
Research Article
Automorphisms of Ordinary Differential Equations

Václav Tryhuk and Veronika Chrastinová

Department of Mathematics, Faculty of Civil Engineering, Brno University of Technology, Veveř́ı 331/95, 602 00 Brno, Czech Republic
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The paper deals with the local theory of internal symmetries of underdetermined systems of ordinary differential equations in full
generality. The symmetries need not preserve the choice of the independent variable, the hierarchy of dependent variables, and
the order of derivatives. Internal approach to the symmetries of one-dimensional constrained variational integrals is moreover
proposed without the use of multipliers.

1. Preface

The theory of symmetries of determined systems (the solution
depends on constants) of ordinary differential equations
was ultimately established in Lie’s and Cartan’s era in the
most possible generality and the technical tools (infinitesimal
transformations and moving frames) are well known. Recall
that the calculations are performed in finite-dimensional
spaces given in advance and the results are expressed in terms
of Lie groups or Lie-Cartan pseudogroups.

We deal with underdetermined systems (more unknown
functions than the number of equations) of ordinary dif-
ferential equations here. Then the symmetry problem is
rather involved. Even the system of three first-order quasi-
linear equations with four unknown functions (equivalently,
three Pfaffian equations with five variables) treated in the
famous Cartan’s article [1] and repeatedly referred to in
actual literature was not yet clearly explained in detail.
Paradoxically, the common tools (the calculations in given
finite-order jet space) are quite sufficient for this particular
example. We will later see that they are insufficient to analyze
the seemingly easier symmetry problem of one first-order
equation with three unknown functions (alternatively, two
Pfaffian equations with five variables) in full generality since
the order of derivatives need not be preserved in this case
and the finite-order jet spaces may be destroyed. Recall that
even the higher-order symmetries (automorphisms) of empty
systems of differential equations (i.e., of the infinite order

jet spaces without any additional differential constraints) are
nontrivial [2–4] and cannot be included into the classical Lie-
Cartan theory of transformation groups. Such symmetries
need not preserve any finite-dimensional space and therefore
the invariant differential forms (the Maurer-Cartan forms,
the moving coframes) need not exist.

Let us outline the very core of the subject for better
clarity by using the common jet terminology. We start with
the higher-order transformations of curves 𝑤

𝑖
= 𝑤

𝑖
(𝑥)

(𝑖 = 1, . . . , 𝑚) lying in the space R𝑚+1 with coordinates
𝑥, 𝑤

1
, . . . , 𝑤

𝑚. The transformations are defined by certain
formulae

𝑥 = 𝑊(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .) ,

𝑤
𝑖
= 𝑊

𝑖
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .) (𝑖 = 1, . . . , 𝑚) ,

(1)

where the 𝐶∞-smooth real-valued functions 𝑊,𝑊𝑖 depend
on a finite number of the familiar jet variables

𝑤
𝑗

𝑠
=

𝑑
𝑠
𝑤
𝑗

𝑑𝑥
𝑠

(𝑗 = 1, . . . , 𝑚; 𝑠 = 0, 1, . . .) . (2)

The resulting curve 𝑤𝑖
= 𝑤

𝑖
(𝑥) (𝑖 = 1, . . . , 𝑚) again lying in

R𝑚+1 appears as follows. We put

𝑥 = 𝑊(𝑥, . . . ,

𝑑
𝑠
𝑤
𝑗
(𝑥)

𝑑𝑥
𝑠

, . . .) = 𝑤 (𝑥) (3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 482963, 32 pages
http://dx.doi.org/10.1155/2014/482963

http://dx.doi.org/10.1155/2014/482963


2 Abstract and Applied Analysis

and assuming

𝑤

(𝑥) = (𝐷𝑊)(𝑥, . . . ,

𝑑
𝑠
𝑤
𝑗
(𝑥)

𝑑𝑥
𝑠

, . . .) ̸= 0

(𝐷 =

𝜕

𝜕𝑥

+∑𝑤
𝑗

𝑠+1

𝜕

𝜕𝑤
𝑗

𝑠

) ,

(4)

there exists the inverse function 𝑥 = 𝑤
−1
(𝑥) which provides

the desired result

𝑤
𝑖
(𝑥) = 𝑊

𝑖
(𝑤

−1
(𝑥) , . . . ,

𝑑
𝑠
𝑤
𝑗

𝑑𝑥
𝑠
(𝑤

−1
(𝑥)) , . . .) . (5)

One can also easily obtain the well-known prolongation
formula

𝑤
𝑖

𝑠
= 𝑊

𝑖

𝑠
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .)

(𝑊
𝑖

𝑠+1
=

𝐷𝑊
𝑖

𝑠

𝐷𝑊

; 𝑖 = 1, . . . , 𝑚; 𝑠 = 0, 1, . . . ;𝑊
𝑖

0
= 𝑊

𝑖
)

(6)

for the derivatives 𝑤𝑖

𝑟
= 𝑑

𝑟
𝑤
𝑖
/𝑑𝑥

𝑟 by using the Pfaffian
equations

𝑑𝑤
𝑖

𝑟
− 𝑤

𝑖

𝑟+1
𝑑𝑥 = 0 (𝑖 = 1, . . . , 𝑚; 𝑟 = 0, 1, . . .) . (7)

Functions𝑊 satisfying (4) and𝑊𝑖 may be arbitrary here.
At this place, in order to obtain coherent theory, introduc-

tion of the familiar infinite-order jet space of 𝑥-parametrized
curves briefly designated asM(𝑚)with coordinates 𝑥, 𝑤𝑖

𝑟
(𝑖 =

1, . . . , 𝑚; 𝑟 = 0, 1, . . .) is necessary. Then formulae ((1), (6))
determine amappingm : M(𝑚) → M(𝑚), amorphism of the
jet spaceM(𝑚). If the inversem−1 given by certain formulae

𝑥 = 𝑊(𝑥, . . . , 𝑤
𝑗

𝑠
, . . .) ,

𝑤
𝑖

𝑟
= 𝑊

𝑖

𝑟
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .) (𝑖 = 1, . . . , 𝑚; 𝑟 = 0, 1, . . .)

(8)

exists, we speak of an automorphism (in alternative common
terms, symmetry)m of the jet spaceM(𝑚). It should be noted
that we tacitly deal with the local theory in the sense that
all formulae and identities, all mappings, and transformation
groups to follow are in fact considered only on certain
open subsets of the relevant underlying spaces which is not
formally declared by the notation. Expressively saying, in
order to avoid the clumsy purism, we follow the reasonable
19th century practice and do not rigorously indicate the true
definition domains.

After this preparation, a system of differential equations is
traditionally identified with the subspace M ⊂ M(𝑚) given
by certain equations

𝐷
𝑟
𝐺
𝑘
= 0

(𝑘 = 1, . . . 𝐾; 𝑟 = 0, 1, . . . ; 𝐺
𝑘
= 𝐺

𝑘
(𝑥, . . . , 𝑤

𝑗

𝑠
, . . .)) .

(9)

(We tacitly suppose that M ⊂ M(𝑚) is a “reasonable
subspace” and omit the technical details.)This is the infinitely

prolonged system. The total derivative vector field 𝐷 defined
on M(𝑚) is tangent to the subspace M ⊂ M(𝑚) and may
be regarded as a vector field on M, as well. The morphism
m : M(𝑚) → M(𝑚) transforms M ⊂ M(𝑚) into the
subspacemM ⊂ mM(𝑚) ⊂ M(𝑚) given by the equations

(𝐷
𝑟
𝐺
𝑘
) (𝑊, . . . ,𝑊

𝑗

𝑠
, . . .) = 0

(𝑘 = 1, . . . , 𝐾; 𝑟 = 0, 1, . . .) .

(10)

This is again a system of differential equations. In our paper,
we are interested only in the particular case whenmM = M.
Then, if the inversem−1 locally exists on a neighbourhood of
the subspaceM ⊂ M(𝑚) in the total jet space, we speak of the
external symmetry m of the system of differential equations
(9). Let us, however, deal with the natural restriction m :

M → M of the mapping m to the subspace M. If there
exists the inverse m−1

: M → M of the restriction, we
speak of the internal symmetry. Internal symmetries do not
depend on the localizations of M in M(𝑚). More precisely,
differential equations can be introduced without any ref-
erence to jet spaces and the internal symmetries can be
defined without the use of localizations. On this occasion, we
are also interested in groups of internal symmetries. They are
generated by special vector fields, the infinitesimal symme-
tries.

In the actual literature, differential equations are as a rule
considered in finite-dimensional jet spaces.Then the internal
and external symmetries become rather delicate and differ
from our concepts since the higher-order symmetries are
not taken into account. We will not discuss such conceptual
confusion in this paper with the belief that the following two
remarks (and Remark 5) should be quite sufficient in this
respect.

Remark 1 (on the symmetries). The true structure of the jet
spaceM(𝑚) is determined by the contactmodule Ω(𝑚)which
involves all contact forms

𝜔 = ∑𝑎
𝑖

𝑟
𝜔
𝑖

𝑟

(𝜔
𝑖

𝑟
= 𝑑𝑤

𝑖

𝑟
− 𝑤

𝑖

𝑟+1
𝑑𝑥, finite sum, arbitrary coefficients) .

(11)

Then the above morphisms m : M(𝑚) → M(𝑚) given in
((1), (6)) are characterized by the propertym∗

Ω(𝑚) ⊂ Ω(𝑚).
Recall that invertible morphisms are automorphisms. Let us
introduce the subspace i : M ⊂ M(𝑚) of all points (9).
This M is equipped with the restriction Ω = i∗Ω(𝑚) of the
contact module. Recall that we are interested only in the case
mM = M (abbreviation of miM = iM). Let m : M →

M be the restriction of m. If m is a morphism then m is
a morphism in the sense thatm∗

Ω ⊂ Ω. Recall that we have
the internal symmetry, if m is moreover invertible. If also m
is invertible, we have the external symmetry m. The internal
symmetries can be defined without any reference to m and
M(𝑚) as follows. Letm : M → M be any invertible mapping
such that m∗

Ω ⊂ Ω. This m can be always extended to
a morphism m : M(𝑚) → M(𝑚) of the ambient jet space.
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(Hint, recurrence (6) holds true both inM(𝑚) and inM.) So
we may conclude that such m is just the internal symmetry.
Moreover, if there exists invertible extensionm ofm, thenm
is even the external symmetry but the latter concept already
depends on the localization i ofM inM(𝑚).

Remark 2 (on infinitesimal symmetries). Let us consider
a vector field

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝑧
𝑖

𝑟

𝜕

𝜕𝑤
𝑖

𝑟

(infinite sum, arbitrary coefficients)
(12)

on the jet spaceM(𝑚). Let us moreover supposeL
𝑍
Ω(𝑚) ⊂

Ω(𝑚) from now on (whereL
𝑍
denotes the Lie derivative see

alsoDefinition 8). In common terminology, such vector fields
𝑍 are called generalized (higher-order,Lie-Bäcklund) infinites-
imal symmetries of the jet space M(𝑚). However 𝑍 need not
in general generate any true group of transformations and we
therefore prefer the “unorthodox” term a variation 𝑍 here.
(See Section 7 and especially Remark 35 where the reasons
for this term are clarified.) The common term infinitesimal
symmetry is retained only for the favourable case when 𝑍

generates a local one-parameter Lie group [5]. Let us consider
the above subspace i : M ⊂ M(𝑚). If 𝑍 is tangent to M,
then there exists the natural restriction 𝑍 of 𝑍 to M. Clearly
L

𝑍
Ω ⊂ Ω and we speak of the (internal) variation 𝑍. If

𝑍 moreover generates a group in M, we have the (internal)
infinitesimal symmetry 𝑍. The internal concepts onM can be
easily introduced without any reference to the ambient space
M(𝑚). This is not the case for the concept of the external
infinitesimal symmetry 𝑍 which supposes that appropriate
extension 𝑍 of𝑍 on the ambient spaceM(𝑚) 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 a Lie
group.

