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We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM) that is based on the
homotopy perturbation method (HPM) and the usage of time subintervals to find the approximate solution of differential equations
with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control
parameter /i by following the homotopy analysis method (HAM). At the end of the paper, we compare the derived EMHPM
approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by
using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

1. Introduction

With the recent progress in nonlinear problems research,
there has been an increasing interest in analytical techniques
to solve the corresponding nonlinear equations. However,
most of the current methods based their solution method-
ology on the assumption of small nonlinearities that limit its
potential usage in the solution of physical and engineering
applications.

Recent applications of some asymptotic methods such
as the variational iteration, the homotopy perturbation, the
energy balance, the parameter-expansion, the variational
approach, the improved amplitude frequency formulation,
the max-min approach, the Hamiltonian approach, and the
homotopy analysis, to name a few, have been used to obtain
approximate solutions of highly nonlinear problems in which
the traditional perturbation methods have some limitations
[1,2].

To obtain approximate analytical solutions of strongly
nonlinear differential equations by using the homotopy
approach, the methods of homotopy perturbation, homotopy
analysis, Adomian decomposition (ADM), and the varia-
tional iteration (VIM) are commonly used in the literature.

The ADM is an iterative method which provides analytical
approximate solutions in the form of an infinite power series
for nonlinear equations without linearization [3]. The HPM
developed by He [4-6] is not limited by the assumption of
small nonlinearities. The HPM is an effective method that
has several applications in science and engineering to find
approximate solutions of nonlinear differential equations.
The HPM couples the traditional perturbation method and
homotopy theory used in topology and assumes a simple
initial analytical solution that gradually approximates to the
solution of the differential equation through a parameter
that converges to unity. The HPM decomposes a complex
problem into a series of simple problems that simplifies
the derivation of the approximate solutions. Therefore, the
usage of the homotopy theory has been effective in deriving
the approximate solutions of different types of problems,
including nonlinear second order differential equations [7,
8] or nonlinear fractional equations [9] that model the
behavior of physical and engineering systems. Hojjati and
Jafari compared the HPM and the ADM to obtain the
distributions of stresses and displacements in a rotating
annular elastic disk [10]. They have concluded that, although
the numerical results are almost the same, the HPM is much
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easier, more convenient and efficient than the ADM and the
VIM. Abbasbandy in [11] concluded that one advantage of the
HPM when compared to the ADM is related to its capability
of achieving the approximate solution of the quadratic Riccati
differential equation by considering all the Taylor expansion
series terms. These results were also confirmed by Pamuk in
(12].

The HPM is an asymptotic method with limited conver-
gence away from the equation initial conditions [13, 14]. In
order to overcome this weakness, the HPM must be applied
by intervals. For instance, Abbasbandy used this approach in
solving the Riccati equation [15]. A more formal approach
was developed by Hashim and Chowdhury to solve a system
of first order differential equations through multiple intervals.
They used this approach, called the multistage homotopy
perturbation method (MHPM)), to solve nonlinear ordinary
differential equations with numerical predictions that follow
well the corresponding numerical integration solutions [16,
17]. Based on the MHPM, Gokdogan and Merdan derived
an approximate solution for the Coullet nonlinear differential
equation with numerical simulations that agree well with the
Runge-Kutta numerical integration method [18]. Wang and
Yu extended the usage of the MHPM to obtain the approx-
imate numeric-analytic solutions not only of the chaotic
fractional order Chen system, but also of the hyperchaotic
fractional order Lorenz system with numerical simulations
that exhibit good accuracy at long time spans [19].

Based on the findings of these previous research works,
the aim of this work focuses on developing a semi-numerical-
analytic technique that generalizes the MHPM in an attempt
to obtain accurate approximate solutions of nonlinear differ-
ential equations. To assess the accuracy of this new approach,
its numerical predictions will be compared with respect to
those of the MHPM techniques introduced in [20, 21]. At the
end of the paper, we will derive the approximate solutions
of some nonlinear differential equations and compare their
numerical predictions with respect to their corresponding
numerical integration solutions obtained by using the fourth
order Runge-Kutta method.

2. Description of the Homotopy
Perturbation Method

In order to illustrate the basic idea behind the HPM, let us
consider the following nonlinear differential equation:

Aw) - f(r)=0, reqQ, 1)

that has the following boundary condition:

ou
Blu, — | =0,
(u an>

where A is a differential operator, B is a boundary operator,
f(r) is a known analytic function, and I is the boundary in
domain Q.

