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This paper addresses location-then-price competition in airline market as a two-stage game of n players on the graph. Passenger’s
demand distribution is described by multinomial logit model. Equilibrium in price game is computed through best response
dynamics. We solve location game using backward induction, knowing that airlines will choose prices from equilibrium for the
second-stage game. Some numerical results for airline market under consideration are presented.

1. Introduction

The aim of this paper is to characterize airline behavior
in the market in both strategic and operational levels. In
a competitive environment an airline makes a strategic
decision on how to allocate planes among available routes.
Starting operations on chosen routes airlines compete for
passengers using ticket prices.

Location-then-price competition was first introduced by
Hotelling [1]. This classical model examines behavior for
two firms producing homogenous goods on a line segment.
Passenger demand depends on the firm’s price and trans-
portation costs. Hotelling found price equilibrium and raised
a problem of firms’ competitive location. The nonexistence
of location equilibrium in Hotelling model was shown in
[2]. Extensions to Hotelling’s duopoly were studied in several
directions. Different forms of transportation costs were used
in [2, 3]. In [4–6], Hotelling’s model is examined on more
complex set than line segment. Location-then-price competi-
tion on the plane was studied in [6–8], where different forms
of transportation costs are used.These models can be applied
in transportation networks (with Euclidian distance) and in
mobile and telecommunication networks (with Manhattan
distance). Price competition among more than two firms is
addressed in [9], where sufficient conditions on the existence

of Nash equilibrium in price game for any number of firms
are introduced.

In this paper we examine location-then-price Hotelling
model on the graph for the case of 𝑛 ≥ 2 players. Results of
theoretical analysis for proposed model are applied to study
competition in airline market, where airlines first decide
plane allocation and then choose ticket prices.

This paper is organized as follows. In Section 2 we
describe model notations and assumptions. In Section 3 the
main results about the equilibrium existence in price and
location games with logit analysis application are given.
Airline market data is described in Section 4. In this section
analysis of price and location equilibrium is performed and
results are applied to find location-then-price equilibrium in
airline markets under consideration. Some remarks are given
in the final section.

2. Location Game-Theoretic Model on Graph

Consider a market where the customers are distributed in
the vertexes of the transportation graph 𝐺(𝑉, 𝐸). The edges
of the graph are transportation links (railways, car, air lines,
etc.). The vertexes are the hubs (bus stops, airports, railway
stations, etc.).The customers are the passengers, who use this
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kind of transportation.The demand is determined by the flow
of passengers. Notice that graph 𝐺 can be unconnected.

There are 𝑛 companies (players), who make a service
in this market. A service is possible only if there is a link
𝑒𝑗 ∈ 𝐸 between two vertexes in graph 𝐺(𝑉, 𝐸). The demand is
determined by the number of customers in vertexes V1, V2 ∈ 𝑉
connected by the link 𝑒𝑗:

𝑑 (𝑒𝑗) = 𝑑 (V1, V2) , 𝑒𝑗 = (V1, V2) . (1)

Assume that player 𝑖 has 𝑚𝑖 units of a resource. He dis-
tributes the resource among links in graph 𝐺(𝑉, 𝐸). Suppose
that each player 𝑖 distributes all𝑚𝑖 units of resource and forms
transportation network 𝐸𝑖, which is a subset of the links in
graph 𝐺(𝑉, 𝐸).

A competition exists on the link 𝑒𝑗 only if it is included
into several transportation networks:

∃𝑖, 𝑗 : 𝐸
𝑖
∩ 𝐸
𝑗
̸= 0, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. (2)

The demand on the link 𝑒𝑗 is distributed between players.
Each of themmakes a service of the part𝑀𝑖𝑗 of the customers
on this link. Players announce prices for the service on the
link 𝑒𝑗. The part of customers, which prefer the service of
player 𝑖, depends on the price 𝑝𝑖𝑗 and the prices of other
players on this link:

