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This paper presents an implicit damping iterative algorithm to simultaneously solve equilibrium equations, yield function, and
plastic flow equations, without requiring an explicit expression of elastoplastic stiffness matrices and local iteration for “return
mapping” stresses to the yield surface. In addition, a damping factor is introduced to improve the stiffness matrix conformation
in the nonlinear iterative process. The incremental iterative scheme and whole amount iterative scheme are derived to solve the
dynamical and static and dynamical elastoplastic problems. To validate the proposed algorithms, computation procedures are
designed and the numerical tests are implemented. The computational results verify the correctness and reliability of the proposed
implicit iteration algorithms.

1. Introduction

The solution of the nonlinear problem using FEM eventually
boils down to solving discretized nonlinear equations. FEM
uses a series of modified linear approximate solutions to
approach the solution of a nonlinear problem based on
an iterative process. There are many methods available for
solving nonlinear equations [1, 2], which may be divided
into two categories: the direct iteration method and the
Newton-Raphson method, or simply Newton method. The
convergence rate of the direct iteration method is highly
dependent on the choice of initial values. For problems with
many degrees of freedom, instability may occur. In addition,
for problems related to deformation history, the application
of this method is quite limited. For these reasons, the
direct method is rarely used. The Newton-Raphson method
is probably the most popular method for solving nonlin-
ear equations, and extensive researches and investigations
have been performed. There are many derivatives of these
methods, including the modified Newton-Raphson method,
Quasi-Newton method, and incremental method (which can

be regarded as the incremental form of the Newton-Raphson
method). Researches on the Newton-Raphson method are
focused on two aspects, namely, the computational efficiency
and the stability of the solution. The Aitken acceleration
method [3] and linear-search method [4, 5] are used in
conjunction with Newton’s method to reduce the number
of computational iterations. Wempner [6] and Riks [7]
proposed the arc-length method, and Forde and Stiemer
[8], Müller [9], and others improved it. These improvements
made it possible to analyze and solve the ultimate load of
structure as well as the material weakening problems.

The elastoplastic problem is a typical nonlinear problem.
In the loading and unloading processes, elastoplastic materi-
als show different deformation characteristics: plastic hard-
ening or weakening when loading, but elastic deformation
when unloading. Two basic issues must be addressed for
solving elastoplastic problems using FEM, namely, the linear
scheme of nonlinear equations and its solution algorithm and
the material constitutive relationship and its integration. The
linear scheme of nonlinear equations and its solution process
often depend on the material properties, load magnitude,
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loading history, and loading method. Therefore, the method
of incremental stress-strain constitutive equations combined
with iterative schemes is widely used, but the iterative
operations will inevitably cause the effective stress to deviate
from the yield surface, that is, the “drift” phenomenon.

At present, the Newton-Raphson method is still an
effective way to solve plasticity problems. In particular for
serious nonlinear processes involving material softening, it is
more effective to combine theNewton-Raphsonmethodwith
the arc-length method or displacement controlled method.
In order to describe the complex deformation processes
of elastoplastic problems, a variety of constitutive equation
integration methods [10] have been proposed, and the most
widely used one is the return-mapping algorithm [11–16].The
return-mapping algorithm is actually an elastic forecast and
plastic amendment process which requires the local iteration
to correct the plastic parameters in the iterative process for
solving nonlinear equations and return the forecast stress
to the yield surface. This paper proposes a new nonlinear
iteration method, that is, the implicit damping iterative
method. Different from existingmethods, this newmethod is
designed to simultaneously solve equilibrium equations, yield
functions, and plastic flow equations of elastoplastic static
and dynamical problems. In the iterative process of certain
nonlinear problems, the global stiffness matrix of a finite
element formulation tends to be ill-conditioned. In order to
avoid the singularity of the coefficient matrix, the authors
introduce a damping factor in the numerical iterative process,
which is stable, fast, and easy to use and involves no local
iteration for “return mapping” stress to the yield surfaces.

2. Basic Concept of the Implicit Damping
Iterative Algorithm

The constitutive relation of elastoplastic material is usually
given in the incremental form by the yield function and
flow rule. Constitutive relations are generally expressed as an
explicit form, namely, Δ𝜎 = Dep

Δ𝜀, where Δ𝜎 and Δ𝜀 are
the stress increment and the strain increment, respectively,
and Dep is the elastoplastic matrix. The elastoplastic matrix
will be adjusted according to the stress-strain state. Here
the displacement (strain) will be obtained by simultaneously
solving the equilibrium equations, yield function, and plastic
flow equations.The explicit form of elastoplastic matrix is not
required in solving the plastic strain based on the loading-
unloading process and the current deformation.

Based on the above concepts, the implicit damping
iterative method is proposed to solve the general material
nonlinear problem. Supposing that 𝜀

𝑛
, 𝜀p
𝑛
, and 𝜎

𝑛
are, respec-

tively, the strain, plastic strain, and stress at the 𝑛th load step,
and Δ𝜀

𝑛
, Δ𝜀p
𝑛
, and Δ𝜎

𝑛
are, respectively, the strain increment,

plastic strain increment, and stress increment at the 𝑛 + 1th
load step, then the total strain, plastic strain, and stress are,
respectively, expressed as:

𝜀
𝑛+1
= 𝜀
𝑛
+ Δ𝜀
𝑛
;

𝜀
p
𝑛+1
= 𝜀

p
𝑛
+ Δ𝜀

p
𝑛
;

𝜎
𝑛+1
= 𝜎
𝑛
+ Δ𝜎
𝑛
.

(1)

In the 𝑛 + 1th load step, the equations are

(𝜎
𝑛+1
, 𝛿𝜀) = (F

𝑛+1
, 𝛿u) Equalibrium equations,

𝑓 (𝜎
𝑛+1
, 𝜅
𝑛+1
) = 0 Yield function,

Δ𝜀
p
𝑛+1
= Δ𝜆
𝑛

𝜕𝑓

𝜕𝜎
Flow rules.