The A operator can be divided into two parts: L and
N, where L represents the linear terms while N is related

rel, (2)
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to nonlinear terms. Equation (1) can therefore be written as
follows:

L(u)+N(u) - f(r)=0. (3)

Applying the principles of topology, the following homotopy
is established: v(r, p) : Q x [0,1] — R, satistying the
following conditions:

H(v,p)=L()—L(uy) + pL(uy) + p[N(v) - f(r)] =0,
(4)

where p € [0,1] is an embedding parameter and u, is
the initial approximation to (1) that satisfies the boundary
condition. It is evident from (4) that setting p from zero to
unity makes v(r, p) change from uy(r) to u(r), that is, by
letting

H(»,0)=L()-L(uy) =0
5
Hw1)=A) - f(r)=0. ©

In topology, this is called deformation and, in the same
context, L(v) — L(u,) and A(v) — f(r) are called homotopic.
He in [4] assumed that the solution of (4) can be expressed
with a series of p power terms of the form

V=V py Py e (6)

Thus, by considering p = 1, the approximate solution of (1)
yields

u=lim =vy+v,+v, +---.
p—1 0 1 2 (7)

In order to test the precision achieved with the election of the
linear operator, we proceed to analyze the following nonlinear
equation [20]:

)'/—y+ety2:0 y(0) =¢, (8)

where y is the independent variable, ¢ is the running time, and
¢ is a constant. First, the homotopy for (8) is established by
following the standard homotopy methodology that requires
the selection of an operator whose solution is unstable, such
as L(y) = y — y, and therefore, N(y) = e'y*. Thus, the
homotopic representation of (8) is given as

H(p,Y)=L(Y)~L(y)+pL(yy) +pN(Y)=0,
¥, (1) =c.

€)

By substituting the second order expansion Y = Y, + pY, +
p*Y, into (9) and by grouping the terms with the same p
order, we obtain the following set of equations:

Pl Y, -Y,=0 Y,(0)=c
Py, -Y, == Y, (0)=0 (10)

Py, -V, = (" -€") v,(0=0
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whose solutions are given by

Y, = ce

y =1 2( t 3t)

1= 2C e e (11)
1 1 1

Y, = c3<—et —& 4 e5t>.
4 2 4

The approximate solution of (8), given by (11), corresponds to
the second order solution in [20] when ¢ = 1.

2.1. 'The Enhanced Homotopy Perturbation Method. Hosein
Nia et al. proposed to modify the HPM by introducing
a stable linear operator. This modified method was called
the enhanced homotopy perturbation method. By using the
EHPM, (8) is rewritten by considering a stable linear operator
of the form L(y) = y + y, while the nonlinear operator is
defined as N(y) = e'y* — 2y. These operator definitions
provide the following expression:

y+y+ey’-2y=0 y(0)=c (12)

In this case, the homotopic representation of (12) is similar to
that given by (9). By following the previous procedure and by
regrouping the terms with the same p order, we obtain that

Pl Y, +Y, =0 Y,(0)=c
PV +Y;=(2c-c%) e Y, (0)=0 (13)
priYy+Y, = (4c—6c +28%)te" Y,(0)=0
Integration of (13) provides the following expressions:
Y, () = ce’’
Y, (6) = (2c-*)te” (14)
Y, (t) = (2c -3¢ + c3) e

Notice that the second order solution of (14) agrees well with
the solutions obtained in [20] when ¢ = 1.

2.2. Representation of the HPM by Using Taylor Series. In
order to improve the convergence of the HPM, Odibat
proposed the expansion of the independent variable by using
Taylor series [21]. Thus, (8) can be written as

) o0 tn
yoy+ Yoy =0 yO)=c (15)
n=0"""

By using the linear operator L(y,) = (d/dt) y,, the homotopic
representation of (15) can be expressed as

. 2 Lt
H(pY) =Y =Jo+pyo=—pY+ Y p™'—Y" ()
n=0 :

In order to get the first approximation of Y;, = ¢, the term
P! has to be included in (16). Substituting the third order

3
2
2osl
=
L
g 1
2
TVJ’: 0
A .5
0 o
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Time, t
--- He—y, --= Odibat—y,

Hosein Nia et al.—y, —— Numerical—ode45

FIGURE 1: Comparison between the ode45 Runge-Kutta algorithm
with respect to some homotopy perturbation approximate solutions
of (8).