𝑀𝑖𝑗 = 𝑀𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}
) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 1, (3)

where𝑁𝑗 is the number of the rival players on the link 𝑒𝑗.
The number of customers who prefer the service 𝑖 on the

link 𝑒𝑗 is

𝑆𝑖𝑗 ({𝑝𝑟𝑗}𝑟∈𝑁𝑗
) = 𝑀𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}

)𝑑 (𝑒𝑗) . (4)

Let 𝑥𝑖𝑗 be a distribution of player 𝑖 on the link 𝑒𝑗; that is,

𝑥𝑖𝑗 = {
1, 𝑒𝑗 ∈ 𝐸

𝑖
,

0, otherwise.
(5)

Player 𝑖with𝑚𝑖 units of the resource on graph𝐺(𝑉, 𝐸) can
attract customers, whose number equals

𝑆𝑖 =

|𝐸|

∑

𝑗=1

𝑀𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}
)𝑑 (𝑒𝑗) 𝑥𝑖𝑗. (6)

The gain of player 𝑖 on the link 𝑒𝑗 depends on the price for
the service and the share in the customer demand:

ℎ𝑖𝑗 ({𝑝𝑟𝑗}𝑟∈𝑁𝑗
) = 𝑝𝑖𝑗𝑀𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}

)𝑑 (𝑒𝑗) . (7)

Denote by 𝑐𝑖𝑗 the costs of player 𝑖 on the link 𝑒𝑗. The costs
are proportional to the number of customers, who use the
resource. Then the payoff of player 𝑖 on graph 𝐺(𝑉, 𝐸) is

𝐻𝑖 ({𝑝𝑟}𝑟∈𝑁
, {𝑥𝑟}𝑟∈𝑁

)

=

|𝐸|

∑

𝑗=1

(ℎ𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}
)

− 𝑐𝑖𝑗𝑆𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}
))𝑥𝑖𝑗,

(8)

where 𝑝𝑟 is a vector of prices of player 𝑟 in his network 𝐸𝑟

and 𝑥𝑟 is a vector, which defines allocation of𝑚𝑟 units of the
resource on graph 𝐺(𝑉, 𝐸) (𝑟 ∈ 𝑁).

First, players form their transportation networks and then
they announce the prices for the service. The objective of a
player is to maximize the payoff.

We determine the noncooperative game Γ𝐺 for 𝑛 players.
Strategy of player 𝑖 is a pair of vectors (𝑥𝑖, 𝑝𝑖). Player
determines the allocation 𝑥𝑖 of𝑚𝑖 units of the resource:

∀𝑗 ∈ {1, . . . , |𝐸|} : 𝑥𝑖𝑗 ∈ {0, 1} ,

|𝐸|

∑

𝑟=1

𝑥𝑖𝑟 = 𝑚𝑖. (9)

Then player 𝑖 announces the prices in his network 𝐸𝑖:

∀𝑗 𝑝𝑖𝑗 ∈ [0,∞) , 𝑒
𝑗
∈ 𝐸
𝑖
. (10)

The game has three stages.

(1) The players simultaneously distribute the resources
given by {𝑥𝑖}𝑖∈𝑁.

(2) The players simultaneously announce the prices
{𝑝𝑖}𝑖∈𝑁.

(3) Customers choose a service and the players receive
the payoffs {𝐻𝑖}𝑖∈𝑁 depending on their transportation
networks and prices.

We seek the Nash equilibrium {𝑥
∗
𝑖 }𝑖∈𝑁, that is, 𝑥

∗
𝑖 , such

that ∀𝑥𝑖, 𝑖 ∈ 𝑁 it satisfies the condition

𝐻𝑖 ({𝑝𝑟 (𝑥𝑖, {𝑥
∗
𝑟 }𝑟∈𝑁\{𝑖}

)}
𝑟∈𝑁

, 𝑥𝑖, {𝑥
∗
𝑟 }𝑟∈𝑁\{𝑖}

)

≤ 𝐻𝑖 ({𝑝𝑟 (𝑥
∗
𝑖 , {𝑥
∗
𝑟 }𝑟∈𝑁\{𝑖}

)}
𝑟∈𝑁

, 𝑥
∗
𝑖 , {𝑥
∗
𝑟 }𝑟∈𝑁\{𝑖}

) ,

(11)

where {𝑝𝑟({𝑥𝑖}𝑖∈𝑁)}𝑟∈𝑁 is an equilibrium in price game for
fixed resource distribution on graph 𝐺(𝑉, 𝐸).

