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This paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement
delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment
errors of star sensors in the measurement model, the uncertain attitude estimation model can be established, which indicates
that uncertainties not only appear in the state and output matrices but also affect the statistic of the process noise. Meanwhile,
the phenomenon of star sensor measurement delays is described by introducing Bernoulli random variables with different delay
characteristics. The aim of the addressed attitude estimation problem is to design a filter such that, in the presence of model
uncertainties and star sensors delays for the attitude estimation system, the optimized filter parameters can be obtained tominimize
the upper bound on the estimation error covariance. Therefore, a finite-horizon robust Kalman filter is proposed to cope with this
question. Compared with traditional attitude estimation algorithms, the designed robust filter takes into account the effects of star
sensor measurement delays and model uncertainties. Simulation results illustrate the effectiveness of the developed robust filter.

1. Introduction

Attitude estimation has played an important role in many
actual applications, such as aerospace, satellites, marine, and
robots. For attitude estimation system, due to the high mea-
surement precision of star sensor, the rate gyro and star sen-
sor are often integrated to determinate the spacecraft attitude.
Furthermore, the filter design is one of the key technologies in
attitude estimation. As is well known, Kalman filter has been
employed to solve the attitude estimation filtering problem
[1–3]. Although these attitude estimation filtering algorithms
are available for handling attitude estimation problem, they
need to know the accurate model with Gaussian noises and
assume exact alignment of gyro and star sensor. However, in
practical problems, the measurement misalignment errors of
these sensors are inevitable, which will severely degrade the
filtering performance. To overcome the sensor misalignment
problem in attitude estimation, many researches have been
reported in some recent notes [4–8]. For example, Shuster
et al. [4] utilize the batch estimation technique to calibrate

the misalignment of the sensors. Pittelkau [5, 6] develops the
Kalman filtering technique to estimate the calibration param-
eters of gyro and star sensor. Lai and Crassidis [7] derived
a new spacecraft sensor alignment estimation approach
based on the unscented filter. Vandersteen [8] presents
the real-time moving horizon estimation of a spacecraft’s
attitude and sensor calibration parameters. Unfortunately,
even though misalignment calibration is accomplished, the
measurement misalignment error of gyro and star sensor
cannot be removed completely, which lead to model uncer-
tainty. Therefore, in the case that an exact uncertain model
is established, the robust filtering technique can be used
to deal with the filtering problem with model uncertainty.
For the purpose, in the past few decades, many researchers’
attentions have been drawn to the robust filtering problem
with model uncertainties, including the 𝐻

∞
filter [9], new

energy-to-peak FIR filter [10], fuzzy filter design [11], and
robust Kalman filter [12, 13]. Among them, the robust Kalman
filter design based on the minimum variance theory has
been approved to be an effective methodology. Based on
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this, Wang et al. [14] proposed a regularized robust filter for
attitude determination system to deal with the installation
error of star trackers. In this work, the installation error
of star trackers is expressed as model uncertainty in the
measurement model, but the measurement misalignment
error of gyros is not taken into account.

In this paper, all the misalignment errors and scale factor
errors of gyros introduced into the process model and the
misalignment errors of star sensors in the measurement
model are described asmodel uncertainties, so that uncertain
attitude estimation model is established. From the uncertain
model, we can find that the attitude estimation filtering
problem suffers from uncertainties in the state and output
matrices and uncertainty in the process noise matrix. A
typical way is to represent the model uncertainties as norm-
bounded uncertainties. Recently, the finite-horizon robust
Kalman filter design has been investigated to be available for
handling the filtering problem with model uncertainties in
the state, output, and noise matrices by getting an optimized
upper bound on the estimation error covariance [15]. Souto
and Ishihara [16] extend this work by considering correlated
noises with unknown mean and variance.

However, the above works have been based on this
assumption that all the observations should be available at
the time of estimation. In many situations, the sensor mea-
surements are disturbed by complicated signal processing
circuit, leading to the sensor measurement delays or mea-
surement failures [17–20]. Therefore, the filtering problems
with sensor measurement delays have stirred considerable
research attention, such as [21–26]. In attitude estimation
system, due to optics imaging, star recognition, and attitude
determination, the attitude information output of star sensors
has the random delay characteristic. Up to now, the attitude
estimation filtering problem with model uncertainties in the
state, output, and process noise matrices and star sensor
delays has not been reported. So, there is great desire to
present a robust Kalman filter for uncertain attitude estima-
tion system with star sensor delays.

Based on the above discussion, a finite-horizon robust
Kalman filter is proposed for uncertain attitude estimation
system with star sensor delays. The star sensor measurement
is assumed as one-step randomly delayed measurement with
different delay characteristics. The main contributions of the
paper are as follows. (1) The uncertain attitude estimation
model is established to take into consideration measurement
errors of gyros and star sensors, which indicates that the
norm-bounded uncertainties appear in the state, output,
and process noise matrices. (2) Combined with star sensor
delays, a new finite-horizon robust Kalman filter design is
derived for the uncertain attitude estimation system. (3) The
Hadamard product is employed to help the robust Kalman
filter development. (4)Thepresented robust filter is recursive,
which is suitable for online applications.

This paper is organized as follows. In Section 2, the
uncertainty attitude estimationmodel with star sensor delays
is set up. In Section 3, a finite-horizon robust Kalman filter for
uncertainty attitude estimation systemwith star sensor delays
is developed. In Section 4, the simulation results and analysis
are given. In Section 5, some conclusions are drawn.
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Figure 1: A brief principal diagram of the gyro.

2. Uncertainty Attitude Estimation Model
with Star Sensor Delays

2.1. Gyro Error Model. As Figure 1 shows, 𝑥, 𝑦, and 𝑧 are
three axes of the gyro, respectively. The gyro model with
misalignment errors and scale factor errors is given as follows:

𝜔̃ = (I
3×3

+M)𝜔 + 𝛽 + 𝜂V

𝛽̇ = 𝜂
𝑢
,

(1)

where 𝜔̃ is the gyro measured output, 𝜔 is the actual gyro
angular rate, 𝛽 is the gyro bias, 𝜂V and 𝜂𝑢 are independent
Gaussian white-noise processes with zero means and covari-
ance 𝜎2V and covariance 𝜎

2

𝑢
, andM is an unknownmatrix with

misalignment errors and scale factor errors, which is defined
by

M = [

[

𝜆
𝑥

𝛿
𝑥𝑦

𝛿
𝑥𝑧

𝛿
𝑦𝑥

𝜆
𝑦

𝛿
𝑦𝑧

𝛿
𝑧𝑥

𝛿
𝑧𝑦

𝜆
𝑧

]

]

, (2)

where 𝜆 = [𝜆
𝑥

𝜆
𝑦

𝜆
𝑧
]
𝑇 is the unknown scale factor error

vector and 𝛿
𝑖𝑗
is the projection of the 𝑖-gyro axis on the 𝑗

body-axis, which is assumed to be a small and unknown
misalignment angle.