expansion of (15) into (16) and by regrouping the terms with
the same p order, we get that

P’ Yy —5,=0, Y,(0)=c

plY, Y, +Y,> =0, Y, (0)=0

prY, =Y, +2Y,Y, +tY,° =0, Y,(0)=0

3 o2

p ZY3—Y2+Et YO +2tYOY1 (17)
+2Y,Y, +Y, =0, Y;(0)=0

. 1
P Y, - Y, + gt3Y02 + 7YY, + 2tY,Y,

+1Y,% +2Y,Y, +2Y,Y, =0, Y,(0)=0

Thus, the fourth order solution of (8) can be obtained by
integrating (17); this yields

Yy=c
Y= (e-&)t
Y, = <c3—2c + c)t2
(18)
1\.3
Y3=<c+3c— =+ c)t
6
29 5 1
Y, = <c —4ct+ 20 - c2+—c>t4.
6 3 24

Figure 1 illustrates the approximate solutions of (8) obtained
by using the EHPM and the HPM solutions derived, respec-
tively, by He and Odibat. Notice from Figurel that the
solution obtained by using Hosein Nia et al. approach tends
to follow the Runge-Kutta numerical integration solution
provided by the MATLAB function ode45, while the He and
the Odibat solutions tend to diverge at increasing values of
t. However if we solve (8) by using the MHPM proposed
by Hashim and Chowdhury [16], the solutions given by (11),
(14), and (18) do not converge to the exact numerical solution
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FIGURE 2: Numerical comparisons between the Runge-Kutta method (ode45) and the numerical predictions provided by the approximate

solutions of (8) derived by using the MHPM approach. Here At = 0.1.

because of the selection of the form of the linear operator that
does not guarantee the convergence of the MHPM solution.
A similar conclusion can be drawn by using the Taylor series
to expand the terms of the independent variable (Odibat).
Details of the computation algorithms used to obtain the
numerical predictions illustrated in Figure 2 are provided in
Algorithm 1.

3. Description of the Enhanced Multistage
Homotopy Perturbation Method

The proposed enhanced multistage homotopy perturbation
method (EMHPM) is an algorithm that utilizes the HPM
solution in time subintervals, based on the following trans-
formation: u(t) — u;(T), where ;(T) is the approximate
solution of the ith subinterval that satisfies the initial solution
1;(0) = u;_1(t,_;). The new time shifted variable T satisfies the
following condition: 0 < T' < t;—t;_;. Also, we assume that the
proposed solution can be given by u;, = u,_, (t;_,), where t;_,
represents the time at the end of the previous interval. This
implies that the final value of the approximate solution in a
given subinterval represents the initial condition of the next
subinterval.

In order to establish a homotopy algorithm that will allow
us to obtain approximate solutions of nonlinear differential
equations, we next assume the following.

(1) The linear operator L(u;) can be chosen as L(i;) =
(d/dT)u;, where the proposed initial solution u;,(T)
is equal to the initial condition u;_,(t,_;); that is,
u;o(T) = u;_,(t;_;). For simplicity in the notation, we
write u;_; = u;_1(t;_1).

(2) Since the homotopy is defined in the ith subinterval,
the following relation holds: T = t —¢t;_,, which satis-
fies the condition 0 < T' < (t;,—t;_,), where t represents
the current time. Therefore, the approximation of kth

order can be obtained by integrating with respect to
T, while the terms related to the independent variable
t are assumed constant in the ith subinterval.

Therefore, the approximate solution of order m for the
differential equation can be written as

m

w (Touy) = ZUik (Touy)
k=0

(19)

Note that the solution wu; (T,u;_;) is valid only in the ith
subinterval (t;_,, t;]. In order to obtain the solution u(t) in the
ith subinterval, we consider that the relation

u(t) =u;(t—t_) (20)
holds. Therefore, the approximate solution of u at the time ¢;
is given by

(= tiy)] ey, = it (L= 1)1y, = 40 (0) =1 (21)
In summary, each solution u(t) for a given subinterval (¢, t;)
is in turn divided into j subintervals, which do not neces-
sarily have to be equally spaced: [ty, 1], [t}, £,],. .., [tj_1, 8]
Finally, the approximate solution for u(t) is obtained by
coupling the solutions u;(t).

