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By using of the Gronwall inequality, we prove the Hyers-Ulam stability of differential equations of second order with initial
conditions.

1. Introduction

In 1940, Ulam [1] posed a problem concerning the stability
of functional equations: “Give conditions in order for a linear
function near an approximately linear function to exist.”

A year later, Hyers [2] gave an answer to the problem of
Ulam for additive functions defined on Banach spaces: let
𝑋 and 𝑌 be real Banach spaces and 𝜀 > 0. Then for every
function 𝑓 : 𝑋 → 𝑌 satisfying

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜀 (1)

for all 𝑥, 𝑦 ∈ 𝑋, there exists a unique additive function 𝐴 :

𝑋 → 𝑌 with the property
𝑓 (𝑥) − 𝐴 (𝑥)

 ≤ 𝜀 (2)

for all 𝑥 ∈ 𝑋.
After Hyers’s result, many mathematicians have extended

Ulam’s problem to other functional equations and gener-
alized Hyers’s result in various directions (see [3–6]). A
generalization of Ulam’s problem was recently proposed by
replacing functional equations with differential equations:
the differential equation

𝜑 (𝑓 (𝑡) , 𝑦 (𝑡) , 𝑦


(𝑡) , . . . , 𝑦
(𝑛)

(𝑡)) = 0 (3)

has theHyers-Ulam stability if for a given 𝜀 > 0 and a function
𝑦 such that


𝜑 (𝑓 (𝑡) , 𝑦 (𝑡) , 𝑦



(𝑡) , . . . , 𝑦
(𝑛)

(𝑡))

≤ 𝜀, (4)

there exists a solution 𝑦
0
of the differential equation such that

|𝑦(𝑡) − 𝑦
0
(𝑡)| ≤ 𝐾(𝜀) and lim

𝜀→0
𝐾(𝜀) = 0.

Obloza seems to be the first author who has investigated
the Hyers-Ulam stability of linear differential equations (see
[7, 8]). Thereafter, Alsina and Ger published their paper
[9], which handles the Hyers-Ulam stability of the linear
differential equation 𝑦(𝑡) = 𝑦(𝑡): if a differentiable function
𝑦(𝑡) is a solution of the inequality |𝑦(𝑡)−𝑦(𝑡)| ≤ 𝜀 for any 𝑡 ∈
(𝑎,∞), then there exists a constant 𝑐 such that |𝑦(𝑡)−𝑐𝑒𝑡| ≤ 3𝜀
for all 𝑡 ∈ (𝑎,∞).

Those previous results were extended to the Hyers-Ulam
stability of linear differential equations of first order and
higher order with constant coefficients in [10–13], respec-
tively. Furthermore, Jung has also proved the Hyers-Ulam
stability of linear differential equations (see [14–17]). Rus
investigated the Hyers-Ulam stability of differential and inte-
gral equations using the Gronwall lemma and the technique
of weakly Picard operators (see [18, 19]). Recently, the Hyers-
Ulam stability problems of linear differential equations of
first order and second order with constant coefficients were
studied by using the method of integral factors (see [20, 21]).
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The results given in [10, 15, 20] have been generalized by
Cimpean and Popa [22] and by Popa and Raşa [23, 24] for
the linear differential equations of 𝑛th order with constant
coefficients. Furthermore, the Laplace transformmethod was
recently applied to the proof of the Hyers-Ulam stability of
linear differential equations (see [25]).

This paper consists of two main sections. In Section 2,
we introduce some sufficient conditions under which each
solution of the linear differential equation (11) is bounded.
In Section 3, we prove the Hyers-Ulam stability of the
linear differential equations of the form (11) as well as the
nonlinear differential equations of the form (55) by using the
Gronwall lemma that was recently introduced by Rus [18, 19]
in studying theHyers-Ulam stability of differential equations.

One of the advantages of this paper is that the authors
have applied the Gronwall lemma, which is now recognized
as a powerful method, for proving the Hyers-Ulam stability
of various differential equations of second order.

2. Preliminaries

In this section, we first introduce and prove a lemma which
is a kind of the Gronwall inequality.

Lemma 1. Let 𝑢, 𝜐 : [0,∞) → [0,∞) be integrable functions,
let 𝑐 > 0 be a constant, and let 𝑡

0
≥ 0 be given. If 𝑢 satisfies the

inequality

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡0

𝑢 (𝜏) 𝜐 (𝜏) 𝑑𝜏 (5)

for all 𝑡 ≥ 𝑡
0
, then

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑡0

𝜐 (𝜏) 𝑑𝜏) (6)

for all 𝑡 ≥ 𝑡
0
.