For fixed resource allocation {𝑥𝑟}𝑟∈𝑁 we find the Nash
equilibrium {𝑝

∗
𝑖 }𝑖∈𝑁; that is, 𝑝

∗
𝑖 , such that ∀𝑝𝑖, 𝑖 ∈ 𝑁 holds.

Consider

𝐻𝑖 (𝑝𝑖, {𝑝
∗
𝑟 }𝑟∈𝑁\{𝑖}

, {𝑥𝑟}𝑟∈𝑁
) ≤ 𝐻𝑖 (𝑝

∗
𝑖 , {𝑝
∗
𝑟 }𝑟∈𝑁\{𝑖}

, {𝑥𝑟}𝑟∈𝑁
) .

(12)

3. Logit Analysis in Price Game on Graph

Consider the number of players 𝑁𝑗, who choose the link 𝑒𝑗
in graph 𝐺(𝑉, 𝐸). Player 𝑖 ∈ 𝑁𝑗 announces the price 𝑝𝑖𝑗
for the service on the link 𝑒𝑗. Suppose that demand 𝑑(𝑒𝑗) is
distributed among services in the logistic manner. Then

𝑀𝑖𝑗 =
𝑒
𝛼𝑝𝑖𝑗+(𝑎,V𝑖)

∑

|𝑁𝑗|

𝑠=1 𝑒
𝛼𝑝𝑠𝑗+(𝑎,V𝑠)

+ 𝑒
𝜌
, 𝑒𝑗 ∈ 𝐸

𝑖
, 𝑖 ∈ 𝑁𝑗, (13)

where V𝑖 is a vector of characteristics of the service 𝑖, 𝛼 < 0,
𝑎 is a constant vector of weights, and 𝜌 corresponds to the
customers, who prefer not to use any service at all.

On the link 𝑒𝑗 we obtain price game of𝑁𝑗 players with the
payoffs:

ℎ𝑖𝑗 ({𝑝𝑟𝑗}𝑟∈𝑁𝑗
) = (𝑝𝑖𝑗 − 𝑐𝑖𝑗)𝑀𝑖𝑗𝑑 (𝑒𝑗) , 𝑖 ∈ 𝑁𝑗. (14)
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Let us denote by {𝑝∗𝑖𝑗}𝑖∈𝑁𝑗 an equilibrium in price game. It
can be found as a solution of the system of equations

𝜕ℎ𝑖𝑗

𝜕𝑝𝑖𝑗

= 𝑀𝑖𝑗𝑑 (𝑒𝑗) (1 + 𝛼 (𝑝𝑖𝑗 − 𝑐𝑖𝑗) (1 −𝑀𝑖𝑗)) = 0. (15)

Imagine that a new player appears on the link 𝑒𝑗. What
happens with equilibrium prices and payoffs? Denote by 𝛾 a
new player and consider the new set of players on the link
𝑒𝑗 𝑁̃𝑗 = 𝑁𝑗 ∪ {𝛾}. Let {𝑝

∗
𝑖𝑗}𝑖∈𝑁̃𝑗

be an equilibrium in the price
game with additional player.

Theorem 1. In the price game with additional player the
equilibrium prices for all players except the new one are
decreasing; that is, ∀𝑖 ∈ 𝑁𝑗 : 𝑝∗𝑖𝑗 > 𝑝

∗
𝑖𝑗.