(2a)

In the above formulas, the plastic potential function is the
same as the yield function. Assuming that the yield function
is a function of the stress and internal variable 𝜅, then F
is the external distributed load, and 𝑓

𝑛+1
, 𝜆
𝑛+1

, and 𝜅
𝑛+1

,
respectively, represent the yield function value, plastic factor,
and internal plastic variable value at 𝑛 + 1th load step. The
notation (∗, ∗) in the first equation of (2a) and the formulas
in the following section indicate the inner product of two
functions, and the vectors and matrix are expressed in bold
characters. In the iterative process, the value of yield function
(𝑓
𝑛
̸= 0) in the former load step is allowed to not be on

the yield surface, that is, 𝑓
𝑛
̸= 0, but it can be automatically

corrected by the second equation, so that the value of the yield
function at 𝑛+1th load stepmeets the yield condition𝑓

𝑛+1
= 0

and returns to the yield surface.
Equation (2a) is rewritten as follows:

(𝜎
𝑛
+ Δ𝜎
𝑛
, 𝛿𝜀) = (F

𝑛+1
, 𝛿u) ,

𝑓 (𝜎
𝑛
+ Δ𝜎
𝑛
, 𝜅
𝑛
+ Δ𝜅
𝑛
) = 0,

Δ𝜀
p
𝑛+1
= Δ𝜆
𝑛

𝜕𝑓

𝜕𝜎
.

(2b)

Let Δ𝜅
𝑛
= Δ𝜆

𝑛
𝐻(𝜎, 𝜅), where 𝐻(𝜎, 𝜅) is defined as the

hardening function; thus the stress increment is expressed as
follows:

Δ𝜎
𝑛
= De

(Δ𝜀
𝑛
− Δ𝜀

p
𝑛
) = De

Δ𝜀
𝑛
− Δ𝜆
𝑛
De 𝜕𝑓

𝜕𝜎
. (3)

HereDe is the elastic matrix. By using these notations, we
then extend 𝑓(𝜎

𝑛+1
, 𝜅
𝑛+1
) at (𝜎

𝑛
, 𝜅
𝑛
) to obtain

𝑓 (𝜎
𝑛
+ Δ𝜎
𝑛
, 𝜅
𝑛
+ Δ𝜅
𝑛
)

= 𝑓
𝑛
+ (
𝜕𝑓

𝜕𝜎
)

𝑇

Δ𝜎
𝑛
+
𝜕𝑓

𝜕𝜅
Δ𝜅
𝑛

= (
𝜕𝑓

𝜕𝜎
)

𝑇

(De
Δ𝜀
𝑛
− Δ𝜆
𝑛
De 𝜕𝑓

𝜕𝜎
)

+ Δ𝜆
𝑛

𝜕𝑓

𝜕𝜅
𝐻 (𝜎, 𝜅)

= 𝑓
𝑛
+ (
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
𝑛

− Δ𝜆
𝑛
{(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
− 𝐻 (𝜎, 𝜅)

𝜕𝑓

𝜕𝜅
}

= 0.

(4)
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Here and in the following sections the superscript 𝑇 in
(∗)
𝑇 indicates the transposition of a matrix:

Set 𝐴
0
= (
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
− 𝐻 (𝜎, 𝜅)

𝜕𝑓

𝜕𝜅
. (5)

The plastic factor can be calculated by the following
formula:

Δ𝜆
𝑛

=
1

𝐴
0

[(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
𝑛
+ 𝑓
𝑛
] . (6)

Substituting (6) into (3), we obtain

Δ𝜎
𝑛
= De

(Δ𝜀
𝑛
− Δ𝜀

p
𝑛
)

= De
Δ𝜀
𝑛
− Δ𝜆
𝑛
De 𝜕𝑓

𝜕𝜎

= De
Δ𝜀
𝑛
−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
((
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
𝑛
+ 𝑓
𝑛
)

= [De
−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
]Δ𝜀
𝑛
−
𝑓
𝑛

𝐴
0

De 𝜕𝑓

𝜕𝜎
.

(7)

That is,

Δ𝜎
𝑛
= Dep

Δ𝜀
𝑛
−
𝑓
𝑛

𝐴
0

De 𝜕𝑓

𝜕𝜎
, (8)

where

Dep
= [De

−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
] . (9)

As usual,Dep is referred to as the elastoplastic matrix. If 𝑓
𝑛
=

0, the stress increments are given by Δ𝜎
𝑛
= Dep

Δ𝜀
𝑛
.

The first term in (2b) can be expressed as follows:

(Δ𝜎
𝑛
, 𝛿𝜀) = (F

𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀) . (10)

Substituting (7) into the above equation, we obtain

(De
Δ𝜀
𝑛
, 𝛿𝜀) − (Δ𝜆

𝑛
De 𝜕𝑓

𝜕𝜎
, 𝛿𝜀)

= (F
𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀) .

(11)

Eliminating Δ𝜆
𝑛
by (6), the basic equation to solve the

static elastoplastic problem can be expressed in the integral
weak forms as follows:

(De
Δ𝜀
𝑛
, 𝛿𝜀) − (

1

𝐴
0

(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
𝑛
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

= (
1

𝐴
0

𝑓
𝑛
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀) + (F

𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀) .

(12a)

Equation (12a) can be rewritten explicitly as follows:

(Dep
Δ𝜀
𝑛
, 𝛿𝜀) = (

𝑓
𝑛

𝐴
0

(
𝜕𝑓

𝜕𝜎
)

𝑇

De
, 𝛿𝜀)

+ (F
𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀) .

(12b)

In accordance with Newton iteration method, at the 𝑘 +
1th iterative step the nonlinear equation 𝑓(𝑥(𝑘+1)) = 0, after
linearization at 𝑥(𝑘), 𝑓(𝑥(𝑘)) + 𝑑𝑓(𝑥(𝑘))/𝑑𝑥Δ𝑥(𝑘) = 0.

Here 𝑥(𝑘+1) = 𝑥(𝑘) + Δ𝑥(𝑘), when Δ𝑥(𝑘) → 0, 𝑥(𝑘+1) is the
solution of the problem. Substituting 𝑑𝑓(𝑥(𝑘))/𝑑𝑥 by coeffi-
cients 𝐴, the equation 𝑓(𝑥(𝑘)) + 𝑑𝑓(𝑥(𝑘))/𝑑𝑥Δ𝑥(𝑘) = 0 will be
changed into 𝑓(𝑥(𝑘)) + 𝐴Δ𝑥(𝑘) = 0, as long as Δ𝑥(𝑘) → 0,
and 𝑥(𝑘+1) = 𝑥(𝑘) + Δ𝑥(𝑘); 𝑥(𝑘+1) also tends to the solution of
the problem. To avoid the singularity of the coefficient matrix
of the equation, the damping factor 𝜇 is introduced, so that
𝐴 = 𝐴

0
+ 𝜇; that is,

𝐴 = (
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
−
𝜕𝑓

𝜕𝜅
𝐻 + 𝜇. (13)

The value of 𝜇 can be modified according to actual
situations. We attempt to keep the absolute value of |𝐴| far
from zero but not so high that it will affect the iterative
convergence rate.

(1) If

𝐴
0
= (
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
−
𝜕𝑓

𝜕𝜅
𝐻 > 0, (14)

that is,

(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
>
𝜕𝑓

𝜕𝜅
𝐻,

set 𝜇 = 𝐶
1
(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
;

(15)

(2) if

𝐴
0
= (
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
−
𝜕𝑓

𝜕𝜅
𝐻 < 0; (16)

that is,

(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
<
𝜕𝑓

𝜕𝜅
𝐻,

set 𝜇 = −𝐶
2
(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
.

(17)

Here 𝐶
1
and 𝐶

2
are all real numbers greater than zero.

When 𝐴
0
is equal to or approach zero, then 𝜇 can be given a

greater number. In this paper, 𝐶
1
and 𝐶

2
are taken as 2, and

the damping factor 𝜇 is determined by the following formula:

𝜇 =

{{{{

{{{{

{

2(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎

𝜕𝑓

𝜕𝜅
𝐻 < (

𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎

−2(
𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎

𝜕𝑓

𝜕𝜅
𝐻 > (

𝜕𝑓

𝜕𝜎
)

𝑇

De 𝜕𝑓

𝜕𝜎
.

(18)

The constants in (18) are dependent on actual cases. The
forms of the damping factors may be different from the
yield function and flow rules. It is not difficult to extend
this implicit damping iterative method to solve general
material nonlinear problems with stiff damage weakening
(degradation), but the representation of the yield function
and flow rule may be different.
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3. Iterative Schemes

3.1. Construction of Iterative Formulas. The unknowns in
(12a) are displacement increments. In the elastic loading or
plastic unloading, the plastic factorΔ𝜆

𝑛
is less than zero; then

(12a) is transformed into the general linear elastic equation:
(De
Δ𝜀
𝑛
, 𝛿𝜀) = (F

𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀); when the stress-strain

falls into the plastic zone, the plastic factor Δ𝜆
𝑛
is greater

than zero. Therefore, one may solve elastic equations if in the
iterative process the plasticity actor value is negative or the
plastic equation is positive.

The following section introduces two iterative methods:
one is an incremental iterative method, and the other is the
full amount displacements of iteration.

There are two algorithms for displacement increment
iteration: (1) the iteration algorithm based on independent
unknowns of strain increments and plastic factor and (2) the
numerical solution based on the only unknowns of strain
increment.

3.1.1. Increment Iterative Scheme (I). At each load step, the
external load remains constant, by (12a) after inducing the
damping factor at the 𝑘th iteration:

(De
ΔΔ𝜀
(𝑘)

, 𝛿𝜀) − (
1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
ΔΔ𝜀
(𝑘)

, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

= (
1

𝐴
𝑓
(𝑘−1)

𝑛+1
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (F
𝑛+1
, 𝛿u) − (𝜎(𝑘−1)

𝑛+1
, 𝛿𝜀) .

(19)

We then obtain the displacement subincrements ΔΔu(𝑘)
by the iterative equation (19) at the 𝑘th iteration. In fact, (19)
can be converted to the following equivalent form:

(De
Δ𝜀
(𝑘)

𝑛
, 𝛿𝜀) − (

1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘)

𝑛
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

= (De
Δ𝜀
(𝑘−1)

𝑛
, 𝛿𝜀)

− (
1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘−1)

𝑛
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (
1

𝐴
𝑓
(𝑘−1)

𝑛+1
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (F
𝑛+1
, 𝛿u) − (𝜎(𝑘−1)

𝑛+1
, 𝛿𝜀) .

(20)

From iterative equation (20), we can directly obtain the
total displacement increments Δu(𝑘)

𝑛
and Δ𝜀(𝑘)

𝑛
at the current

load step. We then compute stresses 𝜎(𝑘)
𝑛+1

by means of the
following formula:

𝜎
(𝑘)

𝑛+1
= 𝜎
𝑛
+De

Δ𝜀
(𝑘)

𝑛
−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘)

𝑛

−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
𝑓
𝑛
(𝜎
𝑛
, 𝜅
𝑛
) .