Proof. It follows from (5) that

𝑢 (𝑡) 𝜐 (𝑡)

𝑐 + ∫
𝑡

𝑡0

𝑢 (𝜏) 𝜐 (𝜏) 𝑑𝜏

≤ 𝜐 (𝑡) (7)

for all 𝑡 ≥ 𝑡
0
. Integrating both sides of the last inequality from

𝑡
0
to 𝑡, we obtain

ln(𝑐 + ∫
𝑡

𝑡0

𝑢 (𝜏) 𝜐 (𝜏) 𝑑𝜏) − ln 𝑐 ≤ ∫
𝑡

𝑡0

𝜐 (𝜏) 𝑑𝜏 (8)

or

𝑐 + ∫

𝑡

𝑡0

𝑢 (𝜏) 𝜐 (𝜏) 𝑑𝜏 ≤ 𝑐 exp(∫
𝑡

𝑡0

𝜐 (𝜏) 𝑑𝜏) (9)

for each 𝑡 ≥ 𝑡
0
, which together with (5) implies that

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑡0

𝜐 (𝜏) 𝑑𝜏) (10)

for all 𝑡 ≥ 𝑡
0
.

In the following theorem, using Lemma 1, we investigate
sufficient conditions under which every solution of the
differential equation

𝑢


(𝑡) + (1 + 𝜓 (𝑡)) 𝑢 (𝑡) = 0 (11)

is bounded.

Theorem 2. Let 𝜓 : [0,∞) → R be a differentiable function.
Every solution 𝑢 : [0,∞) → R of the linear differential
equation (11) is bounded provided that ∫∞

0
|𝜓

(𝑡)|𝑑𝑡 < ∞ and

𝜓(𝑡) → 0 as 𝑡 → ∞.

Proof. First, we choose 𝑡
0
to be large enough so that 1+𝜓(𝑡) ≥

1/2 for all 𝑡 ≥ 𝑡
0
. Multiplying (11) by 𝑢(𝑡) and integrating it

from 𝑡
0
to 𝑡, we obtain

1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+ ∫

𝑡

𝑡0

𝜓 (𝜏) 𝑢 (𝜏) 𝑢


(𝜏) 𝑑𝜏 = 𝑐
1

(12)

for all 𝑡 ≥ 𝑡
0
. Integrating by parts, this yields
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+
1

2
𝜓 (𝑡) 𝑢(𝑡)

2

−
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏 = 𝑐

2

(13)

for any 𝑡 ≥ 𝑡
0
. Then it follows from (13) that
1

4
𝑢(𝑡)
2
≤
1

2
𝑢


(𝑡)
2
+
1

2
⋅
1

2
𝑢(𝑡)
2

≤
1

2
𝑢


(𝑡)
2
+
1

2
(1 + 𝜓 (𝑡)) 𝑢(𝑡)

2

= 𝑐
2
+
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏

(14)

for all 𝑡 ≥ 𝑡
0
. Thus, it holds that

𝑢(𝑡)
2
≤ 4𝑐
2
+ 2∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏

≤ 4
𝑐2
 + 2∫

𝑡

𝑡0


𝜓


(𝜏)

𝑢(𝜏)
2
𝑑𝜏

(15)

for any 𝑡 ≥ 𝑡
0
.

In view of Lemma 1, (15), and our hypothesis, there exists
a constant𝑀

1
> 0 such that

𝑢(𝑡)
2
≤ 4

𝑐2
 exp(∫

𝑡

𝑡0

2

𝜓


(𝜏)

𝑑𝜏) < 𝑀

2

1
(16)

for all 𝑡 ≥ 𝑡
0
. On the other hand, since 𝑢 is continuous, there

exists a constant𝑀
2
> 0 such that |𝑢(𝑡)| ≤ 𝑀

2
for all 0 ≤ 𝑡 ≤

𝑡
0
, which completes the proof.

Corollary 3. Let 𝜙 : [0,∞) → R be a differentiable function
satisfying 𝜙(𝑡) → 1 as 𝑡 → ∞. Every solution 𝑢 : [0,∞) →

R of the linear differential equation

𝑢


(𝑡) + 𝜙 (𝑡) 𝑢 (𝑡) = 0 (17)

is bounded provided that ∫∞
0
|𝜙

(𝑡)|𝑑𝑡 < ∞.
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3. Main Results on Hyers-Ulam Stability

Given constants 𝐿 > 0 and 𝑡
0
≥ 0, let𝑈(𝐿; 𝑡

0
) denote the set of

all functions 𝑢 : [𝑡
0
,∞) → R with the following properties:

(i) 𝑢 is twice continuously differentiable;
(ii) 𝑢(𝑡

0
) = 𝑢

(𝑡
0
) = 0;

(iii) ∫∞
𝑡0

|𝑢

(𝜏)|𝑑𝜏 ≤ 𝐿.

We now prove the Hyers-Ulam stability of the linear
differential equation (11) by using the Gronwall inequality.