We deal only with the internal symmetries and infinites-
imal symmetries in this paper. It is to be noted once more
that infinite-dimensional underlying spaces are necessary if
we wish to obtain a coherent theory. The common technical
tools invented in the finite-dimensional spaces will be only
slightly adapted; alas, the ingenious methods proposed, for
example, in [6–8] seem to be not suitable for this aim and so
we undertake the elementary approach [9] here.

2. Technical Tools

We introduce infinite-dimensional manifold M modelled
on the space R∞ with local coordinates ℎ1, ℎ2, . . . in full
accordance with [9]. The manifold M is equipped with the
structural algebra F(M) of 𝐶∞-smooth functions expressed
as 𝑓 = 𝑓(ℎ

1
, . . . , ℎ

𝑚(𝑓)
) in terms of coordinates. Transforma-

tions (mappings)m : M → M are (locally) given by certain
formulae

m∗
ℎ
𝑖
= 𝐻

𝑖
(ℎ

1
, . . . , ℎ

𝑚(𝑖)
) (𝐻

𝑖
∈ F (M) ; 𝑖 = 1, 2, . . .) ,

(13)

and analogous (invertible) formulae describe the change of
coordinates at the overlapping coordinate systems.

Let Φ(M) be theF(M)-module of differential 1-forms

𝜑 = ∑𝑓
𝑖
𝑑𝑔

𝑖
(𝑓

𝑖
, 𝑔

𝑖
∈ F (M) ; finite sum) . (14)

The familiar rules of exterior calculus can be applied without
any change, in particularm∗

𝜑 = ∑m∗
𝑓
𝑖
𝑑m∗

𝑔
𝑖 for the above

transformationm.
Let T(M) be the F(M)-module of vector fields 𝑍. In

terms of coordinates we have

𝑍 = ∑𝑧
𝑖 𝜕

𝜕ℎ
𝑖

(𝑧
𝑖
= 𝑧

𝑖
(ℎ

1
, . . . , ℎ

𝑚(𝑖)
) ∈ F (M) , infinite sum) ,

(15)

where the coefficients 𝑧𝑖 may be quite arbitrary. We identify
𝑍 with the linear functional on Φ(M) determined by the
familiar duality pairing

𝑑ℎ
𝑖
(𝑍) = 𝑍⌋ 𝑑ℎ

𝑖
= 𝑍ℎ

𝑖
= 𝑧

𝑖
(𝑖 = 1, 2, . . .) . (16)

With this principle in mind, if certain forms 𝜑1, 𝜑2, . . . ∈

Φ(M) generate theF(M)-module, then the values

𝜑
𝑖
(𝑍) = 𝑍⌋ 𝜑

𝑖
= 𝑧

𝑖
∈ F (M) (𝑖 = 1, 2, . . .) (17)

uniquely determine the vector field 𝑍 and (17) can be very
expressively (and unorthodoxly) recorded by

𝑍 = ∑𝑧
𝑖 𝜕

𝜕𝜑
𝑖

(𝑧
𝑖
= 𝜑

𝑖
(𝑍) ∈ F (M) , infinite sum) .

(18)

This is a mere symbolical record, not the true infinite series.
However, if 𝜑1, 𝜑2, . . . is a basis of the module Φ(M) in the
sense that every 𝜑 ∈ Φ(M) admits a unique representation
𝜑 = ∑𝑓

𝑖
𝜑
𝑖
(𝑓

𝑖
∈ F(M), finite sum) then the coefficients

𝑧
𝑖
can be quite arbitrary and (18) may be regarded as

a true infinite series.The arising vector fields 𝜕/𝜕𝜑1, 𝜕/𝜕𝜑2, . . .
provide a weak basis (infinite expansions, see [9]) of T(M)

dual to the basis 𝜑1, 𝜑1, . . . ofΦ(M). In this transcription, (15)
is alternatively expressed as

𝑍 = ∑𝑧
𝑖 𝜕

𝜕𝑑ℎ
𝑖

(𝑧
𝑖
∈ F (M) , infinite sum) . (19)

We recall the Lie derivative L
𝑍

= 𝑍⌋𝑑 + 𝑑𝑍⌋ acting on
exterior differential forms. The image m

∗
𝑍 of a vector field

defined by the property

m∗
(m

∗
𝑍)𝑓 = 𝑍m∗

𝑓 (𝑓 ∈ F (M)) (20)

need not exist. It is defined ifm is invertible.
We consider various submodules Ω ⊂ Φ(M) of differen-

tial forms together with the relevant orthogonal submodules
Ω
⊥
⊂ T(M) consisting of all vector fields 𝑍 ∈ T(M) such

that 𝜔(𝑍) = 0 (𝜔 ∈ Ω). The existence of (local) F(M)-
bases in all submodules ofΦ(M) to appear in our reasonings
is tacitly postulated. Dimension of an F(M)-module is the
number of elements of an F(M)-basis. Omitting some
“exceptional points,” it may be confused with the dimension
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of the corresponding R-module (the localization) at a fixed
place P ∈ M. On this occasion, it should be noted that the
image

m
∗
𝑍P ((m

∗
𝑍P)Q𝑓 = 𝑍P (m

∗
𝑓) ,mP = Q,P ∈ M) (21)

of a tangent vector 𝑍P at P exists as a vector at the place Q.
Let us also remark with regret that any rigorous expo-

sition of classical analysis in the infinite-dimensional space
R∞ is not yet available; however, certain adjustments of
finite-dimensional results are not difficult. For instance, the
following invertibility theoremwill latently occur in the proof
of Theorem 20.

Theorem 3. A mapping m : M → M is invertible if and
only if any of the following equivalent conditions is satisfied:
the pull-back m∗

: F(M) → F(M) is invertible, the pull-
back m∗

: Φ(M) → Φ(M) is invertible, and if 𝜑1, 𝜑2, . . . is
a (fixed, equivalently: arbitrary) basis of module Φ(M), then
m∗

𝜑
1
,m∗

𝜑
2
, . . . again is a basis.

Hint. A nonlinear version of the familiar Gauss elimination
procedure for infinite dimension [9] provides a direct proof
with difficulties concerning the definition domain of the
resulting inverse mapping. Nevertheless if m is moreover
a morphism of a diffiety (see Definition 8) then the prolon-
gation procedure ensures the local existence of m−1 in the
common sense.

3. Fundamental Concepts

We introduce a somewhat unusual intrinsical approach to
underdetermined systems of ordinary differential equations
in terms of the above underlying spaceM, a submodule Ω ⊂

Φ(M) of differential 1-forms, and its orthogonal submodule
H = Ω

⊥
⊂ T(M) of vector fields.

Definition 4. A codimension one submodule Ω ⊂ Φ(M) is
called a diffiety if there exists a good filtration

Ω
∗
: Ω

0
⊂ Ω

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω

𝑙 (22)

by finite-dimensional submodules Ω
𝑙
⊂ Ω (𝑙 = 0, 1, . . .) such

that

LHΩ𝑙
⊂ Ω

𝑙+1 (all 𝑙) ,

LHΩ𝑙
+ Ω

𝑙
= Ω

𝑙+1
(𝑙 large enough) .

(23)

To every subset Θ ⊂ Φ(M), let LHΘ ⊂ Φ(M) denote the
submodule with generators L

𝑍
𝜗 (𝑍 ∈ H, 𝜗 ∈ Θ). Since

Θ ⊂ LHΘ (easy), the second requirement (23) can be a little
formally simplified asLHΩ𝑙

= Ω
𝑙+1

.

Remark 5. This is a global coordinate-free definition; how-
ever, we again deal only with the local theory from now on
in the sense that the definition domains (of filtrations (22), of
independent variable 𝑥 to follow, and so on) are not specified.
It should be noted on this occasion that the common

geometrical approach [6–8] to differential equations rests
on the use of the rigid structure of finite-order jets. Many
classical concepts then become incorrect, if the higher-order
mappings are allowed but we cannot adequately discuss this
important topic here. Rather subtle difficulties are also passed
over already in the common approach to the fundamental
jet theory. For instance, smooth curves in the plane R2 with
coordinates 𝑥, 𝑦 are parametrized either by 𝑥 (i.e., 𝑦 = 𝑦(𝑥))
or by coordinate 𝑦 (i.e., 𝑥 = 𝑥(𝑦)) in the common so-called
“geometrical” approach [6–8]. However, then already the Lie’s
classical achievements concerning contact transformations
[10, 11] with curves parametrized either by 𝑝 = 𝑑𝑦/𝑑𝑥 or
by 𝑞 = 𝑑𝑥/𝑑𝑦 cannot be involved. Quite analogously, the
“higher-order” parameterizations and mappings [2–5] are in
fact rejected in the common “rigid” jet theory with a mere
point symmetries.

Definition 6. Let a differential 𝑑𝑥 (𝑥 ∈ F(M)) generate
together with Ω the total module Φ(M) of all differential 1-
forms.Then 𝑥 is called the independent variable to diffietyΩ.
The vector field𝐷 = 𝐷

𝑥
(abbreviation) such that

𝐷 ∈ H, 𝐷𝑥 = 𝑑𝑥 (𝐷) = 1

(symbolically 𝐷 =

𝜕

𝜕𝑑𝑥

+ ∑

𝜔∈Ω

0 ⋅

𝜕

𝜕𝜔

)

(24)

is called total (or formal) derivative of Ω with respect to the
independent variable 𝑥. This vector field 𝐷 is a basis of the
one-dimensional moduleH = Ω

⊥ for every fixed particular
choice of the independent variable 𝑥.

Remark 7. Let us state some simple properties of diffieties.
The proofs are quite easy and may be omitted. A form 𝜑 ∈

Φ(M) is lying in Ω if and only if 𝜑(𝐷) = 0. In particular
L

𝐷
Ω ⊂ Ω in accordance with the identities

L
𝐷
𝜔 = 𝐷⌋ 𝑑𝜔 + 𝑑𝜔 (𝐷) = 𝐷⌋ 𝑑𝜔,

(L
𝐷
𝜔) (𝐷) = 𝑑𝜔 (𝐷,𝐷) = 0

(𝜔 ∈ Ω) .

(25)

(This trivial property clarifies the more restrictive condition
(23).) Moreover clearly

𝐷𝑓𝑑𝑔 − 𝐷𝑔𝑑𝑓, 𝑑𝑓 − 𝐷𝑓𝑑𝑥 ∈ Ω

(𝑓, 𝑔 ∈ F (M))

(26)

and in particular

𝐷ℎ
𝑖
𝑑ℎ

𝑗
− 𝐷ℎ

𝑗
𝑑ℎ

𝑖
, 𝑑ℎ

𝑖
− 𝐷ℎ

𝑖
𝑑𝑥 ∈ Ω

(𝑖, 𝑗 = 1, 2, . . .)