(21)

Note that when calculating the stresses by (21), 𝐴
0
is

used, rather than 𝐴, to compute the real stresses. We then
compute 𝜕𝑓/𝜕𝜎 by difference, and let 𝜕𝑓/𝜕𝜎

𝑖𝑗
≈ [𝑓(𝜎

𝑖𝑗
+

𝛿) − 𝑓(𝜎
𝑖𝑗
)]/𝛿. In this paper 𝛿 takes the 10−3 of the material

ultimate stress. When the iteration converges, Δ𝜀(𝑘)
𝑛
→ Δ𝜀

𝑛
,

𝜀
(𝑘)

𝑛+1
= 𝜀
(𝑘−1)

𝑛+1
+ Δ𝜀
(𝑘)

𝑛
→ 𝜀
𝑛+1

, and 𝜎(𝑘)
𝑛+1
→ 𝜎
𝑛+1

, the external
loads are in equilibrium with internal forces, and the equilib-
rium equations tend to the following form:

(F
𝑛+1
, 𝛿u) − (𝜎

𝑛+1
, 𝛿𝜀) = 0. (22)

The procedure of increment iterative scheme (I) is listed
in Box 1.

3.1.2. Increment Iterative Scheme (II). Equation (6) is written
in the form of weak form and associated with (11):

(De
Δ𝜀
𝑛
, 𝛿𝜀) − (Δ𝜆

𝑛
De 𝜕𝑓

𝜕𝜎
, 𝛿𝜀) = (F

𝑛+1
, 𝛿u) − (𝜎

𝑛
, 𝛿𝜀) ,

(𝐴
0
Δ𝜆
𝑛
, 𝛿𝜆) − ((

𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
𝑛
, 𝛿𝜆) = (𝑓

𝑛
, 𝛿𝜆) .

(23)

The strain increments Δu and the plastic factor Δ𝜆
𝑛
are

taken as an independent unknown, and these are simultane-
ously solved. The iterative scheme’s integral weak form is as
follows:

(De
Δ𝜀
(𝑘)

𝑛
, 𝛿𝜀) − (Δ𝜆

(𝑘)

𝑛
De 𝜕𝑓

𝜕𝜎
, 𝛿𝜀)

+ (𝐴Δ𝜆
(𝑘)

𝑛
, 𝛿𝜆) − ((

𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘)

𝑛
, 𝛿𝜆)

= (De
Δ𝜀
(𝑘−1)

𝑛
, 𝛿𝜀) − (Δ𝜆

(𝑘−1)

𝑛
De 𝜕𝑓

𝜕𝜎
, 𝛿𝜀)

+ (𝐴Δ𝜆
(𝑘−1)

𝑛
, 𝛿𝜆) − ((

𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘−1)

𝑛
, 𝛿𝜆)

+ (𝑓
(𝑘−1)

𝑛+1
, 𝛿𝜆) + (F

𝑛+1
, 𝛿u) − (𝜎(𝑘−1)

𝑛+1
, 𝛿𝜀) .

(24)

In the iterative process of (24), if the plastic factor Δ𝜆(𝑘)
𝑛

is less than zero, let it be equal to zero, and then calculate
the stress increments according to the elastic matrix. In this
paper, if the calculated 𝐴 is very small (e.g., 10−10), a large
number is set (e.g., 1020). The main difference between the
iteration scheme (II) and the program flow of the previous
iteration (I) lies in the processing of the plastic factor.
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(i) The given initial values include u
0
, Δu
0
, 𝜎
0
, 𝜅
0
, material and iterative controlling parameters;

(ii) According to the acting loads F
𝑛+1

, execute iteration within 𝑛 + 1th loading step, to find displacement increments
Δu(𝑘)
𝑛

by (20) until achieving convergence:
(1) For the 𝑘th iteration:

We assume u(0)
𝑛+1
= u
𝑛
;u(0)
𝑛+1
= 𝜎
𝑛
; and Δu(0)

𝑛+1
= 0, then execute the iterative loops by (20):

A Compute the strain increments Δ𝜀(𝑘)
𝑛
, stresses 𝜎(𝑘)

𝑛+1
, yield function value 𝑓(𝑘)

𝑛+1
, 𝜕𝑓/𝜕𝜎 and the other coefficients.

B Compute the plastic parameter 𝑑𝜆 = (𝜕𝑓/𝜕𝜎)𝑇De
Δ𝜀
(𝑘)

𝑛
+ 𝑓
𝑛
(𝜎
𝑛
, 𝜅
𝑛
), and determine the stress state:

If 𝑑𝜆 > 0, the stress is located in the plastic area; if 𝑑𝜆 ≤ 0, then the stress is in the elastic area.
C Update stiffness matrix by the following regulations:

(a) In the elastic area, eliminate the terms containing A in (20).
(b) In the plastic area, compute 𝐴 by (13) and (18).

D Solve Δu(𝑘)
𝑛

by (20), calculate 𝑒𝑟𝑟 = 󵄩󵄩󵄩󵄩󵄩Δu
(𝑘)

𝑛
− Δu(𝑘−1)
𝑛

󵄩󵄩󵄩󵄩󵄩
.

E Determine whether or not err is less than 𝛼 󵄩󵄩󵄩󵄩󵄩Δu
(𝑘)

𝑛

󵄩󵄩󵄩󵄩󵄩
, (𝛼 = 10−9 in this paper).

If not, repeat StepsA–D, and conduct the 𝑘 + 1th iteration, until achieving convergence. Then return to Step (2).
(2) Re-compute the plastic parameter 𝑑𝜆 by the displacements at the final iteration, determine the stress state,

compute the total stresses 𝜎
𝑛+1

by (21), as well as inner variable 𝜅
𝑛+1

, plastic strains, and so on.
(iii) Repeat Step (ii), continue the computation of the next load step, determine whether or not failure takes place,

and obtain the ultimate load.

Box 1: Increment iterative scheme (I).