Theorem 4. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume that

𝜓 : [𝑡
0
,∞) → R is a differentiable function with 𝐶 :=

∫
∞

𝑡0

|𝜓

(𝜏)|𝑑𝜏 < ∞ and 𝜆 := inf

𝑡≥𝑡0
𝜓(𝑡) > −1. If a function

𝑢 ∈ 𝑈(𝐿; 𝑡
0
) satisfies the inequality


𝑢


(𝑡) + (1 + 𝜓 (𝑡)) 𝑢 (𝑡)

≤ 𝜀 (18)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 ≥ 0, then there exist a solution

𝑢
0
∈ 𝑈(𝐿; 𝑡

0
) of the differential equation (11) and a constant

𝐾 > 0 such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤ 𝐾

√𝜀 (19)

for any 𝑡 ≥ 𝑡
0
, where

𝐾 := √
2𝐿

1 + 𝜆
exp( 𝐶

2 (1 + 𝜆)
) . (20)

Proof. Wemultiply (18) with |𝑢(𝑡)| to get

−𝜀

𝑢


(𝑡)

≤ 𝑢


(𝑡) 𝑢


(𝑡) + 𝑢 (𝑡) 𝑢


(𝑡) + 𝜓 (𝑡) 𝑢 (𝑡) 𝑢


(𝑡)

≤ 𝜀

𝑢


(𝑡)


(21)

for all 𝑡 ≥ 𝑡
0
. If we integrate each term of the last inequalities

from 𝑡
0
to 𝑡, then it follows from (ii) that

− 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+ ∫

𝑡

𝑡0

𝜓 (𝜏) 𝑢 (𝜏) 𝑢


(𝜏) 𝑑𝜏

≤ 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

(22)

for any 𝑡 ≥ 𝑡
0
.

Integrating by parts and using (iii), we have

− 𝜀𝐿 ≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+
1

2
𝜓 (𝑡) 𝑢(𝑡)

2

−
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏 ≤ 𝜀𝐿

(23)

for all 𝑡 ≥ 𝑡
0
.

Since 1 + 𝜆 > 0 holds for all 𝑡 ≥ 𝑡
0
, it follows from (23)

that

1 + 𝜆

2
𝑢(𝑡)
2
≤
1

2
𝑢


(𝑡)
2
+
1 + 𝜆

2
𝑢(𝑡)
2

≤
1

2
𝑢


(𝑡)
2
+
1

2
(1 + 𝜓 (𝑡)) 𝑢(𝑡)

2

≤ 𝜀𝐿 +
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏

≤ 𝜀𝐿 +
1

2
∫

𝑡

𝑡0


𝜓


(𝜏)

𝑢(𝜏)
2
𝑑𝜏

(24)

or

𝑢(𝑡)
2
≤

2𝐿𝜀

1 + 𝜆
+

1

1 + 𝜆
∫

𝑡

𝑡0


𝜓


(𝜏)

𝑢(𝜏)
2
𝑑𝜏 (25)

for any 𝑡 ≥ 𝑡
0
.

Applying Lemma 1, we obtain

𝑢(𝑡)
2
≤

2𝐿𝜀

1 + 𝜆
exp( 1

1 + 𝜆
∫

𝑡

𝑡0


𝜓


(𝜏)

𝑑𝜏)

≤
2𝐿𝜀

1 + 𝜆
exp( 𝐶

1 + 𝜆
)

(26)

for all 𝑡 ≥ 𝑡
0
. Hence, it holds that

|𝑢 (𝑡)| ≤ exp( 𝐶

2 (1 + 𝜆)
)√

2𝐿𝜀

1 + 𝜆
(27)

for any 𝑡 ≥ 𝑡
0
. Obviously, 𝑢

0
(𝑡) ≡ 0 satisfies (11) and the

conditions (i), (ii), and (iii) such that
𝑢 (𝑡) − 𝑢0 (𝑡)

 ≤ 𝐾
√𝜀 (28)

for all 𝑡 ≥ 𝑡
0
, where 𝐾 = √2𝐿/(1 + 𝜆) exp(𝐶/2(1 + 𝜆)).

If we set 𝜙(𝑡) := 1 + 𝜓(𝑡), then the following corollary is
an immediate consequence of Theorem 4.

Corollary 5. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume

that 𝜙 : [𝑡
0
,∞) → R is a differentiable function with 𝐶 :=

∫
∞

𝑡0

|𝜙

(𝜏)|𝑑𝜏 < ∞ and 𝜆 := inf

𝑡≥𝑡0
𝜙(𝑡) > 0. If a function

𝑢 ∈ 𝑈(𝐿; 𝑡
0
) satisfies the inequality


𝑢


(𝑡) + 𝜙 (𝑡) 𝑢 (𝑡)

≤ 𝜀 (29)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 ≥ 0, then there exist a solution

𝑢
0
∈ 𝑈(𝐿; 𝑡

0
) of the differential equation (17) and a constant

𝐾 > 0 such that
𝑢 (𝑡) − 𝑢0 (𝑡)

 ≤ 𝐾
√𝜀 (30)

for any 𝑡 ≥ 𝑡
0
, where 𝐾 := exp(𝐶/2𝜆)√2𝐿/𝜆.

