Since 𝐽 is uniformly norm-to-norm continuous on each
bounded set, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (30)

On the other hand, we have

𝜙 (𝑧, 𝑥
𝑛
) − 𝜙 (𝑧, 𝑢

𝑛
)

=
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑧, 𝐽𝑥
𝑛
− 𝐽𝑢
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩) + 2 ‖𝑧‖
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑢𝑛

󵄩󵄩󵄩󵄩 .

(31)

We obtain that

lim
𝑛→∞

(𝜙 (𝑧, 𝑥
𝑛
) − 𝜙 (𝑧, 𝑢

𝑛
)) = 0. (32)

Since 𝐸 is a uniformly smooth Banach space, we know that
𝐸
∗ is a uniformly convex Banach space. From Lemma 4, we

find that

𝜙 (𝑧, 𝑢
𝑛
)

= 𝜙 (𝑧, 𝑇
𝑟
𝑛

𝑦
𝑛
) ≤ 𝜙 (𝑧, 𝑦

𝑛
)

= ‖𝑧‖
2

− 2⟨𝑧, 𝛼
𝑛,0
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
⟩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛,0
𝐽𝑥
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝐽𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ‖𝑧‖
2

− 2𝛼
𝑛,0
⟨𝑧, 𝐽𝑥

𝑛
⟩ − 2

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
⟨𝑧, 𝐽𝑆

𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
⟩

+ 𝛼
𝑛,0

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

+

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝜙 (𝑧, 𝑆

𝑖
(Π
𝐶
𝑆
𝑖
)
𝑛−1

𝑥
𝑛
)

− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝑘
𝑛,𝑖
𝜙 (𝑧, 𝑥

𝑛
)

− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛,0
𝜙 (𝑧, 𝑥

𝑛
) +

𝑁

∑

𝑖=1

𝛼
𝑛,𝑖
𝑘
𝑛
𝜙 (𝑧, 𝑥

𝑛
)

− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝜙 (𝑧, 𝑥
𝑛
) + (1 − 𝛼

𝑛,0
) (𝑘
𝑛
− 1) 𝜙 (𝑧, 𝑥

𝑛
)

− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝜙 (𝑧, 𝑥
𝑛
) + 𝜃
𝑛
− 𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) .

(33)

Therefore we have

𝛼
𝑛,0
𝛼
𝑛,1
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝜙 (𝑧, 𝑥
𝑛
) − 𝜙 (𝑧, 𝑢

𝑛
) + 𝜃
𝑛
.

(34)

From lim inf
𝑛→

𝛼
𝑛,0
𝛼
𝑛,1
> 0 and (21), (32), we have

lim
𝑛→∞

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (35)

Therefore, from the property of 𝑔 we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽𝑥
𝑛
− 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (36)
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Since 𝐽−1 is also uniformly norm-to-norm continuous on
each bounded set, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (37)

Using (7), (34), and (36), we have

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛
) = 0. (38)

By (6), we obtain

𝜙 (𝑥
𝑛
, 𝑆
1
𝑥
𝑛
) = 𝜙 (𝑥

𝑛
, 𝑥
𝑛+1
) + 𝜙 (𝑥

𝑛+1
, 𝑆
1
𝑥
𝑛
)

+ 2 ⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝐽𝑥
𝑛+1

− 𝐽𝑆
1
𝑥
𝑛
⟩

= 𝜙 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝜙 (𝑥

𝑛+1
, 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛+1
)

+ 𝜙 (𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛+1
, 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
)

+ 𝜙 (𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
, 𝑆
1
𝑥
𝑛
)

+ 2 ⟨𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛+1

− 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
, 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
− 𝐽𝑆
1
𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛+1

− 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛+1
, 𝐽𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛+1

− 𝐽𝑆
1
𝑥
𝑛
⟩

+ 2⟨𝑥
𝑛
− 𝑥
𝑛+1
, 𝐽𝑥
𝑛+1

− 𝐽𝑆
1
𝑥
𝑛
⟩.