2.2. Uncertainty Process Model. The quaternion is employed
to express the attitude for the attitude estimation system
consisting of the gyro and star tracker. So, the quaternion
orientation equation is described as

q̇ =
1

2
[
𝜔

0
] ⊗ q =

1

2
Ω (𝜔) ⋅ q, (3)

where q = [𝑞
1

𝑞
2

𝑞
3

𝑞
4
]
𝑇

= [𝜌
𝑇

𝑞
4
]
𝑇

is the attitude
quaternion, 𝜌 is the quaternion vector, 𝑞

4
is the quaternion

scalar part, ⊗ is the quaternion product, and Ω(𝜔) can be
defined as follows:

Ω (𝜔) = [
− [𝜔×] 𝜔

−𝜔
𝑇

0
] , (4)

where [𝜔×] is a cross-product matrix defined by

[𝜔×] = [

[

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

]

]

. (5)
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Using quaternion multiplication, the quaternion error is
expressed as

𝛿q = q ⊗ q̂−1 = [Δ𝜌
𝑇

Δ𝑞
4
]
𝑇

, (6)

where q is the true quaternion, q̂ is the estimated quaternion,
q−1 is the inverse quaternion, which is given by q−1 =

[−𝜌
𝑇

𝑞
4
]
𝑇

, and Δ𝜌 is the quaternion error vector part.
The gyro error angular rate 𝛿𝜔 is assumed as the differ-

ence between the estimated and actual angular rate: 𝛿𝜔 =

𝜔 − 𝜔̂. According to (1), using a small angle approximation,
we have

𝛿𝜔 = 𝜔 − 𝜔̂ = 𝜔 − (I
3×3

+M)
−1

(𝜔̃ − 𝛽̂)

= 𝜔 − (I
3×3

+M)
−1

[(I
3×3

+M)𝜔 + 𝛽 + 𝜂V − 𝛽̂]

= − (I
3×3

+M)
−1

(Δ𝛽 + 𝜂V) ≈ − (I
3×3

−M) (Δ𝛽 + 𝜂V) ,

(7)

where Δ𝛽 is the gyro bias error vector.
Differentiating (6) with respect to time and combining

the quaternion multiplication, we obtain

𝛿q̇ = q̇ ⊗ q̂−1 + q ⊗ ̇̂q−1 = q̇ ⊗ q̂−1 + q ⊗
1

2
q̂−1 ⊗ [
𝜔̂

0
]

−1

=
1

2
[
𝜔

0
] ⊗ 𝛿q −

1

2
𝛿q ⊗ [
𝜔̂

0
]

=
1

2
[
𝜔̂

0
] ⊗ 𝛿q −

1

2
𝛿q ⊗ [
𝜔̂

0
] +

1

2
[
𝛿𝜔

0
] ⊗ 𝛿q

= [
− [𝜔̂×] Δ𝜌

0
] +

1

2
[
Δ𝑞
4
⋅ 𝛿𝜔 − [𝛿𝜔×] Δ𝜌

−𝛿𝜔
𝑇

Δ𝜌
] .

(8)

In order to avoid the quaternion normalization con-
straint, only the vector component of the quaternion error 𝛿q
is considered in the states. Inserting (7) into (8), by neglecting
the second-order terms, we have

Δ𝜌̇ = − [𝜔̂×] Δ𝜌 +
1

2
𝛿𝜔

= − [𝜔̂×] Δ𝜌 −
1

2
(I
3×3

−M) (Δ𝛽 + 𝜂V) .

(9)

The quaternion error vector part Δ𝜌 and the gyro bias
error vector Δ𝛽 are constructed as the error state vector: x =

[Δ𝜌
𝑇

Δ𝛽
𝑇

]
𝑇

. An error state process model with unknown
misalignment errors and scale factor errors can be expressed
as

ẋ = [
Δ𝜌̇

Δ𝛽̇
] = [

− [𝜔̂×] Δ𝜌 −
1

2
(I
3×3

−M) (Δ𝛽 + 𝜂V)

𝜂
𝑢

] . (10)

According to (10), the discrete-time process equation can
be developed as

x
𝑘+1

= (A
𝑘
+ ΔA
𝑘
) x
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘
, (11)

where w
𝑘
is the zero mean Gaussian noise with covariance

Q
𝑘
= [
Δ𝑡𝜎
2

V I3 × 3 0
3 × 3

0
3 × 3
Δ𝑡𝜎
2

𝑢
I
3 × 3

],

A
𝑘
= [

I
3×3

− [𝜔̂×] −
1

2
I
3×3

0
3×3

I
3×3

] , ΔA
𝑘
= [

0
3×3

1

2
M

0
3×3

0
3×3

] ,

B
𝑘
= [

−
1

2
I
3×3

0
3×3

0
3×3

I
3×3

] , ΔB
𝑘
= [

1

2
M 0
3×3

0
3×3

0
3×3

] .

(12)

From (11), it can be seen that the unknown errormatrixM
not only appears in the statematrix but also affects the statistic
of the process noise. In order to realize the robust filtering
design, the unknown error matrixM can be rewritten as

M = HFE, (13)

where 𝛿
𝑖𝑗

= Δ
𝑖𝑗
𝜎
𝑖𝑗
(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧, and 𝑖 ̸= 𝑗); 𝜆

𝑖
= 𝛾
𝑖
Δ𝜆
𝑖
(𝑖 =

𝑥, 𝑦, 𝑧),

H = [

[

𝛾
𝑥

𝜎
𝑥𝑦

𝜎
𝑥𝑧

𝜎
𝑦𝑥

𝛾
𝑦

𝜎
𝑦𝑧

𝜎
𝑧𝑥

𝜎
𝑧𝑦

𝛾
𝑧

]

]

F = diag([Δ𝜆
1

Δ
𝑥𝑦

Δ
𝑥𝑧

Δ
𝑦𝑥

Δ𝜆
2

Δ
𝑦𝑧

Δ
𝑧𝑥

Δ
𝑧𝑦

Δ𝜆
3
])

E = [

[

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

]

]

𝑇

.