Example 6. Let 𝜙 : [0,∞) → R be a constant function
defined by 𝜙(𝑡) := 𝑎 for all 𝑡 ≥ 0 and for a constant 𝑎 > 0.
Then, we have 𝐶 = ∫

∞

0
|𝜙

(𝜏)|𝑑𝜏 = 0 and 𝜆 = inf

𝑡≥0
𝜙(𝑡) = 𝑎.
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Assume that a twice continuously differentiable function 𝑢 :
[0,∞) → R satisfies 𝑢(0) = 𝑢


(0) = 0, ∫∞

0
|𝑢

(𝜏)|𝑑𝜏 ≤ 𝐿,

and

𝑢


(𝑡) + 𝜙 (𝑡) 𝑢 (𝑡)

=

𝑢


(𝑡) + 𝑎𝑢 (𝑡)

≤ 𝜀 (31)

for all 𝑡 ≥ 0 and for some 𝜀 ≥ 0 and 𝐿 > 0. According to
Corollary 5, there exists a solution 𝑢

0
: [0,∞) → R of the

differential equation, 𝑦(𝑡) + 𝑎𝑦(𝑡) = 0, such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤

√
2𝐿

𝑎
𝜀 (32)

for any 𝑡 ≥ 0.
Indeed, if we define a function 𝑢 : [0,∞) → R by

𝑢 (𝑡) :=
𝛼

(𝑡 + 1)
2
cos√𝑎𝑡 + 2𝛼

√𝑎(𝑡 + 1)
2
sin√𝑎𝑡 − 𝛼, (33)

where we set 𝛼 = (√𝑎/(𝑎 + √𝑎 + 2))𝐿, then 𝑢 satisfies the
conditions stated in the first part of this example, as we see in
the following. It follows from the definition of 𝑢 that

𝑢


(𝑡) = (
2𝛼

(𝑡 + 1)
2
−

2𝛼

(𝑡 + 1)
3
) cos√𝑎𝑡

− (
√𝑎𝛼

(𝑡 + 1)
2
+

4𝛼

√𝑎(𝑡 + 1)
3
) sin√𝑎𝑡

(34)

and, hence, we get 𝑢(0) = 𝑢(0) = 0. Moreover, we obtain

𝑢


(𝑡)

≤
2 + √𝑎

(𝑡 + 1)
2
𝛼 + (

4

√𝑎
− 2)

𝛼

(𝑡 + 1)
3
,

∫

∞

0


𝑢


(𝜏)

𝑑𝜏

= ∫

∞

0

2 + √𝑎

(𝜏 + 1)
2
𝛼𝑑𝜏 + ∫

∞

0

(
4

√𝑎
− 2)

𝛼

(𝜏 + 1)
3
𝑑𝜏

= (2 + √𝑎 ) 𝛼 + (
2

√𝑎
− 1)𝛼 = 𝐿.

(35)
For any given 𝜀 > 0, if we choose the constant 𝛼 such that
0 < 𝛼 ≤ √𝑎𝜀/(𝑎√𝑎 + 4𝑎 + 2√𝑎 + 12), then we can easily see
that

𝑢


(𝑡) + 𝑎𝑢 (𝑡)


≤



(−
8

(𝑡 + 1)
3
+

6

(𝑡 + 1)
4
)𝛼 cos√𝑎𝑡

+ (
4√𝑎

(𝑡 + 1)
3
+

1

√𝑎

12

(𝑡 + 1)
4
)𝛼 sin√𝑎𝑡 − 𝑎𝛼



≤ (
8

(𝑡 + 1)
3
−

6

(𝑡 + 1)
4
)𝛼

+ (
4√𝑎

(𝑡 + 1)
3
+

1

√𝑎

12

(𝑡 + 1)
4
)𝛼 + 𝑎𝛼

=
𝑎√𝑎 + 4𝑎 + 2√𝑎 + 12

√𝑎
𝛼 ≤ 𝜀

(36)

for any 𝑡 ≥ 0.

Theorem7. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume that𝜓 :

[𝑡
0
,∞) → (0,∞) is a monotone increasing and differentiable

function. If a function 𝑢 ∈ 𝑈(𝐿; 𝑡
0
) satisfies the inequality (18)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
∈ 𝑈(𝐿; 𝑡

0
) of the differential equation (11) such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤ √

2𝐿𝜀

𝜓 (𝑡
0
)

(37)

for any 𝑡 ≥ 𝑡
0
.

Proof. Wemultiply (18) with |𝑢(𝑡)| to get

− 𝜀

𝑢


(𝑡)


≤ 𝑢


(𝑡) 𝑢


(𝑡) + 𝑢 (𝑡) 𝑢


(𝑡) + 𝜓 (𝑡) 𝑢 (𝑡) 𝑢


(𝑡)

≤ 𝜀

𝑢


(𝑡)


(38)

for all 𝑡 ≥ 𝑡
0
. If we integrate each term of the last inequalities

from 𝑡
0
to 𝑡, then it follows from (ii) that

− 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+ ∫

𝑡

𝑡0

𝜓 (𝜏) 𝑢 (𝜏) 𝑢


(𝜏) 𝑑𝜏

≤ 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

(39)

for any 𝑡 ≥ 𝑡
0
.