3.1. Solution Based on the EMHPM. In order to demonstrate
the effectiveness of the proposed EMHPM, we next derive
the approximate solution of (8). Notice that, in this case,
the homotopic representation of (8) is given by (9), together
with the linear operator L(y;) = (d/dT)y; and the nonlinear
operator N(y;) = e'y? — y,. Utilizing the third order
expansion, we can write the set of first order linear equations
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function revision_ Hosein_paper

%% Inputs

tspan=[0,10]; % time span

x0=1; % initial condition

Delta_t=10; % Delta time (equal to tspan for no multistage)

points=100; % number of points to evaluate each Delta time

%% Application of the EMHPM algorithm to the proposed solutions

[t1, z1]=Semhpm(@he_stable,tspan,x0,Delta t,points); % EMHPM by He’s solution
[t2, z2]=Semhpm(@hn_unstable,tspan,x0,Delta t,points); % EMHPM by Hosein Nia'’s solution
[t3, z3]=Semhpm(@od_taylor,tspan,x0,Delta_t,points); % EMHPM by Odibat’s solution
[t4, z4]=ode45(@numeric,tspan,x0); % numerical ode45 solution

%% Display computer plots

plot(tl,z1,--",t2,22,”:7,t3,23,’-.7,t4,24,’-);

legend(CHe - \ity.2’,’Hosein Nia et al. - \ity.2’,’0dibat - \ity_4’, 'Numerical - ode45’);
ylabel(Displacement, \itx’);xlabel(Time, t’); axis([0 10 0 2])

%% Solution Definitions

function dydt=numeric(t,y) % numerical solution

dydt (1,1)=y(1)-exp(t).*y(1)A2;

function y=he_stable(t,x0,T) % homotopy/multistage unstable, He’s solution
yO0=x0xexp(t);

y1=.5%x0A2% (exp(t)-exp(3%*t));

y2=.25%x0A3* (exp(t)-2+exp(3xt)+exp(5xt));

y=yO+yl+y2;

function y=hn unstable(t,x0,T) % homotopy/multistage stable, Hosein Nia's solution
y0=x0#exp(-t);

y1=(2%x0-x0N2) *t . xexp(-t);

y2=(2%x0-3%x0A2+x0A3) . *t . A2. *exp(-t) ;

y=y0+yl+y2;

function y=od_taylor(t,c,T) % homotopy/multistage Taylor Expansion, Odibat’s solution
yO=c;

y1=(c-c.A2) *t;

y2=(c.A3-2%Cc.A2+c/2) *t . A2;

y3=(-c.A4+3%c.A3-13%c.N\2/6+c/6) xt.A3;
y4=(c.Ab=4xc.N4+29%Cc.N3/6-5*Cc.N2/3+c/24) *t . \4;

y=yO+yl+y2+y3+y4;

%% Enhanced Multistage Homotopy Perturbation Method
function [t,z]=Semhpm(nde,tspan,z0,Deltat,pnts)
tini=tspan(l); tfin=tspan(end); tstart=tini;
tini=tini-tstart; tfin=tfin-tstart;
if tini == tfin
error CThe last entry in tspan must be different from the first entry.’);
elseif abs(tini)> abs(tfin)
tspan=flipud(fliplr(tspan)); tini=tspan(l); tfin=tspan(end);
end
tdir=sign(tfin-tini);
if any( tdirxdiff(tspan) <= 0 )
error CThe entries in tspan must strictly increase or decrease.’);
end
incT=Deltat/pnts;
z(1,:)=2z0"; t(1)=tini;
iteT=2;
t(iteT)=tini+incT*tdir; % real time

ALGorITHM 1: Continued.
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temp=tsub(iteT-1);

break ) last subinterval
else
iteT=iteT+1;

end
end
t=t’+tstart;

while tdirxt(iteT)<tdirx (tfin+tdir*incT)
P_act=ceil(.99999x (t(iteT)-tini)*tdir/Deltat); ’ next subinterval
c=z((Deltat/incT)*(P_act-1)+1,:); % initial conditions
tsub(iteT-1)=t (iteT)-(P_act-1)*Deltat*tdir; % shifted time

z(iteT,:)=nde(temp,c,tstart+t(iteT)); % evaluate the solution
if tdirxt(iteT)>=tdir*tfin*0.99999

t(iteT)=tini+(iteT-1) *incT*tdir; % next subinterval

ALGORITHM 1: The EMHPM MATLAB code.

that result from regrouping terms that correspond to the same
p order

P01Yi0:0 Y (0) =c¢

Plz Y, =Y, _etYio2 Y, (0)=0

) . (22)
P Y =Yy —2eY,Y,; Y, (0)=0
3.y 2
P Y :Yiz_et(ZYiOYiz"'Yil ) Y35 (0) = 0.
By solving (22), we get that
Yo =
Y, =cT - e
1
Y, = ECTZ (262€2t —3ce’ + 1) (23)

1
Y= - gcT3 (6c3e3t —12¢%e* + 7ce’ - 1).

Note that the solutions given by (23) can be generalized in a
recursive expression of the form

k-1
T
Yy = % (Yi(k—l) - Z Yin, Yi(k—l—nl)>’ (24)
n,=0

where k is an integer number that is bigger than zero.