(14)

The parameters 𝜎
𝑖𝑗
and 𝛾

𝑖
are positive constants, which

can be chosen by the priori information of the gyro instal-
lation errors. If the 𝜎

𝑖𝑗
and 𝛾
𝑖
are set to be large enough, the

inequalities Δ
𝑖𝑗
Δ
𝑇

𝑖𝑗
≤ 1 and Δ𝜆

𝑖
Δ𝜆
𝑇

𝑖
≤ 1 can be fulfilled, so

that the inequality FF𝑇 ≤ I is satisfied. According to (13), the
model error matrices ΔA

𝑘
and ΔB

𝑘
can be described as

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

, (15)

where F
1,𝑘
F𝑇
1,𝑘

≤ I,

H
1,𝑘

= [

1

2
H

0
3×9

] , F
1,𝑘

= [
F

0
9×9

] ,

E
1,𝑘

= [
0
9×3

E
0
9×3

0
9×3

] , E
2,𝑘

= [
E 0
9×3

0
9×3

0
9×3

] .

(16)

2.3. Uncertainty Measurement Model with Star Sensor Delays.
To obtain the attitude information, three star sensors are
chosen. Considering the misalignment error of star sensors,
the measurement model with model errors is expressed as

[

[

Δ𝜌
𝐴

Δ𝜌
𝐵

Δ𝜌
𝐶

]

]

= [

[

I
3 × 3

− [𝜑
𝐴
×] 0
3 × 3

I
3 × 3

− [𝜑
𝐵
×] 0
3 × 3

I
3 × 3

− [𝜑
𝐶
×] 0
3 × 3

]

]

[
Δ𝜌

Δ𝛽
] + [

[

k
𝐴

k
𝐵

k
𝐶

]

]

, (17)
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where 𝐴, 𝐵, and 𝐶 denote different star sensors, Δ𝜌
𝑖
(𝑖 =

𝐴, 𝐵, 𝐶) are themeasured quaternion error vector parts of star
sensors, 𝜑

𝑖
= [𝜑
𝑖𝑥

𝜑
𝑖𝑦

𝜑
𝑖𝑧
]
𝑇

(𝑖 = 𝐴, 𝐵, 𝐶) is the unknown
misalignment error vector, and k

𝑖
(𝑖 = 𝐴, 𝐵, 𝐶) are the zero

mean Gaussian white noises with covariance matrix 𝜎
2

𝑠
I
3 × 3

.
The unknown cross-product matrix [𝜑

𝑖
×] (𝑖 = 𝐴, 𝐵, 𝐶) can

be written as

− [𝜑
𝑖
×] = −[

[

0 −𝜑
𝑖𝑧

𝜑
𝑖𝑦

𝜑
𝑖𝑧

0 −𝜑
𝑖𝑥

−𝜑
𝑖𝑦

𝜑
𝑖𝑥

0

]

]

= N
𝑖
Δ
𝑖
U
𝑖

(𝑖 = 𝐴, 𝐵, 𝐶) ,

(18)

where

N
𝑖
= [

[

0 0 𝜋
𝑖𝑦

0 𝜋
𝑖𝑧

0

𝜋
𝑖𝑥

0 0 0 0 𝜋
𝑖𝑧

0 𝜋
𝑖𝑥

0 𝜋
𝑖𝑦

0 0

]

]

,

Δ
𝑖
= diag ([Δ

𝑖𝑥
Δ
𝑖𝑥

Δ
𝑖𝑦

Δ
𝑖𝑦

Δ
𝑖𝑧

Δ
𝑖𝑧
]) ;

U
𝑖
= [

[

0 0 0 1 0 −1

0 −1 0 0 1 0

1 0 −1 0 0 0

]

]

T

;

Δ
𝑖𝑗
=

𝜑
𝑖𝑗

𝜋
𝑖𝑗

, 𝑗 = 𝑥, 𝑦, 𝑧.

(19)

The parameters 𝜋
𝑖𝑗
are positive constants. If 𝜋

𝑖𝑗
are large

enough, the inequalities Δ
𝑖

𝑇

Δ
𝑖
≤ I and Δ

𝑖
Δ
𝑖

𝑇

≤ I can be
satisfied. For convenience, the uncertain measurement with
misalignment errors can be rewritten as

z
𝑘
= (C
𝑘
+ ΔC
𝑘
) x
𝑘
+ k
𝑘
, (20)

where k
𝑘
is the zero mean Gaussian white-noise process with

covariance R
𝑘
= 𝜎
2

𝑠
I
9 × 9

,

z
𝑘
= [

[

Δ𝜌
𝐴

Δ𝜌
𝐵

Δ𝜌
𝐶

]

]

, C
𝑘
= [

[

I
3 × 3

0
3 × 3

I
3 × 3

0
3 × 3

I
3 × 3

0
3 × 3

]

]

,

ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

, H
2,𝑘

= [

[

N
𝐴

N
𝐵

N
𝐶

]

]

,

F
2,𝑘

= [

[

Δ
𝐴

Δ
𝐵

Δ
𝐶

]

]

, E∗
1,𝑘

= [

[

U
𝐴

0
6 × 3

U
𝐵

0
6 × 3

U
𝐶

0
6 × 3

]

]

.

(21)

Since the attitude information of star sensors is given
by the complicated data processing and transmission, the
output measurement is delayed. The delayed star sensor
measurement is assumed as

y
𝑘
= (I − Γ

𝑘
) z
𝑘
+ Γ
𝑘
z
𝑘−1

, (22)

where y
𝑘

∈ R𝑚 is the true measurement output vector,
Γ
𝑘
= diag{𝜇

𝑘,1
, 𝜇
𝑘,2

, . . . , 𝜇
𝑘,𝑚

} accounts for the different delay

rates, and 𝜇
𝑘,𝑖

∈ R (𝑖 = 1, 2, . . . , 𝑚) are independent random
variables taking the values of 1 or 0 with

𝑝 (𝜇
𝑘,𝑖

= 1) = 𝐸 [𝜇
𝑘,𝑖
] = 𝑝
𝑘,𝑖

𝑝 (𝜇
𝑘,𝑖

= 0) = 1 − 𝐸 [𝜇
𝑘,𝑖
] = 1 − 𝑝

𝑘,𝑖
,

(23)

where 𝑝
𝑘,𝑖

∈ [0, 1) is a known scalar.