Proof. Equilibrium prices in the game on the link 𝑒𝑗 with𝑁𝑗
players satisfy the following equations:

1 + 𝛼 (𝑝𝑖𝑗 − 𝑐𝑖𝑗) (1 −𝑀𝑖𝑗) = 0, 𝑖 ∈ 𝑁𝑗. (16)

Rewrite it in the following form:

∑

𝑟∈𝑁𝑗

𝑒
𝛼𝑝𝑟𝑗+(𝑎,V𝑟)

+ 𝑒
𝜌
+ 𝛼 (𝑝𝑖𝑗 − 𝑐𝑖𝑗)

× ( ∑

𝑟∈𝑁𝑗\{𝑖}

𝑒
𝛼𝑝𝑟𝑗+(𝑎,V𝑟)

+ 𝑒
𝜌
) = 0, 𝑖 ∈ 𝑁𝑗.

(17)

It yields

𝑒
𝜌
+ ∑

𝑟∈𝑁𝑗\{𝑖}

𝑒
𝛼𝑝𝑟𝑗+(𝑎,V𝑟)

=

−𝑒
𝛼𝑝𝑖𝑗+(𝑎,V𝑖)

𝛼 (𝑝𝑖𝑗 − 𝑐𝑖𝑗) + 1

, 𝑖 ∈ 𝑁𝑗. (18)

The right-hand side of this equation is the function𝑔(𝑥) =
−𝑒
𝛼𝑥+𝑏

/(𝛼(𝑥 − 𝑐𝑖𝑗) + 1), where 𝑏 is a constant. The derivative
of this function is

𝑔
󸀠
(𝑥) =

−𝛼
2
𝑒
𝛼𝑥+𝑏

(𝑥 − 𝑐𝑖𝑗)

(𝛼 (𝑥 − 𝑐𝑖𝑗) + 1)
2
. (19)

Consequently, 𝑔(𝑥) is a decreasing function for 𝑥 > 𝑐𝑖𝑗.
So the right side of the optimality equation (18) is a

decreasing function in the equilibrium price 𝑝𝑖𝑗 of player 𝑖.
At the left side of the equation we have an expression, which
depends on the prices of other players. If we introduce a
new player to the link 𝑒𝑗, then the left side of the equation
increases.Therefore, the root of the right side of the equation
decreases. It can be proven by induction. We demonstrate it
for the case |𝑁𝑗| = 1.

Let |𝑁𝑗| = 1. The equilibrium 𝑝
∗
1𝑗 satisfies the equation

𝑒
𝜌
=

−𝑒
𝛼𝑝∗1𝑗+(𝑎,V1)

𝛼 (𝑝
∗
1𝑗 − 𝑐1𝑗) + 1

. (20)

In the game with additional player the equilibrium price
𝑝
∗
1𝑗 of the first player satisfies the equation

𝑒
𝜌
+ 𝑒
𝛼𝑝∗2𝑗+(𝑎,V2)

=

−𝑒
𝛼𝑝∗1𝑗+(𝑎,V1)

𝛼 (𝑝
∗
1𝑗 − 𝑐1𝑗) + 1

. (21)

Monotonicity of the function 𝑔(𝑥) gives 𝑝∗1𝑗 > 𝑝
∗
1𝑗.

Corollary 2. In the price game with additional player the
optimal payoffs of all players except the new one are decreasing;
that is, ∀𝑖 ∈ 𝑁𝑗 holds. Consider

ℎ𝑖𝑗 ({𝑝
∗
𝑖𝑗}𝑖∈𝑁𝑗

) > ℎ𝑖𝑗 ({𝑝
∗
𝑖𝑗}𝑖∈𝑁̃𝑗

) . (22)

Proof. In the equilibrium (18) holds for player 𝑖. Substituting
it in to the payoff of player 𝑖 gives

ℎ𝑖𝑗 ({𝑝
∗
𝑖𝑗}𝑖∈𝑁𝑗

)

= (𝑝
∗
𝑖𝑗 − 𝑐𝑖𝑗)

𝑒
𝛼𝑝∗𝑖𝑗+(𝑎,V𝑖)

𝑒
𝜌
+ ∑𝑟∈𝑁𝑗\{𝑖}

𝑒
𝛼𝑝∗
𝑟𝑗
+(𝑎,V𝑟)

+ 𝑒
𝛼𝑝∗
𝑖𝑗
+(𝑎,V𝑖)

𝑑 (𝑒𝑗) .