Figure 3 shows the comparison between the approximate
solution of (8) obtained by using the EMHPM (utilizing the
third approximation y; and time subintervals of the same size
At = 0.1) and its Runge-Kutta numerical integration solution
(0ode45). We can notice from Figure 3 that now the third order
EMHPM approximate solution converges to the numerical
integration solution (ode45).

Before we examine the application of the EMHPM to
derive approximate solutions of nonlinear differential equa-
tion, we will next address some convergence issues related to
our proposed approach.

3.2. Convergence of the EMHPM. Recently Turkyilmazoglu
introduced a convergence scheme for the homotopy series

Displacement, x
c o o o
o vk o » —

o
(=)
(&)
—
—
(&3]
o
N
&3]
w
w
&3]
Iy
s
w
w

—— Numerical—ode45
-~ EMHPM y,

F1GURE 3: Comparison of the ode45 and the EMHPM numerical
integration solutions.

[22]. He showed that the value of the convergence control
parameter h has strong influence on the accuracy of the
solutions obtained from the homotopy analysis method
(HAM). Also, Turkyilmazoglu showed that the constant #-
curves approach developed by Liao and Sherif [23] is equiv-
alent to his convergence approach. To prove his findings,
Turkyilmazoglu studied the convergence of the solution of
several equations by applying the HAM and he discussed
some of the convergence limitations of the HPM solutions
based on the value of the control parameter h. By following
Turkyilmazoglu results, we next study the convergence of our
proposed EMHPM approach by obtaining the approximate
solutions of some nonlinear differential equations and prove
that our EMHPM approximate solutions converge to the
Runge-Kutta numerical integration solutions and to the solu-
tions derived by using the enhanced multistage homotopy
analysis method (EMHAM).

First, we focus on the solution of (8) by using our
proposed EMHPM approach, to get that

H(pvh) = (1-p) Y- 3]

- ph %YiﬂftYiz—Yi =0, yM)=c

(25)
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Utilizing the third order expansion of (25) yields
Yj=c
Y;, = cTh (—1 + ce‘)
2

Y, =ch (—1 + cet) (T +Th- TTh + cetT2h>
Y., = lch (—1 + cet) (26)

i3 2

x <2T +4Th+2Th* +2(-1+ 2ce') T*h
+2 (—1 + ZCet) K

+ (1 — 6ce’ + 66262t) Tshz) .

W | =

Notice that if we take the value of h = —1 in (26) then this
equation becomes similar to (23).

Figure 4 shows the absolute error between the numerical
solution obtained from the ode45 subroutine in MATLAB
and the solution obtained from the EMHAM as a function
of the convergent factor h. Notice from Figure 4 that the
minimum absolute error occurs at & = —1. Also, at this value
of the convergent control parameter h, the solutions provided
by the EMHPM and the EMHAM have the same absolute
error.

We next consider the second order nonlinear ordinary
differential equation used in [22] given as

u(0)=0, u(oco) =1 (27)

. 2
Qu+u—u =0,

which has an exact solution of the form

u(x) = % (—1 + 3 tanh [}1 (\/zx+4arctanh [%])]2)
(28)

Absolute error

k

Ficure 5: Influence of the subinterval size At and the k-order
solution.

with an exact homotopic solution (HAM) given as

u(x,p)= (—3+2p

1
+3tanh | — d
2 1+

+ 2arctanh

s}

2Z0))

(29)

x (2p) 7.