Remark 1. The measurement errors of sensors are inevitable
in real applications, and the gyro and star sensor are no
exception.Though the literature [14] takes into consideration
the misalignment error of star sensors, no attention is paid
to the misalignment errors and scale factor errors of the
gyro. However, they can lead to the uncertainty process
model. As shown in (11), the uncertainty error matrix exists
in the state matrix and noise matrix, which influences the
design of robust filter. Besides, the sensor measurement
signal transmission is susceptible to interference from the
external environment and limited bandwidth of network,
which makes the sensor measurement delay occur. In (22),
the delayed star sensormeasurementmodel is established. As
discussed in the work [25], different delay rates are taken into
account by introducing the diagonal matrix Γ

𝑘
.

3. Finite-Horizon Robust Kalman Filter for
Attitude Estimation

3.1. ProblemDescription. Considering the uncertain discrete-
time linear stochastic system with sensor delays

x
𝑘+1

= (A
𝑘
+ ΔA
𝑘
) x
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘

z
𝑘
= (C
𝑘
+ ΔC
𝑘
) x
𝑘
+ k
𝑘

y
𝑘
= (I − Γ

𝑘
) z
𝑘
+ Γ
𝑘
z
𝑘−1

,

(24)

where x
𝑘
∈ R𝑛 is the state vector, z

𝑘
∈ R𝑚 is the measurement

vector, y
𝑘
∈ R𝑚 is the true measurement output vector, w

𝑘

and k
𝑘
are uncorrelated process and measurement Gaussian

noises with zero means and covariance Q
𝑘
and covariance

R
𝑘
, and A

𝑘
, B
𝑘
, and C

𝑘
are known matrices with appropriate

dimensions. The matrices ΔA
𝑘
, ΔB
𝑘
, and ΔC

𝑘
represent

uncertainties in the state, process noise, and output matrices,
which have the following form:

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

,

ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

,

(25)

where H
1,𝑘
, E
1,𝑘
, E
2,𝑘
, H
2,𝑘
, and E∗

1,𝑘
are known matrices

with appropriate dimensions and F
1,𝑘

and F
2,𝑘

are the norm-
bounded uncertainties satisfying F

1,𝑘
F𝑇
1,𝑘

≤ I and F
2,𝑘
F𝑇
2,𝑘

≤ I.
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Due to the delayed measurement model, we need to
obtain a concise model for convenience. By defining

X
𝑘
= [

x
𝑘

x
𝑘−1

] , A
𝑘
= [

A
𝑘

0
0 A
𝑘−1

] ,

B
𝑘
= [

B
𝑘

0
0 B
𝑘−1

] ,

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

,

H
1,𝑘

= [
H
1,𝑘

0
0 H

1,𝑘−1

] , F
1,𝑘

= [
F
1,𝑘

0
0 F
1,𝑘−1

] ,

E
1,𝑘

= [
E
1,𝑘

0
0 E
1,𝑘−1

] , E
2,𝑘

= [
E
2,𝑘

0
0 E
2,𝑘−1

] ,

C
𝑘
= [

C
𝑘

0
0 C
𝑘−1

] , ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

,

H
2,𝑘

= [
H
2,𝑘

0
0 H

2,𝑘−1

] , F
2,𝑘

= [
F
2,𝑘

0
0 F
2,𝑘−1

] ,

E∗
1,𝑘

= [
E∗
1,𝑘

0
0 E∗
1,𝑘−1

] , w
𝑘
= [

w
𝑘

w
𝑘−1

] ,

k
𝑘
= [

k
𝑘

k
𝑘−1

] , Υ
𝑘
= [I − Γ

𝑘
Γ
𝑘
] ,

(26)

we have the following form:

X
𝑘+1

= (A
𝑘
+ ΔA
𝑘
)X
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘

y
𝑘
= Υ
𝑘
[(C
𝑘
+ ΔC
𝑘
)X
𝑘
+ k
𝑘
] ,

(27)

where it is known that

𝐸 [w
𝑘
w𝑇
𝑘
] = Q

𝑘
= [

Q
𝑘

0
0 Q
𝑘−1

] ,

𝐸 [k
𝑘
k𝑇
𝑘
] = R
𝑘
= [

R
𝑘

0
0 R
𝑘−1

] .

(28)

According to the definition, Υ
𝑘
can be expressed as

Υ
𝑘
= 𝐸 [Υ

𝑘
] = [I − Γ

𝑘
Γ
𝑘
]

Υ̃
𝑘
= Υ
𝑘
− Υ
𝑘
= [Γ
𝑘
− Γ
𝑘
Γ
𝑘
− Γ
𝑘
] ,

(29)

where Γ
𝑘
= diag{𝑝

𝑘,1
, 𝑝
𝑘,2

, . . . , 𝑝
𝑘,𝑚

}.
For the uncertain system (27), a required filter form is

assumed as

X̂
𝑘+1

= A
𝑜
X̂
𝑘
+ K
𝑜
(y
𝑘
− Υ
𝑘
C
𝑘
X̂
𝑘
) , (30)

where X̂
𝑘
is the state estimation value with X̂

0
= [x𝑇
0

0]
𝑇

and A
𝑜
and K

𝑜
are the filter parameters to be determined.

According to the above analysis, the robust filtering problem
for delayed uncertain system (24) can be converted to the
robust filter design problem for uncertain system (27).There-
fore, our aim is to find anupper boundon the estimation error
covariance and design a finite-horizon robust filter for (30) to
minimize the upper bound.

Remark 2. Compared with the literature [15, 16], it is obvious
that the designed robust Kalman filter does not apply to
the case that the measurement delay appears in the system.
Meanwhile, the definition of the uncertainty matrices ΔA

𝑘

and ΔC
𝑘
is different from the definition of the corresponding

matrices in [15, 16]. So, in order to facilitate the robust filter
design, we need to utilize the state augmentation method to
obtain a new uncertain system in (27).