(23)

Hence, we obtain

ℎ𝑖𝑗 ({𝑝
∗
𝑖𝑗}𝑖∈𝑁𝑗

) = (𝑝
∗
𝑖𝑗 − 𝑐𝑖𝑗 +

1

𝛼

) 𝑑 (𝑒𝑗) . (24)

According to the theorem the equilibrium prices in the
game with additional player are decreasing. Consequently,
the optimal payoffs in (24) also decrease if a new service is
introduced on the link 𝑒𝑗.

Let us return to location game. On the first stage the
players distribute their resources among links. After resource
allocation price game takes place on each link and the players
receive some payoffs. We obtain in the theorem that these
payoffs are decreasing functions in the number of players
choosing the same link.

The game of this type is a so-called congestion game. In
paper [10] it was proven that equilibrium in pure strategies
exists in these games. Equilibrium point can be found as a
result of best response process.

4. Location-Price Competition in
Airline Networks

Let 𝑉 be a finite set of airports and let 𝐸 be a finite set of
routes between airports. Under routewemean that any airline
can perform operations between these two airports. An
undirected graph 𝐺(𝑉, 𝐸) represents possible routes between
airports in airline market.

An airline is considered as a player in the market. Each
airline 𝑖 allocates𝑚𝑖 planes among routes in𝐺(𝑉, 𝐸).Wemake
a restriction that airline cannot allocate more than one plane
to a single route. Note that one plane can serve many airline
routes, if it performs a flight with several connections.

Let us define 𝑥𝑖 as an airline allocation vector and 𝐸
𝑖 as an

airline route network.
Each route 𝑒𝑗 in 𝐺(𝑉, 𝐸) is characterized by potential

passenger demand 𝑑(𝑒𝑗). Airline share in route passenger
demand 𝑀𝑖𝑗 depends on airline own price 𝑝𝑖𝑗 and prices of
competitive airlines. For simplicity, we assume that airline
operating costs on the route 𝑒𝑗 are proportional to passenger
demand.
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Table 1: Summary statistics (Russian market).

Factor Mean Standard deviation Median Min Max
Price (rub.) 9831 4111 9425 1500 21630
Flight time (h.) 3.34 2.33 2.4 0.4 15.3
Frequency (flights per week) 2.8 2.04 1 1 14
Distance (km) 1774 1263 1486 215 7314
Income (rub./year) 27 053 10 390 22 224 14 167 50 991
Population 499 430 394 948 327 423 44 334 1 498 921

Table 2: Summary statistics (Chinese market).

Factor Mean Standard deviation Median Min Max
Price (rmb.) 1366 537 1300 540 2910
Flight time (h.) 2.23 1 2.08 0.75 5.72
Frequency (flights per week) 6.4 1.44 7 1 7
Distance (km) 1298 657 1233 351 3388
Income (rmb./year) 29501 6903 28731 18400 40742
Population (ths.) 10968.7 7347.4 9325.05 2141.3 29190

Hence, the gain, which an airline gets from operating on
the route 𝑒𝑗 ∈ 𝐸

𝑖, can be written down as (7) and total airline
payoff in the market equals (8).

To describe airline competitive behavior, we will consider
the following game, where prices and allocation vectors are
set as airlines strategies.

(1) Airlines simultaneously select planes allocation
{𝑥𝑖}𝑖∈𝑁 among routes.

(2) Airlines simultaneously select prices in their networks
{𝑝𝑖}𝑖∈𝑁.

(3) As a result of these decisions, passengers select flights
and airlines receive payoffs {𝐻𝑖}𝑖∈𝑁.

We study Nash equilibrium for allocation vectors {𝑥𝑖}𝑖∈𝑁,
knowing that in the second stage of the game players
choose prices {𝑝𝑖}𝑖∈𝑁 from Nash equilibrium for fixed airline
networks on graph 𝐺(𝑉, 𝐸).