(39)

Since 𝜙(𝑥
𝑛
, (Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
) ≤ 𝜙(𝑥

𝑛
, 𝑆
1
(Π
𝐶
𝑆
1
)
𝑛−1

𝑥
𝑛
), from

(38), we have lim
𝑛→∞

𝜙(𝑥
𝑛
, (Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
) = 0. Since

𝜙(𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
, 𝑆
1
𝑥
𝑛
) ≤ 𝑘
1
𝜙((Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
, 𝑥
𝑛
), then

lim
𝑛→∞

𝜙 (𝑆
1
(Π
𝐶
𝑆
1
)
𝑛

𝑥
𝑛
, 𝑆
1
𝑥
𝑛
) = 0. (40)

Applying (24), (38), (40), the definition of 𝑆
1
, and Lemma 3

to (39), we obtain that

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑆
1
𝑥
𝑛
) = 0. (41)

From Lemma 3, we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆1𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (42)

In the same way, we can obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑖𝑥𝑛
󵄩󵄩󵄩󵄩 = 0, 2 ≤ 𝑖 ≤ 𝑁. (43)

From the closedness of 𝑆
𝑖
, 1 ≤ 𝑖 ≤ 𝑁, we have 𝑥 ∈ ⋂𝑁

𝑖=1
𝐹(𝑆
𝑖
).

Next, we show 𝑥 ∈ 𝐸𝑃(𝑓). From Lemma 5, we have

𝜙 (𝑢
𝑛
, 𝑦
𝑛
) = 𝜙 (𝑇𝑟

𝑛
𝑦
𝑛
, 𝑦
𝑛
)

≤ 𝜙 (𝑧, 𝑦
𝑛
) − 𝜙 (𝑧, 𝑇𝑟

𝑛
𝑦
𝑛
)

≤ 𝜙 (𝑧, 𝑦
𝑛
) − 𝜙 (𝑧, 𝑢

𝑛
)

= 𝜙 (𝑧, 𝑥
𝑛
) + 𝜃
𝑛
− 𝜙 (𝑧, 𝑢

𝑛
) .

(44)

It follows from (21) and (32) that lim
𝑛→∞

𝜙(𝑢
𝑛
, 𝑦
𝑛
) = 0. From

Lemma 3, we see that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (45)

Since 𝐽 is uniformly norm-to-norm continuous on each
bounded set, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐽𝑦𝑛 − 𝐽𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (46)

From 𝑟
𝑛
≥ 𝑎, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐽𝑢𝑛 − 𝐽𝑦𝑛
󵄩󵄩󵄩󵄩

𝑟
𝑛

= 0. (47)

By 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
, we have

𝑓 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (48)

From (A2), we have

󵄩󵄩󵄩󵄩𝑦 − 𝑢𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐽𝑢𝑛 − 𝐽𝑦𝑛
󵄩󵄩󵄩󵄩

𝑟
𝑛

≥
1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩

≥ −𝑓 (𝑢
𝑛
, 𝑦) ≥ 𝑓 (𝑦, 𝑢

𝑛
) , ∀𝑦 ∈ 𝐶.

(49)

Letting 𝑛 → ∞, we have from (A4), (47) and 𝑢
𝑛
→ 𝑥, as

𝑛 → ∞ that

𝑓 (𝑦, 𝑥) ≤ 0, ∀𝑦 ∈ 𝐶. (50)

For 0 < 𝑡 < 1 and 𝑦 ∈ 𝐶, let 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑥. Since 𝑦 ∈ 𝐶

and 𝑥 ∈ 𝐶, we have 𝑦
𝑡
∈ 𝐶 and hence 𝑓(𝑦

𝑡
, 𝑥) ≤ 0. So, from

(A1) and (A4) we have

0 = 𝑓 (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝑓 (𝑦

𝑡
, 𝑦) + (1 − 𝑡) 𝑓 (𝑦

𝑡
, 𝑥) ≤ 𝑡𝑓 (𝑦

𝑡
, 𝑦) .

(51)

Dividing by 𝑡, we have

𝑓 (𝑦
𝑡
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (52)

Letting 𝑡 → 0, from (A3), we have 𝑓(𝑥, 𝑦) ≥ 0, for all 𝑦 ∈

𝐶. Therefore, 𝑥 ∈ 𝐸𝑃(𝑓).
Finally, we show 𝑥 = Π

Ω
𝑥
0
. By taking limit in (19), we

have

⟨𝑥 − 𝑧, 𝐽𝑥
0
− 𝐽𝑥⟩ ≥ 0, ∀𝑧 ∈ Ω. (53)

At this point, in view of Lemma 2, we have that 𝑥 = Π
Ω
𝑥
0
.

This completes the proof.

Remark 7. Theorem 6 improves the main theorem in [8] in
the following senses.

(1) Theorem 6 generalizes this theorem from two asymp-
totically nonextensive operators to a finite family of
asymptotically nonextensive operators.

(2) Theorem 6 removes the condition that 𝑆
𝑖
is com-

pletely continuous or semicompact.
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