(27)

for all coordinates. We have very useful F(M)-generators of
diffiety Ω. The independent variable and the filtrations (22)
can be capriciously modified. In particular the 𝑐-lift [9]

Ω
∗+𝑐

= Ω̃
∗
: Ω̃

0
⊂ Ω̃

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω̃

𝑙

(Ω̃
𝑙
= Ω

𝑙+𝑐
, 𝑐 = 0, 1, . . .)

(28)



Abstract and Applied Analysis 5

with 𝑐 large enough ensures that Ω̃
𝑙+1

= LHΩ̃𝑙
+ Ω̃

𝑙
for

all 𝑙 ≥ 0. We will be, however, interested just in the reverse
concept “Ω

∗−𝑐
” latently involved in the “standard adaptation”

of filtrations to appear later on.

Definition 8. A transformation m : M → M is called
amorphism of the diffiety Ω if m∗

Ω ⊂ Ω. Invertible
morphisms are automorphisms (or symmetries) ofΩ. A vector
field𝑍 ∈ T(M) satisfyingL

𝑍
Ω ⊂ Ω is called the variation of

Ω. If moreover 𝑍 (locally) generates a one-parameter group
of transformations, we speak of the infinitesimal symmetry 𝑍
of diffiety Ω.

Remark 9. Let us mention the transformation groups in
more detail. A local one-parameter group of transformations
m(𝜆) : M → M is given by certain formulae

m(𝜆)
∗
ℎ
𝑖
= 𝐻

𝑖
(ℎ

1
, . . . , ℎ

𝑚(𝑖)
; 𝜆) (𝑖 = 1, 2, . . . ; −𝜀 < 𝜆 < 𝜀)

(29)

in terms of local coordinates, where m(𝜆 + 𝜇) =

m(𝜆)m(𝜇), m(0) = 𝑖𝑑 is supposed. Then the special vector
field (15) defined by

𝑧
𝑖
=

𝜕

𝜕𝜆

m(𝜆)
∗
ℎ
𝑖







𝜆=0

=

𝜕

𝜕𝜆

𝐻
𝑖
(ℎ

1
, . . . , ℎ

𝑚(𝑖)
; 0)

(𝑖 = 1, 2, . . .)

(30)

is called the infinitesimal transformation of the group (29). In
the opposite direction, we recall that a general vector field (15)
generates the local group (29) if and only if the Lie system

𝜕𝐻
𝑖

𝜕𝜆

= 𝑧
𝑖
(𝐻

1
, . . . , 𝐻

𝑛(𝑖)
) , 𝐻

𝑖
(ℎ

1
, . . . , ℎ

𝑚(𝑖)
; 0) = ℎ

𝑖

(𝑖 = 1, 2, . . .)

(31)

is satisfied. Alas, a given vector field (19) need not in general
generate any transformation group since the Lie system need
not admit any solution (29).

With all fundamental concepts available, let us even-
tually recall the familiar and thoroughly discussed in [9]
interrelation between the diffieties and the corresponding
classical concept of differential equations for the convenience
of reader. In brief terms, the idea is quite simple. A given
system of differential equations is represented by a system of
Pfaffian equations𝜔 = 0 and themoduleΩ generated by such
1-forms 𝜔 is just the diffiety. More precisely, we deal with the
infinite prolongations as follows.

In one direction, let a system of underdetermined ordi-
nary differential equations be given. We may deal with the
first-order system

𝑑𝑤
𝑗

𝑑𝑥

= 𝑓
𝑗
(𝑥,𝑤

1
, . . . , 𝑤

𝑚
,

𝑑𝑤
𝐽+1

𝑑𝑥

, . . . ,

𝑑𝑤
𝑚

𝑑𝑥

)

(𝑗 = 1, . . . , 𝐽)

(32)

without any true loss of generality. Then (32) completed with

𝑑𝑤
𝑘

𝑠

𝑑𝑥

= 𝑤
𝑘

𝑠+1
(𝑤

𝑘

0
= 𝑤

𝑘
; 𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . .)

(33)

provides the infinite prolongation.The corresponding diffiety
Ω is generated by the forms

𝑑𝑤
𝑗
− 𝑓

𝑗
𝑑𝑥, 𝑑𝑤

𝑘

𝑠
− 𝑤

𝑘

𝑠+1
𝑑𝑥

(𝑗 = 1, . . . , 𝐽; 𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . .)

(34)

in the spaceM with coordinates

𝑤
𝑗

(𝑗 = 1, . . . , 𝐽) ,

𝑤
𝑘

𝑠
(𝑘 = 𝐽 + 1, . . . , 𝑚; 𝑠 = 0, 1, . . . ; 𝑤

𝑘

0
= 𝑤

𝑘
) .

(35)

Clearly

𝐷
𝑥
=

𝜕

𝜕𝑥

+∑𝑓
𝑗 𝜕

𝜕𝑤
𝑗
+∑𝑤

𝑘

𝑠+1

𝜕

𝜕𝑤
𝑘

𝑠

∈ H (36)

is the total derivative and the submodulesΩ
𝑙
⊂ Ω of all forms

(34) with 𝑠 ≤ 𝑙 determine a quite simple filtration (22) with
respect to the order of contact forms. (Hint: use the formulae

L
𝐷
(𝑑𝑤

𝑗
− 𝑓

𝑗
𝑑𝑥)

= ∑

𝜕𝑓
𝑗

𝜕𝑤
𝑗
(𝑑𝑤

𝑗
− 𝑓

𝑗
𝑑𝑥) +∑

𝜕𝑓
𝑗

𝜕𝑤
𝑗

1

(𝑑𝑤
𝑗

1
− 𝑤

𝑗

2
𝑑𝑥)

(37)

and L
𝐷
(𝑑𝑤

𝑗

𝑠
− 𝑤

𝑗

𝑠+1
𝑑𝑥) = 𝑑𝑤

𝑗

𝑠+1
− 𝑤

𝑗

𝑠+2
𝑑𝑥.) However, there

exist many other andmore useful filtrations; see the examples
to follow later on.

The particular case 𝐽 = 0 of the empty system (32) can
be easily related to the case of the jet space M(𝑚) of all 𝑥-
parametrized curves in R𝑚+1 of the Section 1. The relevant
diffiety is identified with the module Ω(𝑚) of all contact
forms (11), of course.

In the reverse direction, let a diffiety Ω be given on the
spaceM. In accordance with (27), the forms 𝑑ℎ𝑖 −𝐷ℎ𝑖𝑑𝑥 (𝑖 =

1, 2, . . .) generate Ω. So we have the Pfaffian system 𝑑ℎ
𝑖
−

𝐷ℎ
𝑖
𝑑𝑥 = 0 (𝑖 = 1, 2, . . .) and therefore the system of

differential equations

𝑑ℎ
𝑖

𝑑𝑥

= 𝑔
𝑖
(𝑥, ℎ

1
, . . . , ℎ

𝑚(𝑖)
) (𝑖 = 1, 2, . . . ; 𝑔

𝑖
= 𝐷ℎ

𝑖
) (38)

of rather unpleasant kind. Then, due to the existence of
a filtration (22) and (23), one can obtain also the above
classical system of differential equations (32) together with
the prolongation (33) by means of appropriate change of
coordinates [9]. This is, however, a lengthy procedure and
a shorter approach can be described as follows. Let the second
requirement (23) be satisfied, if 𝑙 ≥ 𝐿. Suppose that the forms
𝜔
𝑗
= ∑𝑎

𝑗

𝑖
𝑑ℎ

𝑖
(𝑗 = 1, . . . , 𝐽 = dimΩ

𝐿
) generate module Ω

𝐿
.

Then all forms

L
𝑘

𝐷
𝜔
𝑗

(𝑗 = 1, . . . , 𝐽; 𝑘 = 0, 1, . . .) (39)
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generate the diffiety Ω. The corresponding Pfaffian system
L𝑘

𝐷
𝜔
𝑗
= 0 is equivalent to certain infinite prolongation of

differential equations, namely,

𝜔
𝑗
= ∑𝑎

𝑗

𝑖
𝑑ℎ

𝑖
= 0 is equivalent to ∑𝑎

𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0,

L
𝐷
𝜔
𝑗
= ∑𝐷𝑎

𝑗

𝑖
𝑑ℎ

𝑖
+∑𝑎

𝑗

𝑖
𝑑𝐷ℎ

𝑖

= 0 is equivalent to 𝑑

𝑑𝑥

∑𝑎
𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0

(40)

(direct verification), and in general

L
𝑘

𝐷
𝜔
𝑗
= ∑𝐷

𝑘
𝑎
𝑗

𝑖
𝑑ℎ

𝑖
+ ⋅ ⋅ ⋅ + ∑𝑎

𝑗

𝑖
𝑑𝐷

𝑘
ℎ
𝑖

= 0 is equivalent to 𝑑
𝑘

𝑑𝑥
𝑘
∑𝑎

𝑗

𝑖

𝑑ℎ
𝑖

𝑑𝑥

= 0.

(41)

We have the infinite prolongation of the classical system
∑𝑎

𝑗

𝑖
𝑑ℎ

𝑖
/𝑑𝑥 = 0 (𝑗 = 1, . . . , 𝐽) and this is just the system that

corresponds to diffiety Ω.
Altogether taken, differential equations uniquely determine

the corresponding diffieties; however, a given diffiety leads to
many rather dissimilar but equivalent systems of differential
equations with regard to the additional choice of dependent and
independent variables.

Remark 10. Definitions 4–8 make good sense even if M is
a finite-dimensional manifold and then provide the well-
known intrinsical approach to determined systems of dif-
ferential equations. They are identified with vector fields
(better, fields of directions) in the finite-dimensional spaceM.
Choosing a certain independent variable 𝑥, the equations are
represented by the vector field 𝐷

𝑥
or, more visually, by the

corresponding 𝐷
𝑥
-flow. The general theory becomes trivial;

we may, for example, chooseΩ
𝑙
= Ω for all 𝑙 in filtration (22).

4. On the Structure of Diffieties

Definition 11. To every submodule Θ ⊂ Ω of a diffiety Ω ⊂

Φ(M), let KerΘ ⊂ Θ be the submodule of all 𝜗 ∈ Θ such
that LH𝜗 ∈ Θ. Filtration (22) and (23) is called a standard
one, if

KerΩ
𝑙+1

= Ω
𝑙 (𝑙 ≥ 0) ,

Ker2Ω
0
= KerΩ

0
̸= Ω

0
.

(42)

For every 𝜔 ∈ Ω, the first condition ensures that the
inclusions 𝜔 ∈ Ω

𝑙
, L

𝐷
𝜔 ∈ Ω

𝑙+1
are equivalent and the

second condition ensures thatL
𝐷
𝜔 ∈ Ω

0
impliesL2

𝐷
𝜔 ∈ Ω

0
.