We next derive the approximate solutions of (27) by using
both the EMHPM and the EMHAM approaches and compute
its corresponding absolute error. Notice that the approximate
solution of (27) obtained by applying the EMHPM approach
provides the following expressions:

T
U = EUZk—l’
k=1 (30)
T
Uy = = Z UlnlUlk—nl—l “Uy >
2k o

where Uy is the amplitude and U, is the first derivate of k-
order. Figure 5 shows the influence of the subinterval size as
well as that of the k-order solutions obtained by the EMHPM
approach and its convergence to the exact solution. Notice
that the minimum relative error occurs at the subinterval
size of 0.1 with k = 7. That implies that the convergence
could be reaching by increasing the order solution and/or by
decreasing the subinterval size.

Figure 6 shows the predicted absolute error obtained by
comparing the EMHAM solutions with respect to the exact
solution, given by (28), as a function of the convergence factor
h by considering the subinterval size of At = 0.01 with
k = 7. We can see from Figure 6 that the absolute error has
a minimum value at & = —1. Thus, our proposed EMHPM
approach, which is a special case of the EMHAM at h = —1,
overlaps the exact solution given by (28).

To further evaluate the accuracy of our proposed
EMHPM approach, in the next section, we will derive the



0.005 |

Absolute error

0 N 1
-1.5 -14 -13 -12 -1.1 -1 -09 -0.8 -0.7 -0.6 -0.5
h

— lu®emuaam — ¥ analyicl
! !
— Nl (®Oemuam — # Oanayticl

FIGURE 6: Absolute error plotted against the control parameter h.

approximate solution of some nonlinear differential equa-
tions that arise in several engineering applications.

4. Approximate Solutions of Some Nonlinear
Ordinary Differential Equations

4.1. The Helmholtz-Duffing Equation. In this section, we will
explore the accuracy of the EMHPM approach when this is

[H (Zli’p)]

H(Zy, p)

_ [ . Zyj + 29+ pZyg — PZy; , \
Zoi + Zyi-1) + P2y + P (Dl +AZ;+ B2\ +eZy; )

In accordance with the EMHPM approach, the second order
expansion Zj; = Zyo + pZy, + p°Zy, + - -+ can be substituted
into (33), with the initial approximation given as zj;, =
2;;(0) = zy;_1y(t;_;) for I = 1,2. Then, by grouping the terms
with the same p order, we obtain the following set of linear
equations:

PO t Zyo =05 Zy;, (0) = ¢ = 235y (tiy)
Zaio = 0; Z, (0) = ¢ = 234y (1)
Pl t Zyiy = Zaig
(34)
. 2 3
Zoin = =Dy = A Zyjg = BiZyiy" — €2y
P2  Zyiy = Zogy
ZZiZ =-A1Zyy — 2B Zy;gZyi1 — 3"321i0221i1~
[Zlik]
Zoik
T k-1
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applied to obtain the approximate solution of the Helmholtz-
Duffing equation that has quadratic and cubic nonlinearities.
This equation is used to describe the nonlinear response of
some materials in mechanical engineering applications [24].
The differential equation for the Helmholtz-Dufling oscillator
is given as

5c'+A1x+B1x2+sx3+D1 =0,
€

x(0)=x5 x(0)=x%,=0,

where x is the system displacement, A, B;, D, and ¢ are
physical parameters, and x, and x, are the system initial
conditions. By introducing the following change of variables:
Z1; = X;, Z25; = X;, we can write (31) in state space form:

21 = 2y
i (32)
2= =Dy~ Az - Biz)” — €2y
We next write the homotopy representation of (32) as
(33)

=0.

By considering the initial conditions Z 5),(0) = 0, for k =
1,2,3,..., then we get that

Zip =G

Zsip = 6

Zin =T

Zyy=—-T (sc13 + Blcl2 + A+ Dl) (35)

1
Zin= — ETZ (sc13 + Blcl2 +A ¢+ Dl)

1
Lo = — ETZQ (3sc12 +2B¢ + Al).

Note that in (35) the terms Z; ,); can be written in the
following recursive form (for k > 0):

Zaitk-1) (36)

k-1 m

"k |-Digk) - A Zyig-1y — By Z Zin, Lri(k—1-n,) — € Z Z Zyin, Zritny-ny) Lritk-1-ny)

n,;=0

n,=0n;=0
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Here, the zeroth order approximation is equal to the initial
condition. It is important to note that g(k) is a step function
with value of unity for k = 1 and zero otherwise.

In order to evaluate the accuracy of the EMHPM
approach, the derived approximate solution of (31), which is
given by (36), is compared with respect to (a) the numerical
integration solution and (b) the exact solution of (31) which
was recently derived in [25]. We will next explore the
applicability of the EMHPM by considering two different sets
of system parameter values and use its computer algorithm
listed in Algorithm 1.