For the 𝑘th iteration:
We assume that u(0)

𝑛+1
= u
𝑛
, 𝜎(0)
𝑛+1
= 𝜎
𝑛
and Δu(0)

𝑛+1
= 0, then execute the iterative loops by (24):

A Compute the total strain increments Δ𝜀(𝑘)
𝑛
, stresses 𝜎(𝑘)

𝑛+1
, yield function value 𝑓(𝑘)

𝑛+1
, 𝜕𝑓/𝜕𝜎 and the other coefficients.

B Compute 𝐴 by (13) and (18). If 𝐴 is very small (e.g. <10−10), let 𝐴 equal a high number (e.g. 1020), then obtain
Δu(𝑘)
𝑛

and Δ𝜆(𝑘)
𝑛

by (24).
C Determine the stress state: If Δ𝜆(𝑘)

𝑛
< 0, let Δ𝜆(𝑘)

𝑛
= 0.

D Calculate the errors of Δu(𝑘)
𝑛

and Δ𝜆(𝑘)
𝑛
, and see if they satisfy the tolerance error requirement.

E If not, repeat Steps A–D, then conduct the 𝑘 + 1th iteration, until achieving convergence.

Box 2: Increment iterative scheme (II).

Corresponding to Box 1, in Box 2 we only list a portion of the
nonlinear iterative process.

Equation (20) is rewritten as the total strain (displace-
ment) iterative formula for a structural system to withstand
the current loads:

(De
𝜀
(𝑘)

𝑛+1
, 𝛿𝜀) − (

1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝜀
(𝑘)

𝑛+1
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

= (De
𝜀
(𝑘−1)

𝑛+1
, 𝛿𝜀)

− (
1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝜀
(𝑘−1)

𝑛+1
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (
1

𝐴
𝑓
(𝑘−1)

𝑛+1
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (F
𝑛+1
, 𝛿u) − (𝜎(𝑘−1)

𝑛+1
, 𝛿𝜀) .

(25)

Clearly, (25) is essentially another form of the iteration
equation (20). 𝜀(𝑘−1)

𝑛+1
and 𝜀(𝑘)
𝑛+1

, respectively, represent the total
strain components of the 𝑘 − 1th and 𝑘th with the current
load F

𝑛+1
. The total displacements u(𝑘)

𝑛+1
can be solved at the

𝑘th iterative step by (25). We then compute the displacement

increments Δu(𝑘)
𝑛
= u(𝑘)
𝑛+1
− u
𝑛
and strain increments Δ𝜀(𝑘)

𝑛
=

𝜀
(𝑘)

𝑛+1
− 𝜀
𝑛
at the current load step and then substitute Δ𝜀(𝑘)

𝑛

into (21), after which the total stress components of the
current iteration step can be obtained. When the iteration
converges, that is, 𝜀(𝑘)

𝑛+1
→ 𝜀
(𝑘−1)

𝑛+1
, 𝑓(𝑘)
𝑛+1

→ 0, and 𝜎(𝑘)
𝑛+1

→

𝜎
𝑛+1

, then the same equilibrium as that in (22) is reached.
The nonlinear iteration procedure of whole amount iterative
scheme is almost the same as that of the increment iterative
scheme (I).

In (20) the displacement increments are taken as inde-
pendent unknowns, and in (24) the plastic factors also act as
independent unknowns. However, both of these incremental
iterative formulas are completely equivalent, except for some
slight differences in their expressions. Equation (25), the
total displacement iteration scheme of displacements, is also
equivalent to the incremental iteration schemes, by which the
total strains (displacements) can be directly obtained under
the current loads.

3.2. FEPG Script Codes. In order to verify the above iteration
algorithm, the FEM FORTRAN program for the above
iterative algorithm is developed based on the Finite Element
Program Generator (FEPG) [17, 18]. The essence of FEPG
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lies in adopting both component programming techniques
and human intelligence technology to automatically generate
finite element source code from the given partial differential
equation (PDE) codes and algorithm expressions (nonlin-
ear finite element (NFE)). FEPG is based on the unified
mathematical theory for FEM and its intrinsic rule, and
the program generation is similar to the deduction process
of mathematical formulas. The finite element computation
program is composed of five components, namely, START,
BFT, SOLV, E, andU, among which E andU are automatically
generated according to the expressions given by users, while
the other three components, which do not change with the
expressions, are given by the system.

According to the language rules of FEPG, the integral
weak equations (20), (24), and (25) are written by the PDE;
the iterative algorithm and loops are written by NFE codes;
and the coupling relation of the displacement with stress
fields is described by the Generate Command stream file
and NFE codes (GCN) and either Generate IO (GIO) or
Multidisciplinary Input (MDI) codes. Running the GIO
or MDI command can generate the source codes for the
calculation procedures [17]. In the following section, these
source codes are executed to assess the iterative procedures
previously established.

3.3. Validation of Iteration Method. We take a circular tunnel
excavation problem as a testing example. Tunnel excavation
will cause rock stress redistribution. The tunnel surrounding
may enter the plastic state. Similar to the thick-walled
cylinder, the out boundary will be subject to uniform external
pressure, as shown in Figure 1. Adopting the Mohr-Coulomb
rule, here we let the cohesive strength be equal to 1.0 kPa
and let the circular orifice radius be 1.0m, and then the
expansion processes of the plastic zone are simulated. Taking
the friction coefficients 𝑓 as 0.2 and 0.4, the radius of the
elastoplastic interface is computed.The curves of plastic radii
via pressure are given in Figure 2. As a whole, the plastic
zone radii increase with confining pressure and agree well
with the theoretical solutions.When friction coefficient is 0.4,
especially, the computational results coincide almost exactly
with the theoretical solution.

It is worth noting that far away from the outer boundary
of the rectangle area, the plastic area is in good agreement
with the theoretical solutions, but when the plastic area
reaches the outer edge, it no longer meets the infinite
boundary conditions of the theoretical solution, which may
result in a larger calculated error.