Integrating by parts, the last inequalities together with
(iii) yield

− 𝜀𝐿 ≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+
1

2
𝜓 (𝑡) 𝑢(𝑡)

2

−
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏 ≤ 𝜀𝐿

(40)

for all 𝑡 ≥ 𝑡
0
. Then we have

1

2
𝜓 (𝑡) 𝑢(𝑡)

2
≤
1

2
∫

𝑡

𝑡0

𝜓


(𝜏) 𝑢(𝜏)
2
𝑑𝜏 + 𝜀𝐿

≤ 𝜀𝐿 + ∫

𝑡

𝑡0

𝜓

(𝜏)

𝜓 (𝜏)
𝑢(𝜏)
2
𝜓 (𝜏)

2
𝑑𝜏

(41)

for any 𝑡 ≥ 𝑡
0
.

Applying Lemma 1, we obtain

1

2
𝜓 (𝑡) 𝑢(𝑡)

2
≤ 𝜀𝐿 exp(∫

𝑡

𝑡0

𝜓

(𝜏)

𝜓 (𝜏)
𝑑𝜏) = 𝜀𝐿

𝜓 (𝑡)

𝜓 (𝑡
0
)

(42)

for all 𝑡 ≥ 𝑡
0
, since 𝜓 : [𝑡

0
,∞) → (0,∞) is a monotone

increasing function. Hence, it holds that

|𝑢 (𝑡)| ≤ √
2𝐿𝜀

𝜓 (𝑡
0
)

(43)

for any 𝑡 ≥ 𝑡
0
. Obviously, 𝑢

0
(𝑡) ≡ 0 satisfies (11), 𝑢

0
∈ 𝑈(𝐿; 𝑡

0
),

and the inequality (37) for all 𝑡 ≥ 𝑡
0
.
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Corollary 8. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume that

𝜙 : [𝑡
0
,∞) → (1,∞) is a monotone increasing and differ-

entiable function with 𝜙(𝑡
0
) = 2. If a function 𝑢 ∈ 𝑈(𝐿; 𝑡

0
)

satisfies the inequality

𝑢


(𝑡) + 𝜙 (𝑡) 𝑢 (𝑡)

≤ 𝜀 (44)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
∈ 𝑈(𝐿; 𝑡

0
) of the differential equation (17) such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤

√2𝐿𝜀 (45)

for any 𝑡 ≥ 𝑡
0
.

If we set 𝜙(𝑡) := −𝜓(𝑡), then the following corollary is an
immediate consequence of Theorem 7.

Corollary 9. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume that

𝜙 : [𝑡
0
,∞) → (−∞, 0) is a monotone decreasing and differ-

entiable function with 𝜙(𝑡
0
) = −1. If a function 𝑢 ∈ 𝑈(𝐿; 𝑡

0
)

satisfies the inequality

𝑢


(𝑡) + (1 − 𝜙 (𝑡)) 𝑢 (𝑡)

≤ 𝜀 (46)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
∈ 𝑈(𝐿; 𝑡

0
) of the differential equation

𝑢


(𝑡) + (1 − 𝜙 (𝑡)) 𝑢 (𝑡) = 0 (47)

such that
𝑢 (𝑡) − 𝑢0 (𝑡)

 ≤
√2𝐿𝜀 (48)

for any 𝑡 ≥ 𝑡
0
.

Example 10. Let 𝜙 : [0,∞) → (−∞, 0) be a monotone dec-
reasing function defined by 𝜙(𝑡) := 𝑒

−𝑡
− 2 for all 𝑡 ≥ 0.

Then, we have 𝜙(0) = −1. Assume that a twice continuously
differentiable function 𝑢 : [0,∞) → R satisfies 𝑢(0) = 𝑢(0)
= 0, ∫∞
0
|𝑢

(𝜏)|𝑑𝜏 ≤ 𝐿, and


𝑢


(𝑡) + (1 − 𝜙 (𝑡)) 𝑢 (𝑡)

=

𝑢


(𝑡) + (3 − 𝑒
−𝑡
) 𝑢 (𝑡)


≤ 𝜀

(49)

for all 𝑡 ≥ 0 and for some 𝜀 > 0 and 𝐿 > 0. According to
Corollary 9, there exists a solution 𝑢

0
: [0,∞) → R of the

differential equation, 𝑦(𝑡) + (3 − 𝑒−𝑡)𝑦(𝑡) = 0, such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤

√2𝐿𝜀 (50)

for any 𝑡 ≥ 0.
Indeed, if we define a function 𝑢 : [0,∞) → R by

𝑢 (𝑡) :=
𝛼

(𝑡 + 1)
3
sin 𝑡 + 1

2

𝛼

(𝑡 + 1)
2
cos 𝑡 − 𝛼

2
, (51)

where 𝛼 is a real number with |𝛼| ≤ (2/43)𝜀, then 𝑢 satisfies
the conditions stated in the first part of this example, as we
see in the following. It follows from the definition of 𝑢 that

𝑢


(𝑡) = −
3𝛼

(𝑡 + 1)
4
sin 𝑡 − 1

2

𝛼

(𝑡 + 1)
2
sin 𝑡 (52)

and, hence, we get 𝑢(0) = 𝑢(0) = 0. Moreover, we obtain

𝑢


(𝑡)

≤

3 |𝛼|

(𝑡 + 1)
4
+
1

2

|𝛼|

(𝑡 + 1)
2
,

∫

∞

0


𝑢


(𝜏)

𝑑𝜏 ≤ ∫

∞

0

3 |𝛼|

(𝜏 + 1)
4
𝑑𝜏 + ∫

∞

0

1

2

|𝛼|

(𝜏 + 1)
2
𝑑𝜏

=: 𝐿 < ∞.