Case 1. In this case, we suppose that the system parameter
values are given as A; = -1.5,B; = 5,¢ = 1l,and D, =
—0.75 with the following initial conditions: x(0) = 1, x(0) =
0. Table 1 shows the absolute error values computed from
the EMHPM and the ode45 numerical integration solutions
compared with respect to those obtained from the exact
solution of (31) at different subinterval size values and m-
order solutions. Here the numerical solutions provided by
the ode45 subroutine were obtained by decreasing its error
tolerance to guarantee its convergence to the exact solution of
(31). Also Table 1 exhibits a comparison of the computational
time performance of the EMHPM approach with respect to
that of the numerical method ode45. As we can see from
Table 1, the EMHPM approach increases its precision with
higher order approximations which reduce the number of
subintervals.

Figure 7 shows that our derived EMHPM approximate
solution closely follows the exact solution of (31), while
the numerical solution ode45, with an error tolerance 1E-3,
experiences a shift in its period value as time increases. It
should be pointed out that the exact solution of (31) which
is based on an elliptic integral of the first kind provides a
constant period value through the asymmetrical behavior of
the system [25]. It is important to mention that the values of m
and At, in the EMHPM approach, should be carefully selected
to guarantee fast convergence, as showed in Table 1.

Case 2. In this case, we solve (31) by assuming the following
parameter values: A; = -1, B, = -1, ¢ = 0.01, and
D, = 0.25, with initial conditions x(0) = 0.209, x(0) = 0.
As we can see from Figure 8, the numerical solution ode45,
with an error tolerance equal to 1E-6, starts to deviate from
the exact solution as time increases. However, our EMHPM
approximate solution shows good agreement with the exact
solution of (31).

Next, we will use our EMHPM approach to obtain the
time-amplitude approximate solutions of an irrational non-
linear spring oscillator and of an elastomagnetic passive
suspension system.

4.2. Irrational Nonlinear Spring Oscillator. In nonlinear dyna-
mic systems, there are cases when the amplitude-frequency
response curves have jumps due to the nonlinearities of the
system. In the hard spring model with cubic nonlinearities,
the amplitude-frequency response curves exhibit more than
one possible dynamics response [26]. Here, we have found

9
o5t :
=
[
=)

[}
3
I
A
Time, t
— Exact
Numerical—ode45
--- EMHPM
FIGURE 7: Solution of (31) with At = 200 ms and m = 22.
150
®
2 100 |
i
&
g 50t
&
A 0
0 5 10 15 20 25 30 35 40
Time, t
— Exact
Numerical—ode45
--- EMHPM

FIGURE 8: Solution of (31) with At = 60 ms and m = 27.

the approximate solution of the irrational nonlinear oscillator
showed in Figure 9 by using the EMHPM approach. In this
oscillator, two helicoidal springs are attached to both sides
of a slider that moves in a perpendicular plane with respect
to the fixed side of the springs. This arrangement results in
an irrational nonlinear stiffness that depends on the slider
position. The motion for this system is described by the
following equation:

J+By+ 1—L y:EQZCOS(wt), (37)
1+ y? L
where y is the nondimensional slider position relative to
the initial undeformed spring length (y = x/L,), F is the
force magnitude, Q) is the driving frequency ratio (driving
frequency w relative to the natural frequency w,), and A
characterizes the spring amount of stretch.

To find the approximate solution of (37) by using the
EMHPM, we first write this (37) in state space form by
introducing the change of variables z;; = y;, z,; = ;. This
yields

21 = 2y

1 (38)

—_— | ;-
\1+2,2

Zy = FLQ2 cos (Qu,t) = Pzy; — | 1 -
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TaBLE 1: Computation time and absolute error comparisons.
EMHPM ode45
At m-order solution Absolute error Computation time (ms) Error tolerance Absolute error Computation time (ms)
0.05 7 0.1604 104 1E-3 83.9929 59
0.10 9 0.1321 74 1E-4 36.5743 72
0.15 16 0.1304 78 1E-5 1.7213 88
0.20 22 0.1874 98 1E-6 0.0499 107
0.025
) E 002l A
! . g 0.015 | .
Ly I M 8 o001} g =
S m,, B 0.005 | )
e, o | 7RI | Eoe |
IJ’ U7 0 0.5 1 15
( I_\ /_I ) Time (s)
ky
—— Numerical—ode45
--- EMHPM

FIGURE 9: Nonlinear spring oscillator, right: elastomagnetic passive
suspension.