3.2. Upper Bound of the Estimation Error Covariance.
Because there are uncertain and delay rate terms for the
system (27), it is difficult to obtain the true estimation error
covariance. Our objective is to find the upper bound Ξ

𝑘
,

where

𝐸 [(X
𝑘
− X̂
𝑘
) (X
𝑘
− X̂
𝑘
)
𝑇

] ≤ Ξ
𝑘
. (31)

Considering the system (27) and the filter structure (30),
we define an augmented state 𝜂

𝑘
= [X𝑇

𝑘
X̂𝑇
𝑘
]
𝑇

. Then, the
augmented state-space model is expressed as

𝜂
𝑘+1

= (Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

) 𝜂
𝑘
+ Â
1,𝑘
𝜂
𝑘

+ (B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

) ŵ
𝑘
+ B̂
1,𝑘
ŵ
𝑘
,

(32)

where

Â
𝑘
= [

A
𝑘

0
K
𝑜
Υ
𝑘
C
𝑘

A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘

] ,

Ĥ
1,𝑘

= [
H
1,𝑘

0
0 K

𝑜
Υ
𝑘
H
2,𝑘

] ,

Ê
1,𝑘

= [
E
1,𝑘

0
E∗
1,𝑘

0] , F̂
1,𝑘

= [
F
1,𝑘

0
0 F
2,𝑘

] ,

Â
1,𝑘

= [
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0] ,

B̂
𝑘
= [

B
𝑘

0
0 K
𝑜
Υ
𝑘

] ,

Ĥ
2,𝑘

= [
H
1,𝑘

0
0 0] , F̂

2,𝑘
= [

F
1,𝑘

0
0 0] ,

Ê
2,𝑘

= [
E
2,𝑘

0
0 0] ,

B̂
1,𝑘

= [
0 0
0 K
𝑜
Υ̃
𝑘

] , ŵ
𝑘
= [

w
𝑘

k
𝑘

] .

(33)

The state covariance matrix of 𝜂
𝑘
in augmented system (32) is

denoted as

Ξ
𝑘
= 𝐸 [𝜂

𝑘
𝜂
𝑇

𝑘
] = [
Ξ
11,𝑘
Ξ
12,𝑘

Ξ
𝑇

12,𝑘
Ξ
22,𝑘

] . (34)
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So, the evolution equation can be expressed as

Ξ
𝑘+1

= (Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

)Ξ
𝑘
(Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

)
𝑇

+Ψ
1

+ (B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

)W
𝑘
(B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

)
𝑇

+Ψ
2
,

(35)

where

W
𝑘
= [

Q
𝑘

0
0 R
𝑘

] , F̂
1,𝑘
F̂𝑇
1,𝑘

≤ I, F̂
2,𝑘
F̂𝑇
2,𝑘

≤ I

Ψ
1
= 𝐸 [Â

1,𝑘
𝜂
𝑘
𝜂
𝑇

𝑘
Â𝑇
1,𝑘

]

= 𝐸([
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0] [
X
𝑘

X̂
𝑘

]

× [
X
𝑘

X̂
𝑘

]

𝑇

[
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0]
𝑇

)

= [

0 0
0 K
𝑜
𝐸[
̃Υ
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘
)X
𝑘
X𝑇
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘
)

𝑇
̃Υ
𝑇

𝑘
]K𝑇
𝑜

]

Ψ
2
= 𝐸 [B̂

1,𝑘
ŵ
𝑘
ŵ𝑇
𝑘
B̂𝑇
1,𝑘

]

= 𝐸([
0 0
0 K
𝑜
Υ̃
𝑘

] [
w
𝑘

k
𝑘

] [
w
𝑘

k
𝑘

]

𝑇

[
0 0
0 K
𝑜
Υ̃
𝑘

]

𝑇

)

= [

0 0
0 K
𝑜
𝐸 [Υ̃
𝑘
k
𝑘
k𝑇
𝑘
Υ̃

𝑇

𝑘
]KT
𝑜

] .

(36)

In order to obtain the upper bound of the error covariance
in (35), the following two lemmas are employed.

Lemma 3 (see [27]). Given matrices A, H, E, and F with
compatible dimensions such that FF𝑇 ≤ I, letX be a symmetric
positive definite matrix and let 𝛾 be an arbitrary positive
constant such that

𝛾
−1I − EXE𝑇 > 0. (37)

Then, the following matrix inequality holds:

(A +HFE)X(A +HFE)𝑇

≤ A(X−1 − 𝛾E𝑇E)
−1

A𝑇 + 𝛾
−1HH𝑇.

(38)

Lemma 4 (see [28]). Let A = [a
𝑖𝑗
]
𝑛×𝑛

be a real matrix and let
B = diag(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) be a diagonal random matrix. Then,

E {BABT
} =

[
[
[
[
[

[

E {b2
1
} E {b

1
b
2
} ⋅ ⋅ ⋅ E {b

1
b
𝑛
}

E {b
2
b
1
} E {b2

2
} ⋅ ⋅ ⋅ E {b

2
b
𝑛
}

...
... d

...
E {b
𝑛
b
1
} E {b

𝑛
b
2
} ⋅ ⋅ ⋅ E {b2

𝑛
}

]
]
]
]
]

]

∘ A, (39)

where ∘ is the Hadamard product.

Then, the following conclusion can be given by making
use of the two lemmas.

Theorem 5. If there exist three positive scalars 𝜆
1
, 𝜆
2
, and 𝜆

3
,

such that

𝜆
−1

1
I − Ê
1,𝑘
Ξ
𝑘
Ê𝑇
1,𝑘

> 0

𝜆
−1

2
I − Ê
2,𝑘
W
𝑘
Ê𝑇
2,𝑘

> 0

𝜆
−1

3
I − E∗
1,𝑘
Ξ
11,𝑘

(E∗
1,𝑘

)
𝑇

> 0

(40)

and there exists a symmetric positive-definite matrix Ξ̃
𝑘
, such

that

Ξ̃
𝑘+1

= Â
𝑘
(Ξ̃
−1

𝑘
− 𝜆
1
Ê𝑇
1,𝑘
Ê
1,𝑘

)

−1

Â𝑇
𝑘

+ 𝜆
−1

1
Ĥ
1,𝑘
Ĥ𝑇
1,𝑘

+ 𝜆
−1

2
Ĥ
2,𝑘
Ĥ𝑇
2,𝑘

+ B̂
𝑘
(W−1
𝑘

− 𝜆
2
Ê𝑇
2,𝑘
Ê
2,𝑘

)
−1

B̂𝑇
𝑘

+ [
0 0
0 K
𝑜
(Φ
1,𝑘

+Φ
2,𝑘

)K𝑇
𝑜

] ,

(41)

where

Φ
1,𝑘

= Γ̆
𝑘
∘ {H [C

𝑘
(Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

(E∗
1,𝑘

)
𝑇

×(𝜆
−1

3
I − E∗
1,𝑘
Ξ̃
11,𝑘

(E∗
1,𝑘

)
𝑇

)

−1

× E∗
1,𝑘
Ξ̃
11,𝑘

)C𝑇
𝑘
+𝜆
−1

3
H
2,𝑘
H𝑇
2,𝑘

]H𝑇}

Φ
2,𝑘

= Γ̆
𝑘
∘ (HR

𝑘
H𝑇) , H = [I

𝑚
−I
𝑚
]

Γ̆
𝑘
= diag {𝑝

𝑘,1
(1 − 𝑝

𝑘,1
) , 𝑝
𝑘,2

(1 − 𝑝
𝑘,2

) , . . . ,

𝑝
𝑘,𝑚

(1 − 𝑝
𝑘,𝑚

)}

(42)

with initial value Ξ̃
0
= diag{U

0
, 0}, then Ξ

𝑘
≤ Ξ̃
𝑘
for 0 ≤ 𝑘 ≤

𝑁.