Theorem 12. Appropriate adaptation of some lower-order
terms of a given filtration (22) and (23) provides a standard
filtration in a unique manner [9]. Equivalently and in more
detail, there exists unique standard filtration Ω

∗
: Ω

0
⊂ Ω

1
⊂

⋅ ⋅ ⋅ ⊂ Ω = ∪Ω
𝑙
such that Ω

𝑙
= Ω

𝑙+𝑐
for appropriate 𝑐 ∈ N and

all 𝑙 large enough. Equivalently and briefly, there exists unique

Original filtration

Ω0 Ω1 Ω2

𝜔 ℒD𝜔

· · ·

The corresponding standard filtration

Ω0 Ω1 Ω2 Ω3 = Ω2ℛ(Ω)

𝜋1
0

𝜔 = 𝜋2
0 𝜋2

1 = ℒD𝜋
2
0

· · ·

Figure 1

standard filtrationΩ
∗
such thatΩ

∗+𝑐
 = Ω

∗+𝑐
 for appropriate

𝑐

, 𝑐


∈ N.

Proof. The mapping L
𝐷

: Ω
𝑙
→ Ω

𝑙+1
naturally induces

certainF(M)-homomorphism

𝐷 : Ω
𝑙
/Ω

𝑙−1
→ Ω

𝑙+1
/Ω

𝑙
(𝑙 ≥ 0, formally Ω

−1
= 0) (43)

of factor modules denoted by𝐷 for better clarity. Homomor-
phisms 𝐷 are surjective and therefore even bijective for all
𝑙 large enough, say for 𝑙 ≥ 𝐿. However, the injectivity of 𝐷
implies KerΩ

𝑙
= Ω

𝑙−1
(𝑙 ≥ 𝐿). It follows that we have strongly

decreasing sequence

⋅ ⋅ ⋅ ⊃ Ω
𝐿
(= KerΩ

𝐿+1
) ⊃ Ω

𝐿−1
(= KerΩ

𝐿
)

⊃ KerΩ
𝐿−1

⊃ Ker2Ω
𝐿−1

⊃ ⋅ ⋅ ⋅ ,

(44)

which necessarily terminates with the stationarity
Ker𝐶Ω

𝐿−1
= Ker𝐶+1 Ω

𝐿−1
. Denoting

Ω
0
= Ker𝐶−1Ω

𝐿−1
, . . . ,

Ω
𝐶−1

= KerΩ
𝐿−1

, Ω
𝐶
= Ω

𝐿−1
, Ω

𝐶+1
= Ω

𝐿
, . . . ,

(45)

we have the sought strongly increasing standard filtration

Ω
∗
: Ω

0
⊂ Ω

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω

𝐶
(= Ω

𝐿−1
)

⊂ Ω
𝐶+1

(= Ω
𝐿
) ⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω

𝑙

(46)

of diffiety Ω. In particular Ker2 Ω
0

= Ker𝐶+1Ω
𝐿−1

=

Ker𝐶Ω
𝐿−1

= KerΩ
0
.
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Proof of Theorem 12 was of the algorithmical nature
and provides a useful standard basis of diffiety Ω as follows.
Assume that the forms

𝜏
1
, . . . , 𝜏

𝐾
∈ Ω

0

provide a basis of the submodule KerΩ
0
⊂ Ω

0

(47)

(recall that Ker2Ω
0
= KerΩ

0
whence L

𝐷
KerΩ

0
⊂ KerΩ

0
)

and moreover the classes of forms

𝜋
1
, . . . , 𝜋

𝑗
0
∈ Ω

0
provide a basis of Ω

0
/KerΩ

0
(48)

(recall that 𝐷 : Ω
0
/KerΩ

0
→ Ω

1
/Ω

0
is injective mapping),

the classes of forms

𝜋
𝑗
0
+1
, . . . , 𝜋

𝑗
1
∈ Ω

1

provide a basis of Ω
1
/ (Ω

0
+LHΩ0

)

(49)

(recall that 𝐷 : Ω
1
/Ω

0
→ Ω

2
/Ω

1
is injective mapping), and

in general the classes of forms

𝜋
𝑗
𝑙−1
+1
, . . . , 𝜋

𝑗
𝑙
∈ Ω

𝑙

provide a basis of Ω
𝑙
/ (Ω

𝑙−1
+LHΩ𝑙−1

) .

(50)

Alternatively saying, the following forms constitute a basis:

𝜏
1
, . . . , 𝜏

𝐾 of KerΩ
0
,

together with 𝜋
1
, . . . , 𝜋

𝑗
0 of Ω

0
,

together with L
𝐷
𝜋
1
, . . . ,L

𝐷
𝜋
𝑗
0
, 𝜋

𝑗
0
+1
, . . . , 𝜋

𝑗
1 of Ω

1
,

together with L
2

𝐷
𝜋
1
, . . . ,L

2

𝐷
𝜋
𝑗
0
,L

𝐷
𝜋
𝑗
0
+1
, . . . ,L

𝐷
𝜋
𝑗
1
,

𝜋
𝑗
1
+1
, . . . , 𝜋

𝑗
2 of Ω

2
,

(51)

and so on. Let us denote

𝜋
𝑗

𝑟
= L

𝑟

𝐷
𝜋
𝑗

(𝑗 = 𝑗
𝑙−1

+ 1, . . . , 𝑗
𝑙
) . (52)

In terms of this notation

𝜏
1
, . . ., 𝜏

𝐾 is a basis of KerΩ
0
and together with the forms

𝜏
1
, . . . , 𝜏

𝐾
,

𝜋
1

0
, . . . , 𝜋

𝑗
0

0
, 𝜋

1

1
, . . . , 𝜋

𝑗
0

1
, . . . , 𝜋

1

𝑙
, . . . , 𝜋

𝑗
0

𝑙
,

𝜋
𝑗
0
+1

0
, . . . , 𝜋

𝑗
1

0
, . . . , 𝜋

𝑗
0
+1

𝑙−1
, . . . , 𝜋

𝑗
1

𝑙−1

. . .

𝜋
𝑗
𝑙−1
+1

0
, . . . , 𝜋

𝑗
𝑙

0
,

(53)

we have the standard basis ofΩ
𝑙
.

Clearly 𝑗
𝐿
= 𝑗

𝐿+1
= ⋅ ⋅ ⋅ and it follows that there is only

a finite number 𝜇(Ω) = 𝑗
𝐿
of initial forms

𝜋
1
= 𝜋

1

0
, . . . , 𝜋

𝑗
0
= 𝜋

𝑗
0

0
, 𝜋

𝑗
0
+1
= 𝜋

𝑗
0
+1

0
,

. . . , 𝜋
𝑗
𝐿−1

+1
= 𝜋

𝑗
𝐿−1

+1

0
, . . . , 𝜋

𝑗
𝐿
= 𝜋

𝑗
𝐿

0

(54)

with the lower zero indice. The following forms 𝜋𝑗
𝑟
(𝑟 > 0)

satisfy the recurrence and the (equivalent) congruence

L
𝐷
𝜋
𝑗

𝑟
= 𝜋

𝑗

𝑟+1
, 𝑑𝜋

𝑗

𝑟
≅ 𝑑𝑥 ∧ 𝜋

𝑗

𝑟+1
(modΩ ∧ Ω) . (55)

In this sense, the linearly independent forms 𝜋𝑗
𝑟
𝑎𝑟𝑒 gen-

eralizations of the classical contact forms 𝜔𝑗

𝑟
= 𝑑𝑤

𝑗

𝑟
−

𝑤
𝑗

𝑟+1
𝑑𝑥 𝑜𝑓the jet theory.

Theorem 13. LetΩ
∗
be a standard filtration of diffietyΩ.Then

the submoduleKerΩ
0
⊂ Ω is generated by all differentials𝑑𝑓 ∈

Ω.

Proof. First assume 𝑑𝑓 ∈ Ω. Then 𝐷𝑓 = 𝑑𝑓(𝐷) = 0 whence
L

𝐷
𝑑𝑓 = 𝑑𝐷𝑓 = 0. Clearly 𝑑𝑓 ∈ Ω

𝑙
for appropriate 𝑙. This

implies 𝑑𝑓 ∈ KerΩ
𝑙−1

, if 𝑙 ≥ 0 therefore 𝑑𝑓 ∈ KerΩ
0
. It

follows that KerΩ
0
contains all differentials 𝑑𝑓 ∈ Ω.

Conversely let 𝜏 ∈ KerΩ
0
. Due to the equality KerΩ

0
=

Ker2Ω
0
, we have L

𝐷
𝜏 ∈ KerΩ

0
whence 𝑑𝜏 ≅ 𝑑𝑥 ∧

L
𝐷
𝜏 (modΩ ∧ Ω), consequently

𝑑𝜏 ≅ ∑𝑎
𝑗𝑖

𝑟𝑠
𝜋
𝑗

𝑟
∧ 𝜋

𝑖

𝑠
(mod KerΩ

0
, sumover 𝑖 ≤ 𝑗) . (56)

It follows that 𝑎𝑗𝑖
𝑟𝑠

= 0 identically by using 𝑑(𝑑𝜏) = 0

and (55). (Hint: look at assumed top order product 𝜋𝑗
𝑅
∧ 𝜋

𝑖

𝑠

where 𝑅 ≥ all 𝑟. Then 𝑑2𝜏 involves only one summand with
𝑑𝑥 ∧ 𝜋

𝑗

𝑅+1
∧ 𝜋

𝑖

𝑠
which is impossible since 𝑑2 = 0.) Therefore

𝑑(KerΩ
0
) ≅ 0 (mod KerΩ

0
) and the Frobenius theorem

can be applied. Module KerΩ
0
has a basis consisting of total

differentials.

Definition 14. We may denote R(Ω) = KerΩ
0
since this

module does not depend on the choice of the filtration (22).
Together with the original basis 𝜏1, . . . , 𝜏𝐾 occurring in (53),
there exists alternative basis 𝑑𝑡1, . . . , 𝑑𝑡𝐾 with differentials. In
the particular case R(Ω) = 0, hence, 𝐾 = 0, we speak of
a controllable diffietyΩ.

Remark 15. The controllability is a familiar concept of the
theory of underdetermined ordinary differential equations or
Pfaffian systems in finite-dimensional spaces [12]; however,
some aspects due to diffieties are worth mentioning here. If
R(Ω) ̸= 0 is a nontrivial module, the underlying space M is
fibered by the leaves 𝑡𝑘 = 𝑐

𝑘
∈ R (𝑘 = 1, . . . , 𝐾) depending

on 𝐾 > 0 parameters. A curve p : I → M (I ⊂ R) is
called a solution of diffiety Ω, if p∗𝜔 = 0 (𝜔 ∈ Ω). Since
𝑑𝑡

𝑘
∈ R(Ω) ⊂ Ω, we have

p∗𝑑𝑡𝑘 = 𝑑p∗𝑡𝑘 = 0, p∗𝑡𝑘 = 𝑐
𝑘
∈ R

(𝑘 = 1, . . . , 𝐾) ,

(57)
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P∗tk = ck

P

(a) Non-contrillable case

𝜀

O(𝜀)P

(b) Mayer extermal

Figure 2

therefore every solution of diffietyΩ is contained in a certain
leaf (the Figure 2(a)).

In the controllable case, such foliation of the spaceM does
not exist. However, the construction of the standard filtration
need not be of the “universal nature.” There may exist some
“exceptional points” where the terms 𝜋

𝑖

𝑟
of the standard

basis are not independent. We may even obtain a solution p
consisting of such exceptional points and then there appears
the “infinitesimal leaf ” of the noncontrollability along p
which means that p is a Mayer extremal (the Figure 2(b)).
We refer to article [13] inspired by the beautiful paper [14].
In the present paper, such exceptional points are tacitly
excluded.They produce singularities of the symmetry groups
and deserve a special, not yet available approach. It should
be noted that the noncontrollable case also causes some
technical difficulties. We may however suppose R(Ω) = 0

without much loss of generality since the noncontrollable
diffiety can be restricted to a leaf and regarded as a diffiety
depending on parameters 𝑐1, . . . , 𝑐𝐾.