4.1. Passenger Demand. In order to proceed with analyzing
equilibrium prices and locations we need to specify how pas-
senger demand is distributed between competitive airlines.
We consider here that potential demand for the route 𝑒𝑗
depends on the population size in airport regions and equals

𝑑 (𝑒𝑗) =

√𝑃 (V1𝑗) 𝑃 (V
2
𝑗)

2

, 𝑒𝑗 = (V
1
𝑗 , V
2
𝑗) ,

(25)

where 𝑃 defines population size in airport region.
Multinomial logit model is used to compute airline

shares in passenger demand. We assume that a passenger
considers price and airline route characteristics to choose
between competitive airlines. Airline route characteristics are

combined in vector 𝑘𝑖𝑗. Hence, airline share in passenger
demand on the route 𝑒𝑗 equals

𝑀𝑖𝑗 (𝑝𝑖𝑗, {𝑝𝑟𝑗}𝑟∈𝑁𝑗\{𝑖}
) =

𝑒
𝑎1𝑝𝑖𝑗+(𝑎,𝑘𝑖𝑗)

∑

|𝑁𝑗|

𝑠=1 𝑒
𝑎1𝑝𝑠𝑗+(𝑎,𝑘𝑠𝑗)

+ 𝑒
𝜌
, 𝑒𝑗 ∈ 𝐸

𝑖
,

(26)

where 𝑎1 < 0 and 𝑎 is a vector of constants. We include
the additional term in denominator to capture passenger
alternative not to travel by plane.

4.2. Examples of Airline Markets. We illustrate presented
model with an application to Russian and Chinese airline
markets (Figures 1 and 2). Market statistics are shown in
Tables 1 and 2.

The Russianmarket contains 27 airports with 95 routes in
𝐺(𝑉, 𝐸). There are 239 single-trip flights and 74 flights with
connections. The number of airlines is 11 and the maximum
number of competitive airlines on a single route equals
5. The Chinese market has 14 airports with 61 routes in
𝐺(𝑉, 𝐸). There are 351 single-trip flights and 14 flights with
connections. The number of airlines is 5 and the maximum
number of competitive airlines on a single route equals 3.

Airline route characteristics in Russian case include flight
time, dummy variable 𝛾𝑖𝑗 to indicate direct flight, geometric
mean of income rates in airport city pair, and distance
between airports:

̃
𝑘𝑖𝑗 = 𝑎2𝑡𝑖𝑗 + 𝑎3𝛾𝑖𝑗 + 𝑎4income𝑖𝑗 + 𝑎5 ln (dist𝑖𝑗) , 𝑒𝑗 ∈ 𝐸

𝑖
.

(27)

Airline share is expected to drop on price and flight
time increase. On the distance growth planes become more
competitive between other means of transport and airline
share should increase.

We include the same route characteristics for the Chinese
market and also add airline loading indicator, which equals
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Figure 1: Russian airline market.

Figure 2: Chinese airline market.
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Table 3: Parameter estimation results.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 Constant
Russia −0.000656 −0.288 0.628 0.000141 3.83 −28.305
China −0.00196 −1.138 0.135 3.845 −6.571 1.142 3.845
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Figure 3: Equilibrium prices (Russian market).
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Figure 4: Equilibrium prices (Chinese market).

1 if average seat occupancy is more than 80%. Time, income,
and distance values represent these factor values divided by
the minimum value of the same factor in the considered
route. Hence,

̃
𝑘𝑖𝑗 = 𝑎2𝑡

ratio
𝑖𝑗 + 𝑎3𝛾𝑖𝑗 + 𝑎4incomeratio𝑖𝑗

+ 𝑎5dist
ratio
𝑖𝑗 + 𝑎6loading𝑖𝑗, 𝑒𝑗 ∈ 𝐸

𝑖
.

(28)

We performed parameter estimation in (26) using BLP
method [11] with flight fuel consumption taken as instrumen-
tal variable. Estimation results are presented in Table 3.