Proof. According to Lemma 4, we have

𝐸 [Υ̃
𝑘
k
𝑘
k𝑇
𝑘
Υ̃

𝑇

𝑘
] = Γ̆
𝑘
∘ (HR

𝑘
H𝑇)

𝐸 [Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)X
𝑘
X𝑇
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)
𝑇

Υ̃

𝑇

𝑘
]

= Γ̆
𝑘
∘ {H [(C

𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)Ξ
11,𝑘

× (C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)
𝑇

]H𝑇} .

(43)
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Since the assumptions in (40) hold, using Lemma 3, we
can get

Ξ
𝑘+1

≤ Â
𝑘
(Ξ
−1

𝑘
− 𝜆
1
Ê𝑇
1,𝑘
Ê
1,𝑘

)
−1

Â𝑇
𝑘

+ 𝜆
−1

1
Ĥ
1,𝑘
Ĥ𝑇
1,𝑘

+ 𝜆
−1

2
Ĥ
2,𝑘
Ĥ𝑇
2,𝑘

+ B̂
𝑘
(W−1
𝑘

− 𝜆
2
ÊT
2,𝑘
Ê
2,𝑘

)
−1

B̂𝑇
𝑘

+ [
0 0
0 K
𝑜
(Φ
1,𝑘

+Φ
2,𝑘

)K𝑇
𝑜

] ,

(44)

where

Φ
1,𝑘

= Γ̆
𝑘
∘ {H [C

𝑘
(Ξ
−1

11,𝑘
− 𝜆
3
(E∗
1,𝑘

)
𝑇

E∗
1,𝑘

)

−1

C𝑇
𝑘

+ 𝜆
−1

3
H
2,𝑘
H𝑇
2,𝑘

]HT
}

Φ
2,𝑘

= Γ̆
𝑘
∘ (HR

𝑘
HT

) , H = [I
𝑚

−I
𝑚
]

Γ̆
𝑘
= diag {𝑝

𝑘,1
(1 − 𝑝

𝑘,1
) , 𝑝
𝑘,2

(1 − 𝑝
𝑘,2

) , . . . ,

𝑝
𝑘,𝑚

(1 − 𝑝
𝑘,𝑚

)} .

(45)

Then, when 𝑘 = 0, we have Ξ
0
= Ξ̃
0
= diag{U

0
, 0}.

When 𝑘 = 𝑛, suppose that Ξ
𝑛
≤ Ξ̃
𝑛
.

When 𝑘 = 𝑛 + 1, comparing (41) with (44), it is easy
to obtain that Ξ

𝑛+1
≤ Ξ̃
𝑛+1

. According to the mathematical
induction, the proof is complete.

Assume that Ξ
𝑘
= [I −I] Ξ̃

𝑘
[I −I]𝑇; then

𝐸 [(X
𝑘
− X̂
𝑘
) (X
𝑘
− X̂
𝑘
)
T
] ≤ Ξ
𝑘
. (46)

Therefore, for the upper bound Ξ
𝑘
, we need to choose

the filter parametersA
𝑜
andK

𝑜
to obtain an optimized upper

bound. In the next part, wewill find the value ofΞ
𝑘
anddesign

the finite-horizon robust Kalman filter tominimize the upper
bound.

3.3. Finite-Horizon Robust Kalman Filter Design. In order to
obtain a solution to the above question and design the robust
filter, the main result is presented in the following theorem.

Theorem 6. Assume that the positive scalars 𝜆
1
, 𝜆
2
, and 𝜆

3

fulfill the assumptions in (40); then the upper bound Ξ̃
𝑘
can be

expressed as

Ξ̃
𝑛
= [
Ξ̃
11,𝑛
Ξ̃
12,𝑛

Ξ̃

𝑇

12,𝑛
Ξ̃
22,𝑛

] = [
Ξ̃
11,𝑛
Ξ̃
22,𝑛

Ξ̃
22,𝑛
Ξ̃
22,𝑛

] , 𝑛 ∈ [0,𝑁] . (47)

If the filter parameters A
𝑜
and K

𝑜
can be written as

A
𝑜
= A
𝑘
+ (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)Ξ
𝑘
GT
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
GT
𝑘
)
−1

G
𝑘

(48)

K
𝑜
= A
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘
[Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)

× Υ
T
𝑘
+Φ
1,𝑘

+Φ
2,𝑘

]

−1

,

(49)

where

E𝑇
1,𝑘
E
1,𝑘

+ (E∗
1,𝑘

)
𝑇

E∗
1,𝑘

= G𝑇
𝑘
G
𝑘
, (50)

S
𝑘
= Ξ
𝑘
+ Ξ
𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
Ξ
𝑘
, (51)

then tr(Ξ
𝑘
) is minimized. So, the state covariance can be

obtained as

Ξ̃
11,𝑘+1

= A
𝑘
(Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ̃
11,𝑘

G𝑇
𝑘
)
−1

× G
𝑘
Ξ̃
11,𝑘

)A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
ET
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

(52)

and the estimation error covariance can be given as

Ξ
𝑘+1

= A
𝑘
S
𝑘
A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘
− A
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘

× [Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+Φ
1,𝑘

+Φ
2,𝑘

]

−1

Υ
𝑘
C
𝑘
S𝑇
𝑘
A𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

.