(53)

We can see that

𝑢


(𝑡) + (3 − 𝑒
−𝑡
) 𝑢 (𝑡)



≤



12𝛼

(𝑡 + 1)
5
sin 𝑡 − 3𝛼

(𝑡 + 1)
4
cos 𝑡

+ (4 − 𝑒
−𝑡
)

𝛼

(𝑡 + 1)
3
sin 𝑡

+
2 − 𝑒
−𝑡

2

𝛼

(𝑡 + 1)
2
cos 𝑡 − 3 − 𝑒

−𝑡

2
𝛼



≤
12 |𝛼|

(𝑡 + 1)
5
+

3 |𝛼|

(𝑡 + 1)
4
+

4 |𝛼|

(𝑡 + 1)
3
+

|𝛼|

(𝑡 + 1)
2
+
3

2
|𝛼|

≤
43

2
|𝛼| ≤ 𝜀

(54)

for any 𝑡 ≥ 0.

Now, we investigate the Hyers-Ulam stability of the
nonlinear differential equation

𝑢


(𝑡) + 𝐹 (𝑡, 𝑢 (𝑡)) = 0. (55)

Theorem 11. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume

that 𝐹 : [𝑡
0
,∞) × R → (0,∞) is a function satisfying

𝐹

(𝑡, 𝑢(𝑡))/𝐹(𝑡, 𝑢(𝑡)) > 0 and 𝐹(𝑡, 0) = 1 for all 𝑡 ≥ 𝑡

0
and

𝑢 ∈ 𝑈(𝐿; 𝑡
0
). If a function 𝑢 : [𝑡

0
,∞) → [0,∞) satisfies

𝑢 ∈ 𝑈(𝐿; 𝑡
0
) and the inequality


𝑢


(𝑡) + 𝐹 (𝑡, 𝑢 (𝑡))

≤ 𝜀 (56)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
: [𝑡
0
,∞) → [0,∞) of the differential equation (55) such

that
𝑢 (𝑡) − 𝑢0 (𝑡)

 ≤ 𝐿𝜀 (57)

for any 𝑡 ≥ 𝑡
0
.

Proof. Wemultiply (56) with |𝑢(𝑡)| to get

−𝜀

𝑢


(𝑡)

≤ 𝑢


(𝑡) 𝑢


(𝑡) + 𝐹 (𝑡, 𝑢 (𝑡)) 𝑢


(𝑡) ≤ 𝜀

𝑢


(𝑡)


(58)

for all 𝑡 ≥ 𝑡
0
. If we integrate each term of the last inequalities

from 𝑡
0
to 𝑡, then it follows from (ii) that

−𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏 ≤

1

2
𝑢


(𝑡)
2
+ ∫

𝑡

𝑡0

𝐹 (𝜏, 𝑢 (𝜏)) 𝑢


(𝜏) 𝑑𝜏

≤ 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

(59)

for any 𝑡 ≥ 𝑡
0
.
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Integrating by parts and using (iii), the last inequalities
yield

−𝜀𝐿 ≤
1

2
𝑢


(𝑡)
2
+ 𝐹 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) − ∫

𝑡

𝑡0

𝐹


(𝜏, 𝑢 (𝜏)) 𝑢 (𝜏) 𝑑𝜏

≤ 𝜀𝐿

(60)

for all 𝑡 ≥ 𝑡
0
. Then we have

𝐹 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) ≤ 𝜀𝐿 + ∫

𝑡

𝑡0

𝐹


(𝜏, 𝑢 (𝜏)) 𝑢 (𝜏) 𝑑𝜏

≤ 𝜀𝐿 + ∫

𝑡

𝑡0

𝐹

(𝜏, 𝑢 (𝜏))

𝐹 (𝜏, 𝑢 (𝜏))
𝐹 (𝜏, 𝑢 (𝜏)) 𝑢 (𝜏) 𝑑𝜏

(61)

for any 𝑡 ≥ 𝑡
0
.

Applying Lemma 1, we obtain

𝐹 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) ≤ 𝜀𝐿 exp(∫
𝑡

𝑡0

𝐹

(𝜏, 𝑢 (𝜏))

𝐹 (𝜏, 𝑢 (𝜏))
𝑑𝜏)

= 𝜀𝐿𝐹 (𝑡, 𝑢 (𝑡))

(62)

for all 𝑡 ≥ 𝑡
0
. Hence, it holds that |𝑢(𝑡)| ≤ 𝐿𝜀 for any 𝑡 ≥ 𝑡

0
.