4. Solving the Nonlinear Dynamic Equations

4.1. Basic Equations of Dynamic Problems. For dynamic
problems, the various physical quantities of the object are a
function of time. At time 𝑡 the strain, plastic strain, and stress
are, respectively, expressed as 𝜀

𝑡
, 𝜀p
𝑡
, 𝜎
𝑡
, the strain increment

Δ𝜀
𝑡
, the plastic strain increment Δ𝜀p

𝑡
, and stress increment

Rp

Figure 1: Plastic area.
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Figure 2: Plastic radii via pressure.

Δ𝜎
𝑡
. At time 𝑡 + Δ𝑡, a total strain, plastic strain, and stress

are expressed as

𝜀
𝑡+Δ𝑡

= 𝜀
𝑡
+ Δ𝜀
𝑡
;

𝜀
p
𝑡+Δ𝑡

= 𝜀
p
𝑡
+ Δ𝜀

p
𝑡
;

𝜎
𝑡+Δ𝑡

= 𝜎
𝑡
+ Δ𝜎
𝑡
.

(26)

By analogy with (2a) and (2b), the dynamic equations at
time 𝑡 + Δ𝑡 are

(Δ𝜎
𝑡
, 𝛿𝜀) + (𝜌ü

𝑡+Δ𝑡
, 𝛿u) + (𝜇u̇

𝑡+Δ𝑡
, 𝛿u)

= (F
𝑡+Δ𝑡
, 𝛿u) − (𝜎(𝑡), 𝛿𝜀) ,

𝑓
𝑡+Δ𝑡

= 0,

Δ𝜀
p
= Δ𝜆
𝑡

𝜕𝑓

𝜕𝜎
.

(27)

Here 𝜌 is the mass density; 𝜇 is the damping coefficient,
whose meaning is different from that of (13); ü and u̇,
respectively, represent the components of the acceleration
and velocities.
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(i) Given time interval Δ𝑡, the integration constants; material and iterative controlling parameters; initial values,
including u

0
, u̇
0
, ü
0
, 𝜎
0
, 𝜅
0
, and their increments.

(ii) According to acting loads F
𝑡+Δ𝑡

or time-displacement history, execute iteration within and 𝑡 + Δ𝑡, to find total
displacements u(𝑘)

𝑡+Δ𝑡
by (31) until achieving convergence:

(1) For the 𝑘th nonlinear iteration (not update u̇
𝑡+Δ𝑡

and ü
𝑡+Δ𝑡

for time being in nonlinear iterative loops):
Assume u(0)

𝑡+Δ𝑡
= u
𝑡
, 𝜎(0)
𝑡+Δ𝑡
= 𝜎
𝑡
and Δu(0)

𝑡+Δ𝑡
= 0, then execute the iterative loops and determine u(𝑘)

𝑡+Δ𝑡
by (31):

A Compute the displacement increments Δu(𝑘)
𝑡
= u(𝑘)
𝑡+Δ𝑡
− u
𝑡
, strain increments Δ𝜀(𝑘)

𝑡
= 𝜀
(𝑘)

𝑡
− 𝜀
𝑡
, 𝜎(𝑘)
𝑡+Δ𝑡

, 𝑓(𝑘)
𝑡+Δ𝑡

, 𝜕𝑓/𝜕𝜎
and the other coefficients.

B Compute plastic parameter 𝑑𝜆 = (𝜕𝑓/𝜕𝜎)𝑇De
Δ𝜀
(𝑘)

𝑡
+ 𝑓
𝑡
(𝜎
𝑡
, 𝜅
𝑡
), and determine the stress state: If 𝑑𝜆 > 0, the stress is

located in the plastic area; if 𝑑𝜆 ≤ 0, the stress is in the elastic area.
C Update the stiffness matrix by the following regulations:

(a) In the elastic area, eliminate the terms containing 𝐴 in (28).
(b) In the plastic area, compute 𝐴 by (13) and (18).

D Find u(𝑘)
𝑡+Δ𝑡

by (31), calculate Δu(𝑘)
𝑡
= u(𝑘)
𝑡+Δ𝑡
− u
𝑡
, 𝑒𝑟𝑟 = 󵄩󵄩󵄩󵄩󵄩Δu

(𝑘)

𝑡
− Δu(𝑘−1)
𝑡

󵄩󵄩󵄩󵄩󵄩
.

E Determine whether or not 𝑒𝑟𝑟 is less than 𝛼 󵄩󵄩󵄩󵄩󵄩Δu
(𝑘)

𝑡

󵄩󵄩󵄩󵄩󵄩
; if not, repeat StepsA–D, conduct the 𝑘 + 1th iteration until

achieving convergence, then return to Step (2).
(2) Update u

𝑡+Δ𝑡
= u(𝑘)
𝑡+Δ𝑡

, ü
𝑡+Δ𝑡
= 𝑎
0
Δu(𝑘)
𝑡
− 𝑎
2
u̇
𝑡
− 𝑎
3
ü
𝑡
, and u̇

𝑡+Δ𝑡
= u̇
𝑡
+ 𝑎
6
ü
𝑡
+ 𝑎
7
ü
𝑡+Δ𝑡

.
(3) Re-compute the plastic parameter 𝑑𝜆 by the displacements at the final iteration, determine the stress state, and compute

the total stresses and inner variable 𝜅
𝑡+Δ𝑡

, plastic strains and so on, for the next time step.
(iii) Repeat Step (ii), continue the computation of the next load step, determine whether or not failure take places, and obtain

the ultimate load.

Box 3: Whole amount iterative scheme of elastoplastic dynamical equations.