Theorem 16. The total number 𝜇(Ω) of initial forms does not
depend on the choice of the good filtration (22).

Proof. Filtration (22) differs from the standard filtration Ω
∗

only in lower terms whence

dimΩ
𝑙
= dimΩ

𝑙
+ const. = 𝜇 (Ω) 𝑙 + const.

(𝑙 large enough) .
(58)

Let another filtration Ω̃
∗
: Ω̃

0
⊂ Ω̃

1
⊂ ⋅ ⋅ ⋅ ⊂ Ω = ∪Ω̃

𝑙

of diffiety Ω provide (corresponding standard filtration and
therefore) certain number 𝜇(Ω) of (other) initial forms.Then

dimΩ
𝑙
= dim Ω̃

𝑙
+ const. = 𝜇 (Ω) 𝑙 + const.

(𝑙 large enough) .
(59)

Ω0 Ω1 Ω2 · · ·

Ω0 Ω1 Ω2 · · · Ω0 Ω1 Ω2 · · ·

(a)

(b) (c)

Figure 3

However Ω
𝑙
⊂ Ω̃

𝐿(𝑙)
⊂ Ω

𝑀(𝑙)
for appropriate 𝐿(𝑙) and 𝑀(𝑙)

whence

Ω
𝑙+𝑘

⊂ Ω̃
𝐿(𝑙)+𝑘

⊂ Ω
𝑀(𝑙)+𝑘

(𝑙, 𝑘 large enough) (60)

by using (23) and the equality 𝜇(Ω) = 𝜇(Ω) easily follows.

5. On the Morphisms and Variations

A huge literature on the point symmetries (scheme (a) of
Figure 3, the order of derivatives is preserved) of differential
equations is available. On the contrary, we can mention only
a few fundamental principles for the generalized (or higher-
order) symmetries (scheme (c) of Figure 3) since the general
theory deserves quite another paper. Our modest aim is to
clarify a little the mechanisms of the particular examples to
follow. We will also deal with generalized (or higher-order)
groups of symmetries and the relevant generalized infinitesimal
symmetries (scheme (b) Figure 3) with ambiguous higher-
order invariant subspaces (the dotted lines). Figure 3 should
be therefore regarded as a rough description of the topics to
follow and we also refer to Section 9 for more transparent
details. The main difficulty of the higher-order theory lies in
the fact that the dotted domains are not known in advance.
Modules Ω

𝑙
represent the “natural” filtration with respect to

the primary order of contact forms in the ambient jet space,
see the examples. They depend on the accidental inclusion
M ⊂ M(𝑚) mentioned in Section 1 and do not have any
true geometrical sense in the internal approach. It is to be
therefore surprisingly observed that the seemingly “exotic”
at the first glance concept of higher-order transformations
of Section 1 should be regarded for reasonable and the only
possible in the coordinate free theory. On the other hand,
an important distinction between the group-like morphisms
with large number of finite-dimensional invariant subspaces
(scheme (a) and (b)) and the genuine order-destroying mor-
phisms without such subspaces (scheme (c)) is of the highest
importance.
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We are passing to rigorous exposition. Let us recall the
diffiety Ω ⊂ Φ(M) on the spaceM, the independent variable
𝑥 ∈ F(M) with the corresponding vector field 𝐷 = 𝐷

𝑥
∈

Ω
⊥

= H, the controllability submodule R(Ω) ⊂ Ω

with the basis 𝑑𝑡1, . . . , 𝑑𝑡𝐾, and a standard basis 𝜋𝑗
𝑟
(𝑗 =

1, . . . , 𝜇(Ω); 𝑟 = 0, 1, . . .) of diffiety Ω.
Let us begin with morphisms.

Lemma 17. If m : M → M is a morphism of Ω then
m∗R(Ω) ⊂ R(Ω) and the recurrence

𝐷𝑊m∗
𝜋
𝑗

𝑟+1
≅ L

𝐷
m∗

𝜋
𝑗

𝑟

(𝑊 = m∗
𝑥; 𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .)

(61)

moduloR(Ω) holds true.

Proof. If m is a morphism then m∗
Ω ⊂ Ω therefore

m∗R(Ω) ⊂ R(Ω) (use Theorem 13) and m∗
𝜋
𝑗

𝑟
≅

∑𝑎
𝑗𝑖

𝑟𝑠
𝜋
𝑖

𝑠
(modR(Ω)). It follows that

m∗
𝑑𝜋

𝑗

𝑟
≅ m∗

(𝑑𝑥 ∧ 𝜋
𝑗

𝑟+1
) ≅ 𝐷𝑊𝑑𝑥 ∧m∗

𝜋
𝑗

𝑟+1
,

𝑑m∗
𝜋
𝑗

𝑟
≅ 𝑑∑𝑎

𝑗𝑖

𝑟𝑠
𝜋
𝑖

𝑠

≅ ∑𝐷𝑎
𝑗𝑖

𝑟𝑠
𝑑𝑥 ∧ 𝜋

𝑖

𝑠

+∑𝑎
𝑗𝑖

𝑟𝑠
𝑑𝑥 ∧ 𝜋

𝑖

𝑠+1
≅ 𝑑𝑥 ∧L

𝐷
m∗

𝜋
𝑗

𝑟

(62)

moduloR(Ω) andΩ∧Ω.This implies (61) by comparing both
factors of 𝑑𝑥.

Remark 18. On this occasion, the following useful principles
of calculation are worth mentioning:

if 𝛼, 𝛽 ∈ Ω satisfy 𝑑𝛼 ≅ 𝑑𝑥 ∧ 𝛽 (modΩ ∧ Ω)

then 𝐷𝑊m∗
𝛽 = L

𝐷
m∗

𝛼,

(63)

if 𝑢, V ∈ F (M) , 𝑑𝑢 − V𝑑𝑥 ∈ Ω then 𝐷𝑊m∗V = 𝐷m∗
𝑢,

(64)

and in general

m∗
𝐷𝑓 ⋅ 𝐷m∗

𝑔 = m∗
𝐷𝑔 ⋅ 𝐷m∗

𝑓 (𝑓, 𝑔 ∈ F (M)) . (65)

In terms of notation (21), we conclude thatm
∗
𝐷P = 𝐷𝑊(P) ⋅

𝐷Q and therefore

m
∗
(

1

𝐷𝑊

𝐷) = 𝐷 (𝑊 = m∗
𝑥) , (66)

if the morphismm of diffiety Ω is invertible.

Let us turn to invertible morphisms.

Lemma 19. The inverse of amorphismm again is amorphism.

Proof. Assume 𝜔 ∈ Ω, m−1∗

𝜔 ≅ 𝑓𝑑𝑥 (modΩ). Then

𝜔 = m∗m−1∗

𝜔 ≅ m∗
(𝑓𝑑𝑥) = m∗

𝑓 ⋅ 𝑑𝑊 ∈ Ω, (67)

where 𝑑𝑊 = 𝑑m∗
𝑥 = m∗

𝑑𝑥 ̸= 0. Hence m∗
𝑓 = 0, 𝑓 = 0

and thereforem−1∗

Ω ⊂ Ω.

We have m∗
Ω ⊂ Ω if m : M → M is a morphism and

moreover m−1∗

Ω ⊂ Ω hence Ω∗
⊂ m∗

Ω in the invertible
case. The converse and rather useful assertion is as follows.

Theorem 20. A morphism m of diffiety Ω is invertible if and
only ifm∗

Ω = Ω.

This may be obtained easily from the following result.

Lemma 21. Let m∗R(Ω) = R(Ω) and 𝜋
𝑗

0
∈ m∗

Ω (𝑗 =

1, . . . , 𝜇(Ω)). Thenm is invertible.

Proof. Proof of the Lemma 21 is analogous as in [2, Theorem
2] and we briefly recall only the main principles here. It is
sufficient to prove the invertibility ofm∗

: Ω → Ω.
Assuming 𝜋𝑗

𝑟
∈ m∗

Ω then 𝜋
𝑗

𝑟+1
= L

𝐷
𝜋
𝑗

𝑟
∈ m∗

Ω by
virtue of recurrence (61). It follows that Ω ⊂ m∗

Ω and m∗

is surjective. We prove that m∗
: Ω → Ω 𝑖𝑠 even injectivity

by using the well-known algebraical interrelation between
filtrations and gradations.

Let us introduce filtrations Ω
∗
(Ω

∗
, resp.) as follows: the

submodule Ω
𝑙
⊂ Ω (Ω

𝑙
⊂ Ω) is generated by R(Ω) and

all forms 𝜋𝑗
𝑟
(m∗

𝜋
𝑗

𝑟
) where 𝑟 ≤ 𝑙. We also introduce the

gradations

M = ⊕M
𝑙

(M
𝑙
= Ω

𝑙
/Ω

𝑙−1
) ,

M = ⊕M
𝑙

(M
𝑙
= Ω

𝑙
/Ω

𝑙−1
)

(𝑙 = 0, 1, . . .)

(68)

(formally Ω
−1

= Ω
−1

= 0). It follows that the naturally
induced mapping m∗

: M → M is surjective and it is
sufficient to prove that this inducedm∗ is also injective.

We are passing to the most delicate part of the proof. The
surjectivity ofm∗

: Ω → Ω implies thatΩ
0
⊂ Ω

𝐿
for 𝐿 large

enough. Therefore Ω
𝑙
⊂ Ω

𝐿+𝑙
by applying the recursion (61)

which implies

dimΩ
𝑙
= 𝜇 (Ω) 𝑙 + const. ≤ dimΩ

𝐿+𝑙

(𝜇 (Ω) = dimM
𝑙
; 𝑙 = 0, 1, . . .) .

(69)

On the other hand, assume the noninjectivity therefore the
existence of a nontrivial identity

0 = ∑𝑎
𝑖

𝑟
m∗

𝜋
𝑖

𝑟
= ⋅ ⋅ ⋅ + ∑𝑎

𝑖

𝑅
m∗

𝜋
𝑖

𝑅
(top-order terms) .

(70)

Then 0 = ⋅ ⋅ ⋅ + (𝐷𝑊)
−𝑙
∑𝑎

𝑖

𝑅
m∗

𝜋
𝑖

𝑅+𝑙
(𝑙 = 0, 1, . . .) by applying

operatorL
𝐷
and recurrence (61). Due to the existence of such

identities, it follows that

dimM
𝑙
< dimM

𝑙
= 𝜇 (Ω) ,

dimΩ
𝐿+𝑙

≤ (𝜇 (Ω) − 1) 𝑙 + const.
(71)

and this is a contradiction.
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Remark 22. Recall that if m : M → M is a mapping and
Ω ⊂ Φ(M) a submodule, then m∗

Ω ⊂ Φ(M) denotes the
submodule with generatorsm∗

𝜔 (𝜔 ∈ Ω) in accordance with
the common practice in the algebraical module theory. Let
in particular Ω be a diffiety and assume R(Ω) = 0 for
simplicity.Thenmodulem∗

Ω is generated by all formsm∗
𝜋
𝑗

𝑟

and therefore by all formsL𝑟

𝐷
m∗

𝜋
𝑗

0
, see Lemma 17. It follows

that the invertibility of the morphismm depends only on the
properties of the forms m∗

𝜋
𝑗

0
, see Lemma 21. In this sense,

the invertibility problem is reduced to the finite-dimensional
reasonings.