Obviously, 𝑢
0
(𝑡) ≡ 0 satisfies (55) and 𝑢

0
∈ 𝑈(𝐿; 𝑡

0
) such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤ 𝐿𝜀 (63)

for all 𝑡 ≥ 𝑡
0
.

In the following theorem, we investigate the Hyers-Ulam
stability of the Emden-Fowler nonlinear differential equation
of second order

𝑢


(𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛼
= 0 (64)

for the case where 𝛼 is a positive odd integer.

Theorem 12. Given constants 𝐿 > 0 and 𝑡
0
≥ 0, assume that

ℎ : [𝑡
0
,∞) → (0,∞) is a differentiable function. Let 𝛼 be an

odd integer larger than 0. If a function 𝑢 : [𝑡
0
,∞) → [0,∞)

satisfies 𝑢 ∈ 𝑈(𝐿; 𝑡
0
) and the inequality

𝑢


(𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛼
≤ 𝜀 (65)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
: [𝑡
0
,∞) → [0,∞) of the differential equation (64) such

that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤ (

𝛽𝐿𝜀

ℎ (𝑡
0
)
)

1/𝛽

(66)

for any 𝑡 ≥ 𝑡
0
, where 𝛽 := 𝛼 + 1.

Proof. Wemultiply (65) with |𝑢(𝑡)| to get

−𝜀

𝑢


(𝑡)

≤ 𝑢


(𝑡) 𝑢


(𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛼
𝑢


(𝑡)

≤ 𝜀

𝑢


(𝑡)


(67)

for all 𝑡 ≥ 𝑡
0
. If we integrate each term of the last inequalities

from 𝑡
0
to 𝑡, then it follows from (ii) that

−𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏 ≤

1

2
𝑢


(𝑡)
2
+ ∫

𝑡

𝑡0

ℎ (𝜏) 𝑢(𝜏)
𝛼
𝑢


(𝜏) 𝑑𝜏

≤ 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

(68)

for any 𝑡 ≥ 𝑡
0
.

Integrating by parts and using (iii), the last inequalities
yield

−𝜀𝐿 ≤
1

2
𝑢


(𝑡)
2
+ ℎ (𝑡)

𝑢(𝑡)
𝛼+1

𝛼 + 1
− ∫

𝑡

𝑡0

ℎ


(𝜏)
𝑢(𝜏)
𝛼+1

𝛼 + 1
𝑑𝜏 ≤ 𝜀𝐿

(69)

for all 𝑡 ≥ 𝑡
0
. Then we have

ℎ (𝑡)
𝑢(𝑡)
𝛼+1

𝛼 + 1
≤ 𝜀𝐿 + ∫

𝑡

𝑡0

ℎ


(𝜏)
𝑢(𝜏)
𝛼+1

𝛼 + 1
𝑑𝜏

≤ 𝜀𝐿 + ∫

𝑡

𝑡0

ℎ

(𝜏)

ℎ (𝜏)
ℎ (𝜏)

𝑢(𝜏)
𝛼+1

𝛼 + 1
𝑑𝜏

(70)

for any 𝑡 ≥ 𝑡
0
.

Applying Lemma 1, we obtain

ℎ (𝑡)
𝑢(𝑡)
𝛼+1

𝛼 + 1
≤ 𝜀𝐿 exp(∫

𝑡

𝑡0

ℎ

(𝜏)

ℎ (𝜏)
𝑑𝜏) ≤ 𝜀𝐿

ℎ (𝑡)

ℎ (𝑡
0
)

(71)

for all 𝑡 ≥ 𝑡
0
, from which we have

𝑢(𝑡)
𝛼+1

≤
(𝛼 + 1) 𝐿𝜀

ℎ (𝑡
0
)

(72)

for all 𝑡 ≥ 𝑡
0
. Hence, it holds that

|𝑢 (𝑡)| ≤ (
𝛽𝐿𝜀

ℎ (𝑡
0
)
)

1/𝛽

(73)

for any 𝑡 ≥ 𝑡
0
, where we set 𝛽 = 𝛼 + 1. Obviously, 𝑢

0
(𝑡) ≡ 0

satisfies (64) and 𝑢
0
∈ 𝑈(𝐿; 𝑡

0
). Moreover, we get

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤ (

𝛽𝐿𝜀

ℎ (𝑡
0
)
)

1/𝛽

(74)

for all 𝑡 ≥ 𝑡
0
.

Given constants 𝐿 ≥ 0,𝑀 > 0, and 𝑡
0
≥ 0, let 𝑈(𝐿;𝑀; 𝑡

0
)

denote the set of all functions 𝑢 : [𝑡
0
,∞) → R with the

following properties:

(i) 𝑢 is twice continuously differentiable;
(ii) 𝑢(𝑡

0
) = 𝑢

(𝑡
0
) = 0;

(iii) |𝑢(𝑡)| ≤ 𝐿 for all 𝑡 ≥ 𝑡
0
;

(iv) ∫∞
𝑡0

|𝑢

(𝜏)|𝑑𝜏 ≤ 𝑀 for all 𝑡 ≥ 𝑡

0
.
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We now investigate the Hyers-Ulam stability of the
differential equation of the form

𝑢


(𝑡) + 𝑢 (𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛽
= 0, (75)

where 𝛽 is a positive odd integer.