4.3. Price Competition. Location-price competition in airline
market is examined using backward induction. First, we
analyze price game, when airlines have already specified

YKS

OVB

IKT
VVO

UUS
KHV

GDX

PKC

Figure 5: Market graph (Russia).

planes allocation among routes in 𝐺(𝑉, 𝐸). After that, Nash
equilibrium in location game is considered.

Airline share in route passenger demand depends on its
own price and the prices of other airlines, which compete on
this route. The existence and uniqueness of equilibrium for
prices on the route 𝑒𝑗 follows from [9].

In Nash equilibrium airline price is a best response to the
equilibrium prices of other airlines on the considered route
𝑒𝑗. The first-order condition for airline best response is given
in the following equation:

(1 −𝑀𝑖𝑗) (𝑐𝑖𝑗 − 𝑝𝑖𝑗) =
1

𝑎1

. (29)

In Figures 3 and 4 prices in equilibrium, which were com-
puted from (29) for each route, are comparedwith realmarket
prices used by airlines. Flights are ordered by airport city
pairs. Note that only fuel consumption is included in airline
costs, which leads to smaller price values in equilibrium.

4.4. Location Game. Let us return to the first stage of the
game, when airlines select operating routes in 𝐺(𝑉, 𝐸). We
picked out a subgraph in both considered markets for two
competitive airlines (Figures 5 and 6). Airline A has 11 (7)
planes with 158 (164) seats and airline B has 9 (6) planes with
150 (164) seats in these two examples. Operating networks are
presented in Figure 7 for the Russian market and in Figure 8
for the Chinese market.

We derive allocation vectors in equilibrium with the
following procedure. First, airline A optimally allocates all
planes among routes. Airline B planes enter a market con-
sequentially. Each time we find location equilibrium in the
market for all planes of airline A and present planes of airline
B using best response dynamics. One can show that the best
response sequence converges to an equilibrium using the
fact that airline payoff in equilibrium decreases, when a new
airline enters the market on the route 𝑒𝑗.
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Figure 6: Market graph (China).

YKS

OVB

IKT
VVO

UUS
KHV

GDX

PKC

(a) Network A

YKS

OVB

IKT
VVO

UUS
KHV

GDX

PKC

(b) Network B

Figure 7: Operating networks (Russia).

Equilibrium airline networks are shown in Figures 9 and
10. Note that in the real market airline B behaves the same
as in the model location equilibrium in the Russian case and
switches 2 planes in the Chinese case. Airline A switches 2
planes to new routes in the equilibrium in both examples.

5. Conclusion

This paper studies location-then-price game as a two-stage
game of 𝑛 players on the graph. Logit analysis is used to
model demand distribution between competitors. The use of
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Figure 8: Operating networks (China).

multinomial logit model allows us to compute shares in case
of 𝑛 players and proceed with studying price equilibrium.
Price and location equilibria are constructed using best
response dynamics.We apply proposedmodel to Russian and
Chinese airlinemarkets and find location and price equilibria
for competitive airlines.

Our research can be extended in several directions.
Airline competitiveness is also affected by the choice of base
airports and hubs in operating network. Our model does
not address these issues. Multinomial logit model belongs
to a class of discrete choice models and development of
location-then-price game for other models in discrete choice
analysis can extend model applicability. Routes scheduling,
airline mergers, and other airline market specific features are
not considered. Complex analysis of competitive behavior in
airline market is an open problem for further research.

Appendix

The list of IATA codes that are used in the text are presented
in Tables 4 and 5.
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Figure 9: Equilibrium in location game (Russia).
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Figure 10: Equilibrium in location game (China).

Table 4: Russian airports.

IATA City
GDX Magadan
IKT Irkutsk
KHV Khabarovsk
OVB Novosibirsk
PKC Petropavlovsk-Kamchatsky
UUS Yuzhno-Sakhalinsk
VVO Vladivostok
YKS Yakutsk
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Table 5: Chinese airports.

IATA City
CKG Chongqing
CTU Chengdu
URC Urumqi
WUH Wuhan
XIY Xi’an
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