We turn to the variations.

Lemma 23. A vector field 𝑍 ∈ T(M) is a variation of diffiety
Ω if and only if

𝜋
𝑗

𝑟+1
(𝑍) = 𝐷𝜋

𝑗

𝑟
(𝑍) (𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .) (72)

and all 𝑍𝑡𝑘 (𝑘 = 1, . . . , 𝐾; fixed 𝑘) are functions only of
variables 𝑡1, . . . , 𝑡𝐾.

Proof. We suppose L
𝑍
Ω ⊂ Ω which is equivalent to the

congruences

L
𝑍
𝑑𝑡

𝑘
= 𝑑𝑍𝑡

𝑘
≅ 𝐷𝑍𝑡

𝑘
𝑑𝑥 = 0 (modΩ) ,

L
𝑍
𝜋
𝑗

𝑟
= 𝑍⌋ 𝑑𝜋

𝑗

𝑟
+ 𝑑𝜋

𝑗

𝑟
(𝑍)

≅ (−𝜋
𝑗

𝑟+1
(𝑍) + 𝐷𝜋

𝑗

𝑟
(𝑍)) 𝑑𝑥 = 0 (modΩ)

(73)

by using ((26) and (55)). So we have obtained (72) and more-
over identities𝐷𝑍𝑡𝑘 = 0 (𝑘 = 1, . . . , 𝐾).

It is sufficient to prove that the latter identities imply
𝑑𝑍𝑡

𝑘
= 0 (mod 𝑑𝑡1, . . . , 𝑑𝑡𝐾). However, every differential

𝑑𝑓 (𝑓 ∈ F(M)) can be represented as

𝑑𝑓 = 𝐷𝑓𝑑𝑥 +∑𝑓
𝑘


𝑑𝑡
𝑘


+∑𝑓
𝑗

𝑟
𝜋
𝑗

𝑟
(74)

in terms of the standard basis. Assuming in particular 𝑓 =

𝑍𝑡
𝑘
(fixed 𝑘 = 1, . . . , 𝐾), we have already obtained the

equation 𝐷𝑓 = 0 and then identities 𝑓𝑗

𝑟
= 0 easily follow

by applying the common rule 𝑑(𝑑𝑓) = 0 together with (26).
This concludes the proof.

Theorem 24. A variation 𝑍 of diffiety Ω is infinitesimal
symmetry of Ω if and only if all forms L𝑘

𝑍
𝜋
𝑗

0
(𝑘 = 0, 1, . . .)

are contained in a finite-dimensional module.

We omit lengthy proof and refer to more general results
[5, Lemma 5.4, Theorem 5.6, and especially Theorem 11.1].
In future examples, we apply other and quite elementary
arguments in order to avoid the nontrivial Theorem 24.

Remark 25. It follows from Lemma 23 that variations 𝑍 of
diffietyΩ can be represented by the universal series

𝑍 = ∑𝑐
𝑘 𝜕

𝜕𝑑𝑡
𝑘
+ 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟
𝑝
𝑗 𝜕

𝜕𝜋
𝑗

𝑟

, (75)

where 𝑐𝑘 = 𝑐
𝑘
(𝑡
1
, . . . , 𝑡

𝐾
) are arbitrary composed functions

and 𝑧 = 𝑍𝑥, 𝑝
𝑗
= 𝜋

𝑗

0
(𝑍) are arbitrary functions inF(M).We

have explicit formulae for all variations (in common terms, for
all Lie-Bäcklund infinitesimal symmetries) of a given system of
ordinary differential equations. Recall that these variations 𝑍
need not generate any true group, and though the criterion
inTheorem 24 is formally simple, it is not easy to be applied.
Lemma 17 can be regarded as a counterpart to Lemma 23
since it ensures quite analogous result for the morphism m
or, better saying, for the pullback m∗

: Φ(M) → Φ(M)

of a morphism. In more detail, the quite arbitrary choice
of the initial terms m∗

𝜋
𝑗

0
of recurrence (61) is in principle

possible but provides a mere formal result (corresponding to
the formal nature of variations 𝑍) and does not ensure the
existence of true morphismm. We may refer to articles [2, 3]
where the formal part (the algebra) is distinguished from the
nonformal part (the analysis) in the higher-order algorithms.

We conclude this Section with the only gratifying result
[9, point (]) on page 40].

Theorem 26. The standard filtration is unique in the case
𝜇(Ω) = 1.

Proof. Let us take a fixed filtration (22) and the corresponding
standard filtration (46). Since 𝜇(Ω) = 1, we have only one
initial form𝜋

1

0
and therefore 𝜏1, . . . , 𝜏𝐾, 𝜋1

0
, . . . , 𝜋

1

𝑙
is a basis of

Ω
𝑙
; see (53). Let us take another standard filtration Ω̃

∗
. Then

the module Ω̃
0
has certain basis

𝜏
1
, . . . , 𝜏

𝐾
(common forms) ,

�̂�
1

0
= ∑𝑎

𝑟
𝜋
1

𝑟
= ⋅ ⋅ ⋅ + 𝑎

𝑅
𝜋
1

𝑅
(𝑎

𝑅
̸= 0, top-order term) .

(76)

These forms together with all �̃�1
𝑠
= L𝑠

𝐷
�̂�
1

0
= ⋅ ⋅ ⋅ + 𝑎

𝑅
𝜋
1

𝑅+𝑠
(𝑠 ≥

0) generate the module Ω and this is possible only if 𝑅 = 0.
We conclude that �̃�1

0
= 𝑎

𝑅
𝜋
1

𝑅
= 𝑎

0
𝜋
1

0
which implies Ω̃

0
= Ω

0

hence Ω̃
𝑙
= Ω

𝑙
for all 𝑙.

Remark 27. It follows that in the particular case 𝜇(Ω) = 1,
every symmetry and infinitesimal symmetry preserves all
terms of the (unique) standard filtration. So we have a large
family of finite-dimensional subspaces of the underlying
spaceMwhich are preserved too.The classical methods acting
in finite-dimensional spaces uniquely determined in advance
can be applied and are quite sufficient in this case 𝜇(Ω) = 1.

Remark 28. In more generality, one could also consider two
diffieties Ω and Ω̃ on the underlying spaces M and M̃,
respectively. Though we do not deal with the isomorphism
problems of two diffieties Ω and Ω̃ here, let us mention
that such isomorphism is defined as invertible mapping m :

M̃ → M of underlying spaces satisfying m∗
Ω = Ω̃. Quite

equivalent “absolute equivalence” problem was introduced in
[15] and resolved just for the case 𝜇(Ω) = 𝜇(Ω̃) = 1 (in
our terminology) by using finite-dimensional methods. We
have discovered alternative approach here: the isomorphism
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m identifies the unique standard filtrations of Ω and of Ω̃.
On this occasion, it is worth mentioning Cartan’s pessimistic
notice (rather unusual in his work) to the case 𝜇(Ω) >

1 : “Je dois ajourter que la géneralization de la théorie
de l’equivalence absolu aux systémes differentiels dont la
solution générale dépend de deux functions arbitraires d’un
argument n’est pas immédiate et souléve d’asses grosses
difficultiés.” The same notice can be literally repeated also
for the theory of the higher-order symmetries treated in this
paper.

6. The Order-Preserving Case of
Infinitesimal Symmetries

We are passing to the first example which intentionally
concerns the well-known “towering” problem in order to
examine our method reliably. Let us deal with infinitesimal
symmetries of differential equation

𝑑
2
𝑢

𝑑𝑥
2
= 𝐹(

𝑑V
𝑑𝑥

) (77)

involving two unknown functions 𝑢 = 𝑢(𝑥) and V = V(𝑥). In
external theory, (77) is identified with the subspace i : M ⊂

M(2) defined by the conditions

𝐷
𝑟
(𝑢

2
− 𝐹) = 𝑢

𝑟+2
− 𝐷

𝑟
𝐹 (V

1
) = 0

(𝑟 = 0, 1, . . . ; 𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

)

(78)

in the jet space M(2). We use simplified notation of coordi-
nates and contact forms

𝑢
𝑟
= 𝑤

1

𝑟
, V

𝑟
= 𝑤

2

𝑟
, 𝛼

𝑟
= 𝜔

1

𝑟
, 𝛽

𝑟
= 𝜔

2

𝑟

(𝑟 = 0, 1, . . .)

(79)

here. We are, however, interested in internal theory, that is, in
the diffietyΩ corresponding to (77). DiffietyΩ appears if the
contact forms

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥, 𝛽

𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥

(𝑟 = 0, 1, . . .)

(80)

are restricted to the subspace i : M ⊂ M(2). In accordance
with the common practice, let us again simplify as

𝑢
𝑟
= i∗𝑢

𝑟
, V

𝑟
= i∗V

𝑟
, 𝛼

𝑟
= i∗𝛼

𝑟
, 𝛽

𝑟
= i∗𝛽

𝑟 (81)

the notation of the restrictions toM, and moreover𝐷 will be
regarded as a vector field onM from now on.

Let us outline the lengthy path of future reasonings for
the convenience of reader. We begin with preparatory points
(𝜄)–(𝜄𝜄𝜄). The underlying space M together with the diffiety
Ω is introduced and the standard basis 𝜋

0
, 𝜋

1
, . . . (𝜇(Ω) =

1, abbreviation 𝜋
𝑟
= 𝜋

1

𝑟
) of diffiety Ω is determined. The

standard basis is related to the “common” basis ofΩ bymeans
of formulae (93). We obtain explicit representation (99) for
the variations 𝑍 with two arbitrary functions 𝑧 = 𝑍𝑥 and

𝑝 = 𝜋
0
(𝑍) as the final result. Variations 𝑍 generating the

true group (i.e., the infinitesimal symmetries 𝑍 of Ω) satisfy
certain strong conditions discovered in points (𝜄]) and (]).
The conditions are expressed by the resolving system (107)
and (108) or, alternatively, by (112)–(114) only in terms of
the functions 𝑝, 𝐷𝑝, 𝐷2

𝑝, and 𝐷3
𝑝. This rather complicated

resolving system which does not provide any clear insight
is equivalent to much simpler crucial requirements (121) or
(125) on the actual structure of function 𝑝; see the central
points (]𝜄)–(]𝜄𝜄𝜄). Then the subsequent points are devoted to
the explicit solution of these equations (125). This is a mere
technical task of traditional mathematical analysis and we
omit comments at this place.

(𝜄) The diffiety. Let us introduce space M equipped with
coordinates 𝑥, 𝑢

0
, 𝑢

1
, V

𝑟
(𝑟 = 0, 1, . . .). Then

𝑢
𝑟+2

= 𝐷
𝑟
𝐹 (V

1
)

(𝑟 = 0, 1, . . . ; 𝐷 =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

)

(82)

are merely composed functions. The forms

𝛼
0
= 𝑑𝑢

0
− 𝑢

1
𝑑𝑥, 𝛼

1
= 𝑑𝑢

1
− 𝐹𝑑𝑥,

𝛽
𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .)