Theorem 13. Given constants 𝐿 ≥ 0, 𝑀 > 0, and 𝑡
0
≥ 0,

assume that ℎ : [𝑡
0
,∞) → [0,∞) is a function satisfying

𝐶 := ∫
∞

𝑡0

|ℎ

(𝜏)|𝑑𝜏 < ∞. Let 𝛽 be an odd integer larger than 0.

If a function 𝑢 ∈ 𝑈(𝐿;𝑀; 𝑡
0
) satisfies the inequality


𝑢


(𝑡) + 𝑢 (𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛽
≤ 𝜀 (76)

for all 𝑡 ≥ 𝑡
0
and for some 𝜀 > 0, then there exists a solution

𝑢
0
: [𝑡
0
,∞) → R of the differential equation (75) such that

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤

√2𝑀𝜀 exp(𝐶𝐿
𝛽−1

𝛽 + 1
) (77)

for any 𝑡 ≥ 𝑡
0
.

Proof. Wemultiply (76) with |𝑢(𝑡)| to get

−𝜀

𝑢


(𝑡)

≤ 𝑢


(𝑡) 𝑢


(𝑡) + 𝑢 (𝑡) 𝑢


(𝑡) + ℎ (𝑡) 𝑢(𝑡)
𝛽
𝑢


(𝑡)

≤ 𝜀

𝑢


(𝑡)


(78)

for all 𝑡 ≥ 𝑡
0
. If we integrate each term of the last inequalities

from 𝑡
0
to 𝑡, then it follows from (ii) that

− 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+ ∫

𝑡

𝑡0

ℎ (𝜏) 𝑢(𝜏)
𝛽
𝑢


(𝜏) 𝑑𝜏

≤ 𝜀∫

𝑡

𝑡0


𝑢


(𝜏)

𝑑𝜏

(79)

for any 𝑡 ≥ 𝑡
0
.

Integrating by parts and using (ii) and (iv), the last
inequalities yield

− 𝜀𝑀 ≤
1

2
𝑢


(𝑡)
2
+
1

2
𝑢(𝑡)
2
+ ℎ (𝑡)

1

𝛽 + 1
𝑢(𝑡)
𝛽+1

−
1

𝛽 + 1
∫

𝑡

𝑡0

ℎ


(𝜏) 𝑢(𝜏)
𝛽+1
𝑑𝜏 ≤ 𝜀𝑀

(80)

for all 𝑡 ≥ 𝑡
0
. Then it follows from (iii) that

1

2
𝑢(𝑡)
2
≤ 𝜀𝑀 +

1

𝛽 + 1
∫

𝑡

𝑡0

ℎ


(𝜏) 𝑢(𝜏)
𝛽+1
𝑑𝜏

≤ 𝜀𝑀 +
2

𝛽 + 1
∫

𝑡

𝑡0

1

2
𝑢(𝜏)
2
ℎ


(𝜏) 𝑢(𝜏)
𝛽−1
𝑑𝜏

≤ 𝜀𝑀 +
2

𝛽 + 1
∫

𝑡

𝑡0

1

2
𝑢(𝜏)
2 
ℎ


(𝜏)

|𝑢(𝜏)|
𝛽−1
𝑑𝜏

≤ 𝜀𝑀 +
2𝐿
𝛽−1

𝛽 + 1
∫

𝑡

𝑡0

1

2
𝑢(𝜏)
2 
ℎ


(𝜏)

𝑑𝜏

(81)

for any 𝑡 ≥ 𝑡
0
.

Applying Lemma 1, we obtain

1

2
𝑢(𝑡)
2
≤ 𝜀𝑀 exp(∫

𝑡

𝑡0

2𝐿
𝛽−1

𝛽 + 1


ℎ


(𝜏)

𝑑𝜏)

≤ 𝜀𝑀 exp(2𝐶𝐿
𝛽−1

𝛽 + 1
)

(82)

for all 𝑡 ≥ 𝑡
0
. Hence, it holds that

|𝑢 (𝑡)| ≤ √2𝑀𝜀 exp(𝐶𝐿
𝛽−1

𝛽 + 1
) (83)

for any 𝑡 ≥ 𝑡
0
. Obviously, 𝑢

0
(𝑡) ≡ 0 satisfies (75) and 𝑢

0
∈

𝑈(𝐿;𝑀; 𝑡
0
). Furthermore, we get

𝑢 (𝑡) − 𝑢0 (𝑡)
 ≤

√2𝑀𝜀 exp(𝐶𝐿
𝛽−1

𝛽 + 1
) (84)

for all 𝑡 ≥ 𝑡
0
.
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