(53)

Proof. when 𝑛 = 0, we have Ξ̃
0
= [
Ξ̃
11,0
Ξ̃
22,0

Ξ̃
22,0
Ξ̃
22,0

] = [
U
0
0

0 0 ]. When
𝑛 = 𝑘, assume that (47) is valid. When 𝑛 = 𝑘 + 1, we will
prove that (47) is still valid. From (47), suppose that the upper
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bound Ξ̃
𝑘+1

can be partitioned as [ Ξ̃11,𝑘+1 Ξ̃12,𝑘+1
Ξ̃
𝑇

12,𝑘+1
Ξ̃
22,𝑘+1

]. According to

the definitions of (50), inserting Ξ̃
𝑘
into (41), we have

Ξ̃
11,𝑘+1

= A
𝑘
Ξ̃
11𝑐,𝑘

A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

,

(54)

Ξ̃
12,𝑘+1

= A
𝑘
Ξ̃
11𝑐,𝑘

(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ A
𝑘
Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

,

(55)

Ξ̃
22,𝑘+1

= K
𝑜
Υ
𝑘
C
𝑘
Ξ̃
11𝑐,𝑘

(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
𝑇

12𝑐,𝑘
(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
) Υ
𝑇

𝑘

+Φ
1,𝑘

+Φ
2,𝑘

]K𝑇
𝑜
,

(56)

where

M
𝑘
= G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ̃
11,𝑘

G𝑇
𝑘
)
−1

G
𝑘
,

Ξ̃
11𝑐,𝑘

= Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

M
𝑘
Ξ̃
11,𝑘

,

Ξ̃
12𝑐,𝑘

= Ξ̃
12,𝑘

+ Ξ̃
11,𝑘

M
𝑘
Ξ̃
12,𝑘

,

Ξ̃
22𝑐,𝑘

= Ξ̃
22,𝑘

+ Ξ̃
𝑇

12,𝑘
M
𝑘
Ξ̃
12,𝑘

,

S
𝑘
= Ξ̃
11𝑐,𝑘

− Ξ̃
12𝑐,𝑘
Ξ̃

−1

22𝑐,𝑘
Ξ̃

𝑇

12𝑐,𝑘
.

(57)

Due to the fact that Ξ
𝑘
= [I −I] Ξ̃

𝑘
[I −I]𝑇, using (54)–

(56), the required upper bound Ξ
𝑘+1

can be calculated as

Ξ
𝑘+1

= Ξ̃
11,𝑘+1

− Ξ̃
12,𝑘+1

− Ξ̃
𝑇

12,𝑘+1
+ Ξ̃
22,𝑘+1

= (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
11𝑐,𝑘

(A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

− (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

− (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
𝑇

12𝑐,𝑘
(A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

+ K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+ Φ
1,𝑘

+Φ
2,𝑘

]K𝑇
𝑜
.

(58)

Computing the first-order variation of (58) with respect
to A
𝑜
and K

𝑜
and making them equal to zero, we have

𝜕 tr (Ξ
𝑘+1

)

𝜕A
𝑜

= − 2 (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

+ 2 (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

= 0,

(59)

𝜕 tr (Ξ
𝑘+1

)

𝜕K
𝑜

= − 2 (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
11𝑐,𝑘

C𝑇
𝑘
Υ

𝑇

𝑘

+ 2A
𝑘
Ξ̃
12𝑐,𝑘

C𝑇
𝑘
Υ

𝑇

𝑘
+ 2A
𝑜
Ξ̃

𝑇

12𝑐,𝑘
C𝑇
𝑘
Υ

𝑇

𝑘

− 2K
𝑜
[Υ
𝑘
C
𝑘
(Ξ̃
12𝑐,𝑘

+ Ξ̃
𝑇

12𝑐,𝑘
)C𝑇
𝑘
Υ

𝑇

𝑘
]

− 2 (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

C𝑇
𝑘
Υ

𝑇

𝑘

+ 2K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ

T
𝑘

+Φ
1,𝑘

+Φ
2,𝑘

] = 0.

(60)

According to (59) and (60), the optimal parameters
A
𝑜
and K

𝑜
to minimize the required upper bound can be

calculated by

A
𝑜
= A
𝑘
+ (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) (Ξ̃
12𝑐,𝑘
Ξ̃

−1

22𝑐,𝑘
− I) , (61)

K
𝑜
= A
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘
[Υ
𝑘
C
𝑘
S
𝑘
CT
𝑘
Υ

𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)

×Υ
𝑇

𝑘
+Φ
1,𝑘

+Φ
2,𝑘

]

−1

.

(62)

Then, substituting (61) and (62) into (55) and (56), we can
obtain

Ξ̃
12,𝑘+1

= Ξ̃
𝑇

12,𝑘+1
= Ξ̃
22,𝑘+1

= A
𝑘
Ξ̃
12𝑐,𝑘
Ξ̃

−1

22𝑐,𝑘
Ξ̃

𝑇

12𝑐,𝑘
A𝑇
𝑘
+ A
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘

× [Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ

𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+ Φ
1,𝑘

+Φ
2,𝑘

]

−1

Υ
𝑘
C
𝑘
S𝑇
𝑘
A𝑇
𝑘
.

(63)

Thus, when 𝑛 = 𝑘 + 1, (47) is still valid. We can deduce
that (50) is valid, for 𝑛 ∈ [0,𝑁]. From (47), we can know that
Ξ
𝑘
= Ξ̃
11,𝑘

− Ξ̃
22,𝑘

. Utilizing (57), we have

Ξ̃
12𝑐,𝑘
Ξ̃

−1

22𝑐,𝑘
− I = Ξ

𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
, (64)

S
𝑘
= Ξ̃
11𝑐,𝑘

− Ξ̃
12𝑐,𝑘
Ξ̃

−1

22𝑐,𝑘
Ξ̃

𝑇

12𝑐,𝑘

= Ξ
𝑘
+ Ξ
𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
Ξ
𝑘
.

(65)

Substituting (64) into (61), (48) can be given. Fur-
thermore, using (59), the required upper bound Ξ

𝑘+1
can
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be rewritten as (56). Therefore, the theorem has been
proved.

Based on the above theorems, the finite-horizon robust
Kalman filter can be summarized as follows.

Step 1. The initial values can be given as X̂
0
= [x𝑇
0

0]
𝑇

and
Ξ
0
= U
0
.

Step 2. In the presence of uncertainties and sensor delays, the
parameters of the filter can be calculated by (48) and (49).

Step 3. According to (30) and (53), the state estimation X̂
𝑘

and the filtering error covariance Ξ
𝑘
can be obtained.