4.2. Iterative Methods of Dynamic Problems. The implicit
damping iterative method proposed above can be easily
expanded and applied to elastoplastic dynamic problems.
By analogy with the total amount iterative algorithm (see
(25)) of static problems, the total amount iterative formula
of dynamic problems can be written as follows:

(De
𝜀
(𝑘)

𝑡+Δ𝑡
, 𝛿𝜀) − (

1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝜀
(𝑘)

𝑡+Δ𝑡
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (𝜌ü(𝑘)
𝑡+Δ𝑡
, 𝛿u) + (𝜇u̇(𝑘)

𝑡+Δ𝑡
, 𝛿u)

= (De
𝜀
(𝑘−1)

𝑡+Δ𝑡
, 𝛿𝜀)

− (
1

𝐴
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝜀
(𝑘−1)

𝑡+Δ𝑡
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (
1

𝐴
𝑓
(𝑘−1)

𝑡+Δ𝑡
, (
𝜕𝑓

𝜕𝜎
)

𝑇

De
𝛿𝜀)

+ (F
𝑡+Δ𝑡
, 𝛿u) − (𝜎(𝑘−1)

𝑡+Δ𝑡
, 𝛿𝜀) .

(28)

The strain incrementsΔ𝜀𝑡(𝑘) = 𝜀𝑡+Δ𝑡(𝑘)−𝜀𝑡 at time 𝑡+Δ𝑡 up
to the 𝑘th iteration. The stress is calculated by the following:

𝜎
(𝑘)

𝑡+Δ𝑡
= 𝜎
𝑡
+De

Δ𝜀
(𝑘)

𝑡
−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
(
𝜕𝑓

𝜕𝜎
)

𝑇

De
Δ𝜀
(𝑘)

𝑡

−
1

𝐴
0

De 𝜕𝑓

𝜕𝜎
𝑓
𝑡
(𝜎
𝑡
, 𝜅
𝑡
) .

(29)

The iterative process of (25) has been rewritten as a
dynamic time-dependent loading process. When 𝜀(𝑘)

𝑡+Δ𝑡
→

𝜀
(𝑘−1)

𝑡+Δ𝑡
= 𝜀
𝑡+Δ𝑡

, 𝑓(𝑘)
𝑡+Δ𝑡

→ 0, (28) converges to the following
kinetic equation:

(𝜌ü
𝑡+Δ𝑡
, 𝛿u) + (𝜇u̇

𝑡+Δ𝑡
, 𝛿u) = (F

𝑡+Δ𝑡
, 𝛿u) − (𝜎

𝑡+Δ𝑡
, 𝛿𝜀) .

(30)

The iterative equation (28) is discretized in the time
domain using the basic assumptions of the Newmark inte-
gration method. The dynamic finite element equations are
obtained as follows:

(K(𝑘−1)
𝑡

+ 𝑎
0
M + 𝑎

1
C) u(𝑘)
𝑡+Δ𝑡

= K(𝑘−1)
𝑡

u(𝑘−1)
𝑡+Δ𝑡

+ ΔF(𝑘−1)
𝑡+Δ𝑡

+M [𝑎
0
u𝑡
𝑡
+ 𝑎
2
u̇𝑡
𝑡
+ 𝑎
3
ü𝑡
𝑡
]

+ C [𝑎
1
u𝑡
𝑡
+ 𝑎
4
u̇𝑡
𝑡
+ 𝑎
5
ü𝑡
𝑡
] .

(31)

Here K(𝑘)
𝑡
, M, and C, respectively, represent the stiffness

matrix, mass matrix, and damping matrix, and ΔF(𝑘)
𝑡+Δ𝑡

is the
load increment generated by the last three terms on the right
side of (28). Note that the nodal forces produced by K

𝑡
u
𝑡+Δ𝑡

are not necessarily equal to the nodal force caused by 𝜎
𝑡+Δ𝑡

,
due to possible plastic deformation. If not,K

𝑡
u
𝑡+Δ𝑡
+ΔF
𝑡+Δ𝑡

=

F
𝑡+Δ𝑡

and (28) tend to be the full amount of the Newmark
integral equation of a linear elastic problem.

Carrying numerical iterations until u
𝑡+Δ𝑡

= u(𝑘)
𝑡+Δ𝑡

≈ u(𝑘−1)
𝑡+Δ𝑡

andΔu
𝑡
= u
𝑡+Δ𝑡
−u
𝑡
, by which one can obtain the acceleration

ü
𝑡+Δ𝑡

= 𝑎
0
Δu
𝑡
− 𝑎
2
u̇
𝑡
− 𝑎
3
ü
𝑡
at the time of 𝑡 + Δ𝑡 and

velocities u̇
𝑡+Δ𝑡

= u̇
𝑡
+ 𝑎
6
ü
𝑡
+ 𝑎
7
ü
𝑡+Δ𝑡

, where 𝑎
0
∼ 𝑎
7
indicate

the Newmark integration constants, given as follows: 𝑎
0
=

1/𝛾Δ𝑡
2, 𝑎
1
= 𝛿/𝛾Δ𝑡, 𝑎

2
= 1/𝛾Δ𝑡, 𝑎

3
= 1/2𝛾 − 1, 𝑎

4
= 𝛿/𝛾 − 1,

𝑎
5
= (Δ𝑡/2)(𝛿/𝛾 − 2), 𝑎

6
= Δ𝑡(1 − 𝛾), 𝑎

7
= 𝛾Δ𝑡, and

𝛿 ≥ 0.5, 𝛾 = 0.25(0.5 + 𝛿)2. Listed in Box 3 is the total amount
iterative scheme of the elastoplastic dynamical equations.

Shown in (28) is the implicit damping iteration scheme
to solve the total displacements of elastoplastic dynamic
problems. This creates the boundary conditions given in
the form of whole amount displacements or loads, thus
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Figure 3: Theoretical plastic area of flexural beam under static load.

providing a great convenience to conduct the nonlinear
response analyses.