We next find the homotopy representation of (38) and follow
the EMHPM approach to obtain the first order approximate
solution of (37):

i (1) = yiy + i T
J"i (T) = yi—l

+ | F,Q7 cos (Qu,t) — By,

A

,—1 s Yi-1

Figure 10 shows both the EMHPM approximate solution
(obtained by considering subintervals of the same size At =
0.01) and the numerical integration solution ode45 for the
system parameter values of § = 0.06, F;, = 0.06, Q = 1.1,
w, = 1.1 Hz, and A = 2. As we can see from Figure 10, both
solutions agree well for the time span showed.

-1 1- T.

4.3. Elastomagnetic Passive Suspension System. The dynamic
response of an elastomagnetic passive suspension system of
one degree of freedom that is showed in Figure 9 exhibits
nonlinear behavior [27]. This type of suspension system
has several engineering applications. In this system, the
suspended mass is attached to the base by a linear spring

FIGURE 10: Solution of the nonlinear spring oscillator with At =
10 ms.

device and is excited by a magnetic levitation force. The
corresponding equation of motion of the system is given by

mmE"'Cé"'kZ (£_ZO)+Fm+mmg:_mm)7’ (40)
where & = x — y is the relative position of the suspended
mass m,,, ¢ is the system damping coeflicient, k, is the spring
stiffness, [ is the unstretched length of the spring, g is the
gravity, and F,, represents the magnetic levitation force which
can be modeled by the following equation:

F,--— 22
SENGY N w

where the parameters A,, B,, and #n have the experimental
values of A, = 2.26 x 10> Nm’, B, = 18.8 mm, and n = 3.
The base is assumed to be excited by an oscillatory signal
given by the following equation: y = A; cos(Qt), where A,
is the maximum amplitude of motion. In order to obtain
the approximate solution of (40) by the EMHPM approach,
we first write (40) in state space form by introducing the
following change of variables: z,; = §; and z,; = fl Therefore,
(40) can be rewritten in equivalent forms as

2, = 2y
Zy; = A3Q2 cos(Qt) —g (42)
1 _
- (sz,- — Kz, + A,(z;+B,)) " + Klo) .
mm
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FIGURE 11: Solution of (40), At = 1 ms.

By considering the homotopy representation of (42) and by
following the EMHPM approach, the first order approximate
solution of (42) can be written as

&=&,+ éi—lT

é,- = éi—l - <A3Q2 cos(Qt) + g+ L
m

m

X [(EH + K&~ Ay (& + By) " - kzlo] T) .
(43)

To assess the accuracy of our EMHPM approximate solution
(43), we compare in Figurell the EMHPM approximate
solution with respect to the numerical integration solution
ode45, by considering the system parameter values of A; =
0.7mm, Q = 27 Hz, £0) = Om, £0) = Om/seg, m,, =
11.4kg, { = 100Ns/m, K = 2098N/m, [, = 19 mm, and
g = 9.81 m/s>. As we can see from Figure 11, once again,
the proposed EMHPM approximate solution shows excellent
agreement with the numerical integration solution for the
time span showed in Figure 11.

In all cases discussed here, we can use different system
parameter values and still show that the derived semi-
numerical-analytic technique that generalizes the MHPM
provides good results when compared to the numerical inte-
gration solution of the corresponding equations of motion.

5. Conclusions

In this work, we have modified the HPM and introduced a
new numerical-analytic approach that is based on a linear
operator defined as L(y;) = (d/dT)u; and time subintervals
that do not need to be equally spaced to solve strongly nonlin-
ear ordinary differential equations with variable coefficients.
To assess the convergence of this EMHPM approach, we have
used the convergence control parameter / value and derived
the approximate solutions of some nonlinear differential
equations to show that our EMHPM approach converges not
only to the numerical integration solutions, computed from
the classical Runge-Kutta fourth order algorithm (ode45),
but also to the corresponding exact analytical solutions.
Furthermore, we have proved that if the time interval and
the m-order approximation of our EMHPM approach are

1

properly chosen, then its computational time is less than the
time spent by the standard numerical integration solutions
provided by the ode45 MATLAB function, as showed in
Table 1. Future work includes the adaptation of EMHPM
for the solution of delay and fractional nonlinear differen-
tial equations which are common in several physical and
engineering applications. The results of this work will be
presented in future publications.
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