(83)

provide a basis of the diffietyΩ; however, all forms 𝛼
𝑟
= 𝑑𝑢

𝑟
−

𝑢
𝑟+1
𝑑𝑥 (𝑟 = 2, 3, . . .) are also lying in Ω as follows from the

obvious rule:

L
𝐷
𝛼
𝑟
= 𝛼

𝑟+1
, L

𝐷
𝛽
𝑟
= 𝛽

𝑟+1 (𝑟 = 0, 1, . . .) (84)

and the inclusionL
𝐷
Ω ⊂ Ω.

(𝜄𝜄) Standard Filtration.There exists the “natural” filtrationΩ
∗

of diffiety Ω with respect to the order: submodule Ω
𝑙
⊂ Ω

involves the forms 𝛼
𝑟
, 𝛽

𝑟
with 𝑟 ≤ 𝑙. Alternatively saying,

𝛼
0
, 𝛽

0
is a basis ofΩ

0
and

𝛼
0
, 𝛽

0
, 𝛼

1
, 𝛽

1
, 𝛽

2
, . . . , 𝛽

𝑙
is a basis of Ω

𝑙 (𝑙 ≥ 1) . (85)

Clearly KerΩ
𝑙+1

= Ω
𝑙
if 𝑙 ≥ 1 as follows from (84). However,

L
𝐷
𝛼
1
= L

𝐷
(𝑑𝑢

1
− 𝐹𝑑𝑥) = 𝑑𝐹 − 𝐷𝐹𝑑𝑥

= 𝐹

(𝑑V

1
− V

2
𝑑𝑥) = 𝐹


𝛽
1
∈ Ω

1
.

(86)

(Figure 4(a)) therefore

L
𝐷
(𝛼

1
− 𝐹


𝛽
0
) = 𝐹


𝛽
1
− 𝐷𝐹


𝛽
0
− 𝐹


L

𝐷
𝛽
0

= − 𝐷𝐹

𝛽
0
∈ Ω

0
.

(87)

Then 𝛼
0
, 𝛼 = 𝛼

1
−𝐹


𝛽
1
, 𝛽

0
may be taken for a basis of module

KerΩ
1
(Figure 4(b)).

Moreover

L
𝐷
𝛼
0
= 𝛼

1
= 𝛼 + 𝐹


𝛽
0
,

L
𝐷
𝛼 = −𝐷𝐹


𝛽
0
∈ KerΩ

1
,

(88)
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𝛼0 𝛼1

𝛽0
𝛽1 𝛽2

Ω0 Ω1 Ω2 · · ·

𝛼0

𝛽0 𝛽1

𝛼

Ω1 · · ·KerΩ1

𝛼0

𝛽0

𝛼

· · ·KerΩ1Ker2 Ω1

(a)

(b) (c)

Figure 4

hence 𝛼
0
, 𝛼 constitute a basis of module Ker2Ω

1
(Figure 4(c))

and finally

L
𝐷
(𝐹


𝛼 + 𝐷𝐹


𝛼)

= 𝐷𝐹

𝛼 + 𝐷

2
𝐹

𝛼
0
+ 𝐹


L

𝐷
𝛼 + 𝐷𝐹


L

𝐷
𝛼
0

= 2𝐷𝐹

𝛼 + 𝐷

2
𝐹

𝛼
0
∈ Ker2Ω

1
.

(89)

Therefore assuming

𝐷𝐹

= 𝐹

V
3

̸= 0 (hence 𝐹 ̸= 0) (90)

from now on, the form 𝜋
0
= 𝐹


𝛼 + 𝐷𝐹


𝛼
0
may be taken for

a basis of module Ker3Ω
0
. We have obtained the standard

filtration

Ω
∗
: Ω

0
= Ker3Ω

1
⊂ Ω

1
= Ker2Ω

1
⊂ Ω

2

= KerΩ
1
⊂ Ω

3
= Ω

1
⊂ ⋅ ⋅ ⋅ (R (Ω) = 0) ,

(91)

where forms

𝜋
𝑟
= L

𝑟

𝐷
𝜋
0

(𝑟 = 0, . . . , 𝑙;

𝜋
0
= 𝐹


𝛼 + 𝐷𝐹


𝛼
0
= 𝐷𝐹


𝛼
0
+ 𝐹


𝛼
1
− (𝐹


)

2

𝛽
0
)

(92)

provide a basis of module Ω
𝑙
.

Abbreviating 𝑓 = 𝐹
 from now on, explicit formulae

𝜋
0
= 𝑓𝛼 + 𝐷𝑓𝛼

0
,

𝜋
1
= 2𝐷𝑓𝛼 + 𝐷

2
𝑓𝛼

0
,

𝜋
2
= 3𝐷

2
𝑓𝛼 + 𝐷

3
𝑓𝛼

0
+ 𝐶𝛽

0
,

𝐶𝛼 = 𝐷
2
𝑓𝜋

0
− 𝐷𝑓𝜋

1
,

𝐶𝛼
0
= −2𝐷𝑓𝜋

0
+ 𝑓𝜋

1
,

𝐶
2
𝛽
0
= 𝐴𝜋

0
+ 𝐵𝜋

1
+ 𝐶𝜋

2
,

(93)

where 𝛼 = 𝛼
1
− 𝑓𝛽

0
and

𝐴 = 2𝐷𝑓 ⋅ 𝐷
3
𝑓 − 3(𝐷

2
𝑓)

2

,

𝐵 = 3𝐷𝑓 ⋅ 𝐷
2
𝑓 − 𝑓𝐷

3
𝑓,

𝐶 = 𝑓𝐷
2
𝑓 − 2(𝐷𝑓)

2

(94)

can be easily found. They will be sufficient in calculations to
follow. Recall that we suppose that the inequality (90) hold
true, hence 𝐶 = ⋅ ⋅ ⋅ + 𝑓𝑓

V
3
= ⋅ ⋅ ⋅ + 𝐹


𝐹
V

3
̸= 0.

(𝜄𝜄𝜄) Variations.We deal with vector fields

𝑍 = 𝑧

𝜕

𝜕𝑥

+ 𝑧
1

0

𝜕

𝜕𝑢
0

+ 𝑧
1

1

𝜕

𝜕𝑢
1

+∑𝑧
2

𝑟

𝜕

𝜕V
𝑟

(95)

(the notation (75) with indices is retained) on the space
M. Recall that 𝑍 is a variation if L

𝑍
Ω ⊂ Ω. In terms of

coordinates, the conditions are

𝑧
1

1
= 𝐷𝑧

1

0
− 𝑢

1
𝐷𝑧,

𝑓𝑧
1

0
= 𝐷𝑧

1

1
− 𝐹𝐷𝑧,

𝑧
2

𝑟+1
= 𝐷𝑧

2

𝑟
− V

𝑟+1
𝐷𝑧 (𝑟 = 0, 1, . . .) ,

(96)

where the first and third equations are merely recur-
rences while the middle equation causes serious difficulties
(a classical result. Hint: useL

𝑍
𝛼
0
∈ Ω, L

𝑍
𝛼
1
∈ Ω, L

𝑍
𝛽
𝑟
∈

Ω). By using the alternative formula

𝑍 = 𝑧

𝜕

𝜕𝑑𝑥

+ 𝑎
0

𝜕

𝜕𝛼
0

+ 𝑎
1

𝜕

𝜕𝛼
1

+∑𝑏
𝑟

𝜕

𝜕𝛽
𝑟

, (97)

the conditions slightly simplify

𝑎
1
= 𝐷𝑎

0
, 𝐷𝑎

1
= 𝑓𝑏

1
,

𝑏
𝑟+1

= 𝐷𝑏
𝑟 (𝑟 = 0, 1, . . .) .

(98)

(Hint: apply the rule L
𝑍
𝜑 = 𝑍⌋𝑑𝜑 + 𝑑𝜑(𝑍) to the forms

𝜑 = 𝛼
0
, 𝛼

1
, 𝛽

𝑟
.)However, by virtue of Lemma 23 and standard

filtration, we have explicit formula

𝑍 = 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟
𝑝

𝜕

𝜕𝜋
𝑟

(𝑧 = 𝑍𝑥, 𝑝 = 𝜋
0 (
𝑍)) (99)
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for the variations where 𝑧 and 𝑝 are arbitrary functions. One
can then easily obtain explicit formulae for all coefficients
𝑎
0
, 𝑎

1
, 𝑏
𝑟
in (97) and 𝑧1

0
, 𝑧

1
, 𝑧

2

𝑟
in (95) by using the left-hand

identities (93). They need not be stated here.

(𝜄]) Infinitesimal Transformations. We refer to Remark 27:
variation 𝑍 is infinitesimal symmetry if and only if

L
𝑍
𝜋
0
= 𝑍⌋ 𝑑𝜋0

+ 𝑑𝑝 = 𝜆𝜋
0 (100)

for appropriate multiplier 𝜆 ∈ F(M). In explicit terms, we
recall formula

𝜋
0
= 𝑓𝛼 + 𝐷𝑓𝛼

0
= 𝑓𝛼 + 𝑓

V
2
𝛼
0
, (101)

where
𝑑𝜋

0
= 𝑑𝑥 ∧ 𝜋

1 (modΩ ∧ Ω) ,

𝑑𝛼 = 𝑑 (𝛼
1
− 𝑓𝛽

0
) ≅ −𝑑𝑓 ∧ 𝛽

0
= −𝑓


𝛽
1
∧ 𝛽

0

(mod 𝑑𝑥) ,

(102)

and therefore clearly

𝑑𝜋
0
= 𝑑𝑥 ∧ 𝜋

1
+ (𝑓


𝛽
1
∧ 𝛼 − 𝑓𝑓


𝛽
1
∧ 𝛽

0
)

+ (𝑓
V

2
𝛽
1
+ 𝑓


𝛽
2
) ∧ 𝛼

0

= 𝑑𝑥 ∧ 𝜋
1
+ 𝛽

1
∧ (𝑓


𝛼 − 𝑓𝑓


𝛽
0
+ 𝑓

V
2
𝛼
0
)

+ 𝑓

𝛽
2
∧ 𝛼

0
.

(103)

So denoting

𝑧 = 𝑍𝑥 = 𝑑𝑥 (𝑍) , 𝑎
0
= 𝛼

0 (
𝑍) , 𝑎 = 𝛼 (𝑍) ,

𝑏
𝑟
= 𝛽

𝑟 (
𝑍) , 𝑝 = 𝜋

0 (
𝑍) (𝑟 = 0, 1, . . .) ,

(104)

requirement (100) reads

𝑧𝜋
1
+ 𝑏

1
(𝑓


𝛼 − 𝑓𝑓


𝛼
0
+ 𝑓

V
2
𝛽
0
) + 𝑓


𝑏
2
𝛼
0

− (𝑓

𝑎 − 𝑓𝑓


𝑎
0
+ 𝑓

V
2
𝑏
0
) 𝛽

1
− 𝑓


𝑎
0
𝛽
2
+ 𝑑𝑝

= 𝜆 (𝑓𝛼 + 𝐷𝑓𝛼
0
) ,

(105)

where 𝜋
1
= 2𝐷𝑓𝛼 + 𝐷

2
𝑓𝛼

0
and

𝑑𝑝 ≅ 𝑝
𝑢
0

𝛼
0
+ 𝑝

𝑢
1

𝛼
1
+∑𝑝V

𝑟

𝛽
𝑟

= 𝑝
𝑢
0

𝛼
0
+ 𝑝

𝑢
1

𝛼 + (𝑓𝑝
𝑢
1

+ 𝑝V
0

) 𝛽
0
+ ∑

𝑟>0

𝑝V
𝑟

𝛽
𝑟

(106)

(mod 𝑑𝑥) should be moreover inserted. It follows that
requirement (100) is equivalent to the so-called resolving
system

2𝑧𝐷𝑓 + 𝑓

𝑏
1
+ 𝑝

𝑢
1

= 𝜆𝑓,

𝑧𝐷
2
𝑓 + 𝑓

V
2
𝑏
1
+ 𝑝

𝑢
0

= 𝜆𝐷𝑓,

(107)

𝑓𝑓

𝑏
1
= 𝑓𝑝

𝑢
1

+ 𝑝V
0

,

𝑓

𝑎 − 𝑓𝑓


𝑏
0
+ 𝑓

V
2
𝑎
0
= 𝑝V

1

,

𝑓

𝑎
0
= 𝑝V

2

.