4.3. Numerical Examples. The example is the elastoplastic
bending of a simply supported beam subjected to a uniform
load of intensity 𝑞with the rectangular cross-section (𝑏×2ℎ),
as shown in Figure 3. Using the perfectly elastoplastic model
and Mises’ yield criterion, when ℎ

𝑒
= ℎ, the stresses on the

upper and lower edges of the middle part of the beam just
reach the plastic limit. If the cross-section is in the fully elastic
state, then the elastic limit moment at the middle beam is
𝑀
𝑒
= (2/3)𝑏ℎ

2

𝜎
𝑠
; when ℎ

𝑒
= 0, the cross-section of the

beam fully accesses the full plastic state, formatting a plastic
hinge, and then the plastic limit moments are 𝑀

𝑝
= 𝑏ℎ
2

𝜎
𝑠

and𝑀
𝑝
= 1.5𝑀

𝑒
.

The above theoretical solutions are obtained without
gravity weight. For the convenience of comparison with the
theoretical solutions, this study does not consider the weight
of the beam and instead considers the mass of the beam
material in the dynamic calculation and takes the damping
proportional to mass; that is, C = 𝛼M, with the dynamic
loading rate of 100.0 kN/s.

We conduct static numerical simulations by exerting
static distributed load with the increments of 0.01𝑞

𝑠
, where

𝑞
𝑠
(100 kN/m2) denotes the plastic limit load (𝑀

𝑝
= 1.5𝑀

𝑒
).

In order to verify the accuracy and efficiency of the proposed
method, the numerical tests were executed, respectively, by
using the Implicit Damping Iterative Algorithm (IDIA) and
the Return-Mapping Algorithm provided by the ABAQUS
software. The curves of deflection via the loading history are
obtained as shown in Figure 4. It is shown that the two curves
are almost identical. Then, by exerting static distributed load
with the increments of the increments of 0.10𝑞

𝑠
, 0.05𝑞

𝑠
,

and 0.01𝑞
𝑠
, respectively, we obtain the three curves using

IDIA, as shown in Figure 5, which almost completely overlap
with each other. The plastic zones as shown in Figure 6,
which are calculated by using both IDIA and ABAQUS,
under the plastic limit moments, are all very close to the
theoretical solution. Furthermore, we noted that the plastic
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Figure 4: Computational results by IDIA compared with ABAQUS.

zone calculated under the plastic limit load is not affected
by loading increments. Those numerical tests demonstrate
that the proposed implicit iteration algorithmhas both strong
stability and reliability.

The dynamical tests were conducted with 0.001 s of time
step and 100.0 kN/s of loading rate. The curves of deflection
under dynamic load (𝛼 = 30.0), obtained, respectively, by
IDIA and ABAQUS, as shown in Figure 7, are completely
overlapped. In addition, we have similar results when the
damping coefficient 𝛼 is, respectively, taken as 0 and 10.
The distributions of the plastic zones in Figure 8 show
that the dynamic flexural strength is higher than the static
flexural strength, and as damping coefficient increases, the
corresponding plastic zone becomes smaller and smaller.
Figures 8(a)(A) and 8(b)(A) show the case with no damping
(𝛼 = 0) and the dynamic effect induced only by the inertia
force; the plastic zone is a bit smaller than that of the static
load. In general, the above computational results obtained
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from IDIA and ABAQUS completely agree well and in line
with the general rule of the dynamic effect.

These numerical experiments are carried out on a PC
configured as Intel Core i5-2400 CPU@3.10GHz, MEM
2.99GB. In the examples given, it iterates only 3 or 4 times
to converge to solution: the first example with 16,320 DOF,
80-step calculation, taking less than 20 minutes; the second
example, with 4662 DOF, running 15 loading steps to form a
plastic hinge, taking less than one minute. It is shown from
these calculations that the iterative algorithm proposed has
good computational efficiency.

In addition, a series of numerical tests performed by using
the above examples showed the magnitude of the constants
𝐶
1
and 𝐶

2
in (18) affects little the iteration convergence rate

and solution accuracy.

5. Conclusion

This paper first describes the basic concept of the implicit
damping iterative method and then gives the displacement
incremental iterative scheme as well as the whole iterative
scheme to solve the static and dynamical elastoplastic prob-
lems. At the same time, the authors present the corresponding
computing procedures and script files of the iterative schemes
in accordance with the FEPG language rules and generate
the FORTRAN programs.The circular tunnel excavation and
elastoplastic bending of simply supported beam problems are
numerically calculated, and the results verify the correctness
and reliability of the proposed implicit iteration algorithms.

The elastoplastic damping implicit iterative algorithmwill
simultaneously solve equilibrium equations, yield functions,
and plastic flow equations. The method does not require an
explicit expression of the elastoplastic stiffness matrix and
local iteration for “returnmapping” stress to the yield surface.
In addition, the damping factor introduced in the paper
improves the stiffness matrix conformation. Although the
numerical algorithm proposed is based on the elastoplastic
problem, it can easily be expanded and applied to solve
the general material nonlinearity problem. In particular, the
whole amount implicit damping iterative scheme allows the
provision of displacement or stress boundary conditions in
the form of the whole amount. The method will bring great
convenience to solving nonlinear dynamic response of high
concrete dams with complex seismic ground motion inputs
and other similar problems.

The drawback of the implicit damping iterative method
proposed in this paper is that it requires recalculation of the
stiffness matrix in each iteration step. However, as computer
processing power increases, especially with the development
of high performance computers, computing speed and scale
will no longer be the bottleneck of scientific computing.
Therefore, the shortcomings of the proposed algorithm will
not be the outstanding problems of the application. In addi-
tion, the authors only carried out the numerical experiments
of the incremental loading process, but if under displacement
load, the implicit damping iterative algorithm can also be
employed to simulate material plastic softening processes
without much additional effort.
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