Remark 7. The finite-horizon robust Kalman filter design
is accomplished by using Theorems 5 and 6 for uncertain
attitude estimation system with star sensor delays. Different
from the most existing attitude estimation filtering algo-
rithms, the finite-horizon robust Kalman filter presented in
this paper has the advantage to consider the misalignment
errors and scale factor errors of gyros and measurement
delays of star sensors for attitude estimation system.Note that
these phenomena of the misalignment errors of gyro and star
sensor and star sensor measurement delays are often encoun-
tered in real attitude estimation systems. To compensate the
misalignment errors of sensor and star sensor measurement
delays, we have designed a finite-horizon robust Kalman filter
by finding the upper bound of the estimation error covariance
and minimizing the upper bound. It is worth mentioning
that, due to the presence of the star sensor measurement
delays, the upper bound of the estimation error covariance
in (35) and the filter parameters A

𝑜
and K

𝑜
in (48) and

(49) distinguished our work from the counterpart in [15, 16].
In addition, this paper talks about the filter problem with
only one type of noise disturbance. The filter problem with
multiple disturbances can be considered to achieve more
practical oriented results, as discussed in [28, 29], which will
be one of our future research topics.

4. Simulations and Analysis

4.1. Simulation Conditions. The simulation utilizes the data
from a satellite. The initial orbit elements of the satellite are
set as follows: the semimajor axis 𝑎 = 7.087457 × 10

3 km, the
eccentricity 𝑒 = 1.99 × 10

−3, the inclination 𝑖 = 98.153
∘, the

ascending node longitude Ω = −30.534
∘, and the argument

of perigee 𝜔
∗

= −0.133
∘. Numerical simulation gives the

measurement data of gyro. The standard deviation of gyros’
measurement noise is 𝜎V = 1.45444 × 10

−6 rad/s1/2; the
standard deviation of gyros’ drift noise is 𝜎

𝑢
= 1.3036 ×

10
−9 rad/s3/2; the gyro sampling interval is Δ𝑡 = 0.25 s;

the components of the gyro scale factor error vector are
chosen randomly at the interval [−6 × 10

−6

, 6 × 10
−6

]; the
misalignment error of gyro is chosen randomly at the interval
[−3 × 10

−6

, 3 × 10
−6

]; three star sensors are used and the
standard deviation of star sensors’ measurement noise is all
𝜎
𝑠

= 18
󸀠󸀠. The misalignment error of star sensor is set to

[−5
󸀠󸀠

, 5
󸀠󸀠

]. Three star sensors have different delay rates, so the
random variables 𝜇

𝑘,𝑖
(i = 1, 2, . . . , 9) satisfy the Bernoulli

distribution with

Γ
𝑘
= diag {0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05} . (66)

The initial attitude quaternion of the system is taken as
q
0

= [0 0 0 1]
𝑇; the gyros’ initial bias is set as 𝛽 =

[0. 1 0.1 0.1]
𝑇
∘

/ℎ; all the filters are initialized with no
attitude errors and zero bias estimate; the initial attitude
error covariance is set at 0.1∘ for the quaternion components
and 0.2

∘ for the bias components. In order to complete the
robust filter design and ensure the estimation precision, the
parameters 𝜆

1
, 𝜆
2
, and 𝜆

3
are set to satisfy the condition (40).

4.2. Simulation Results. To validate the effectiveness of the
proposed robust filter for controlling themeasurement errors
of gyros and star sensors and star sensor delays, the proposed
approach (FRKF) is compared with the traditional Kalman
filter (KF) and the robust Kalman filter (RKF) in the literature
[15]. For a fair comparison, the root-mean square error
(RMSE) and accumulative RMSE (ARMSE) [30, 31] of the
attitude are employed to describe the quality of the attitude
estimation. Monte-Carlo simulation runs are set as 𝑁MC =

50, and the RMSE of attitude angles can be defined by

RMSEatt (𝑘) = √
1

𝑁MC

𝑁MC

∑

𝑖=1

󵄩󵄩󵄩󵄩ae𝑖(𝑘)
󵄩󵄩󵄩󵄩

2

, (67)

where ae
𝑖
(𝑘) expresses the attitude estimation error vector at

the 𝑖th Monte-Carlo run. Then, the ARMSE of the attitude is
defined by

AMSEatt = √
1

𝑁

𝑁

∑

𝑖=1

RMSE2att (𝑘), (68)

where𝑁 denotes the simulation time. The simulation results
are shown in Figures 2–4.

From Figures 2 and 3, it is obvious to be seen that the
FRKFperformsmuch better than theRKF andKF, and theKF
performs the worst. This is because the traditional KF is not
suitable for handling the model uncertainties in the system
model and star sensor delays. However, the RKF compensates
the measurement errors of gyros and star sensors, whose
precisions are better than the KF. But the RKF cannot control
the effect of the star sensor delays. Compared with the RKF,
the FRKFhas higher estimation precision that the RKF,which
indicates that the FRKF not only deals with the measurement
errors of gyros and star sensors but also cope with the star
sensor delays.

For the sake of accounting for the effect of star sensor
delays, three star sensors are assumed to have the same delay
rate, such as 𝑝

𝑘,𝑖
(𝑖 = 1, 2, . . . , 𝑚) = 𝑝. Figure 4 shows the

ARMSE of the attitude angles from three filters when 𝑝 =

0, 0.1, 0.2, . . . , 1.0. From Figure 4, it can be seen that if there
are no star sensor delays, that is, 𝑝 = 0, the FRKF is equal
to the RKF. Meanwhile, it is apparent that the KF and RKF
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Figure 2: Attitude estimation errors.
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Figure 3: RMSE of the attitude angles.

increase faster than the FRKF as the delay probability 𝑝 is
greater, which illustrates the efficiency of the FRKF to control
the star sensor delays.

5. Conclusion

By the fact that the misalignment errors and scale factor
errors of gyros and the misalignment errors of star sensors
are difficult to be removed entirely by the attitude estimation
filter calibration, these measurement errors of sensors are
assumed as the norm-bounded uncertainties in the attitude
estimation model. At the same time, due to the complicated
signal processing of star sensors, the star sensor delay is
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Figure 4: ARMSE of the attitude angles.

one of the most important problems for attitude estimation
system. Therefore, a finite-horizon robust Kalman filter for
the uncertain attitude estimation system with star sensor
delays is proposed in this paper. The uncertain attitude
estimation model with star sensor delays is constructed, and
the finite-horizon robust Kalman filter design is developed.
Finally, the applicability and effectiveness of the proposed
filter have been demonstrated by the simulation.
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