(108)

Moreover 𝑝V
𝑟

= 0 (𝑟 ≥ 2) and therefore 𝑝 = 𝑝(𝑢
0
, 𝑢

1
,

V
0
, V

1
, V

2
) is of the order 2 at most.

(]) On the Resolving System. Equations (107) uniquely deter-
mine the multiplier 𝜆 and the “horizontal” coefficient 𝑧 =

𝑍𝑥 in terms of the “vertical” coefficients 𝑎
0
, 𝑎, 𝑏

𝑟
, and 𝑝. For

instance the formula

𝑧 =

1

𝐶

((𝑓

𝑏
1
+ 𝑝

𝑢
1

)𝐷𝑓 − (𝑓
V

2
𝑏
1
+ 𝑝

𝑢
0

) 𝑓) (109)

easily follows. So we may focus on (108).
Equations (108) deserve more effort. They depend only

on “vertical” components and can be expressed in terms of
functions 𝑝,𝐷𝑝,𝐷2

𝑝, and𝐷3
𝑝 if the obvious identities

𝑝 = 𝑎𝑓 + 𝑎
0
𝐷𝑓,

𝐷𝑝 = 2𝑎𝐷𝑓 + 𝑎
0
𝐷
2
𝑓,

𝐷
2
𝑝 = 3𝑎𝐷

2
𝑓 + 𝑎

0
𝐷
3
𝑓 + 𝑏

0
𝐶,

𝐶𝑎 = 𝐷
2
𝑓 ⋅ 𝑝 − 𝐷𝑓 ⋅ 𝐷𝑝,

𝐶𝑎
0
= −2𝐷𝑓 ⋅ 𝑝 + 𝑓𝐷𝑝,

𝐶
2
𝑏
0
= 𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷

2
𝑝,

(110)

following from (93) together with the prolongation formula

𝐶
2
𝑏
1
+ 2𝑏

0
𝐶𝐷𝐶 = 𝐷(𝐶

2
𝑏
0
) = 𝐷 (𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷

2
𝑝)

(111)

are applied. By using the lucky identity 𝐷𝐶 = −𝐵 (direct
verification), one can obtain the alternative resolving system

𝑓𝑓

(𝐶 (𝐷𝐴 ⋅ 𝑝 + (𝐴 + 𝐷𝐵)𝐷𝑝 + 𝐶𝐷

3
𝑝)

+2𝐵 (𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷
2
𝑝))

= 𝐶
3
(𝑓𝑝

𝑢
1

+ 𝑝V
0

) ,

(112)

𝐶 ((𝑓

𝐷
2
𝑓 − 2V

2
𝑓

𝐷𝑓)𝑝 + (V

2
𝑓

𝑓 − 𝑓


𝐷𝑓)𝐷𝑝)

− 𝑓𝑓

(𝐴𝑝 + 𝐵𝐷𝑝 + 𝐶𝐷

2
𝑝)

= 𝐶
2
𝑝V
1

,

(113)

−2𝑓

𝐷𝑓 ⋅ 𝑝 + 𝑓𝑓


𝐷𝑝 = 𝐶𝑝V

2

(114)

only in terms of the unknown function 𝑝. Recall that the
resolving system is satisfied if and only if the vector field (99)
is infinitesimal symmetry.

Our aim is to determine the function 𝑝 satisfying (112)–
(114). Alas, the resolving system does not provide any insight
into the true structure of function 𝑝. It will be therefore
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replaced by other conditions of classical nature, the crucial
requirements and the simplified requirements as follows.

(]𝜄) Crucial Requirements.We start with simple formulae

𝐷𝑓 = 𝑓
V
2
, 𝐷

2
𝑓 = 𝑓

V2
2
+ 𝑓

V
3
,

𝐷
3
𝑓 = 𝑓

V3
2
+ 3𝑓

V
2
V
3
+ 𝑓

V
4
,

𝐷𝑝 = ⋅ ⋅ ⋅ + 𝑝V
2

V
3
, 𝐷

2
𝑝 = ⋅ ⋅ ⋅ + 𝑝V

2
V
2

V2
3
+ 𝑝V

2

V
4

(the top-order terms) .

(115)

Using moreover (94), one can see that there is a unique
summand in (113) which involves the factor V3

3
, namely the

summand

−𝑓𝑓

⋅ 𝐶 ⋅ 𝐷

2
𝑝 ≅ −𝑓𝑓


⋅ 𝑓𝑓

V
3
⋅ 𝑝V
2
V
2

V2
3
. (116)

It follows that 𝑝V
2
V
2

= 0 identically and we (temporarily) may
denote

𝑝 = 𝑀(𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
) + 𝑁 (𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
) V

2
. (117)

The simplest equation (114) of the resolving system then reads

− 2𝑓

⋅ 𝑓

V
2
⋅ (𝑀 + 𝑁V

2
) + 𝑓𝑓


𝐷(𝑀 +𝑁V

2
)

= ((𝑓𝑓

− 2𝑓

2
) V

2

2
+ 𝑓𝑓

V
3
)𝑁.

(118)

Clearly

𝐷(𝑀 +𝑁V
2
) = D𝑀+ (𝑀V

1

+D𝑁) V
2
+ 𝑁V

1

V2
2
+ 𝑁V

3
,

(119)

where the reduced operator

D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+ V
1

𝜕

𝜕V
0

(120)

appears and we obtain three so-called crucial requirements

D𝑀 = 0, 2𝑀𝑓

= (𝑀V

1

+D𝑁)𝑓, 𝑁V
1

𝑓

= 𝑁𝑓

 (121)

for the functions 𝑀,𝑁 by inspection of the variable V
2
.

Altogether taken, the last resolving equation (114) is equivalent
to three requirements (121). We will see with great pleasure in
(]𝜄𝜄𝜄) below that requirements (121) ensure even the remaining
equations (112) and (113) of the resolving system.

(]𝜄𝜄) The Crucial Requirements Simplified. The right-hand
equation (121) reads

𝑄V
1

= 0 (𝑄 =

𝑁

𝑓

) (122)

and the middle equation (121) reads

𝑓
2
𝑃V
1

+ 𝑓

D𝑄 = 0 (𝑃 =

𝑀

𝑓
2
) , (123)

whence altogether

𝑝 = 𝑃𝑓
2
+ 𝑄𝑓

V
2
= 𝑃𝑓

2
+ 𝑄𝐷𝑓. (124)

The left-hand equation (121) does not change much; it may be
expressed byD𝑃 = 0.

Let us summarize our achievements. In order to determine
function 𝑝 𝑔𝑖V𝑒𝑛 by (124), we have three simplified require-
ments

D𝑃 = 0,

𝑓
2
𝑃V
1

+ 𝑓

D𝑄 = 0, 𝑄V

1

= 0

(125)

for the coefficients 𝑃 = 𝑃(𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
) and 𝑄 = 𝑄(𝑥, 𝑢

0
,

𝑢
1
,V
0
, V

1
).

(]𝜄𝜄𝜄) Resolving System is Deleted. Let us recall the primary
transcription (108) of the resolving system. We have already
seen that (125) implies (114) and hence the equivalent and
simplest right-hand equation (108).

Let us turn to the middle equation (108) equivalent to
(113). One can directly find formulae

𝐷𝑝 = 𝐷𝑃 ⋅ 𝑓
2
+ 𝑃𝐷(𝑓

2
) + 𝐷𝑄 ⋅ 𝐷𝑓 + 𝑄𝐷

2
𝑓

= 𝑃𝐷(𝑓
2
) + 𝑄𝐷

2
𝑓

(126)

by using (124) and (125). Moreover

𝑎 = 𝑃𝑓, 𝑎
0
= 𝑄, 𝑎

1
= 𝐷𝑎

0
= D𝑄,

𝑏
0
=

𝑎
1
− 𝑎

𝑓

=

D𝑄

𝑓

− 𝑃

(127)

by using (124) and right-hand formulae (110). Substitution
into middle equation (108) with

𝑝V
1

=

𝜕

𝜕V
1

(𝑃𝑓
2
+ 𝑄𝑓

V
2
) = 𝑃V

1

𝑓

+ 2𝑃𝑓𝑓


+ 𝑄𝑓

V
2 (128)

gives the identity.
As the right-hand equation (108) equivalent to (112) is

concerned, we may use

𝑏
1
= 𝐷𝑏

0
=

D2
𝑄

𝑓

+

𝜕

𝜕V
1

(

D𝑄

𝑓

) V
2
− 𝑃V

1

V
2
,

D
2
𝑄 = −D(

𝑓
2

𝑓

𝑃V
1

) ,

(129)

where

(D𝑃)V
1

= D (𝑃V
1

) + 𝑃
𝑢
1

𝑓 + 𝑃V
0

= 0,

(D𝑄)V
1

= 𝑄
𝑢
1

𝑓 + 𝑄V
0

.

(130)

Moreover

𝑓𝑝
𝑢
1

+ 𝑝V
0

= 𝑓 (𝑃
𝑢
1

𝑓
2
+ 𝑄

𝑢
1

𝑓
V
2
) + 𝑃V

0

𝑓
2
+ 𝑄V

0

𝑓
V
2

(131)

and (108) again becomes the identity.

(𝜄𝜅) Back to the Crucial Requirements. Passing to the final
part of this example, let us eventually solve (125) with the
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unknown functions𝑃,𝑄 and given function𝑓.This is already
a task of classical mathematical analysis.We abbreviate V = V

1

from now on since this variable V frequently occurs in our
formulae.

Let us begin with middle equation (125) which reads

𝑃V = (

1

𝑓

)



⋅ (𝑞 + 𝐹𝑄
𝑢
1

+ V𝑄V
0

) (𝑞 = 𝑄
𝑥
+ 𝑢

1
𝑄
𝑢
0

) (132)

whence

𝑃 =

1

𝑓

𝑞 + ∫(

1

𝑓

)



𝐹𝑑V ⋅ 𝑄
𝑢
1

+ ∫(

1

𝑓

)



V𝑑V ⋅ 𝑄V
0

+ 𝑃 (𝑃 = 𝑃 (𝑥, 𝑢
0
, 𝑢

1
, V

0
))

(133)

since 𝑄 is independent of variable V due to the right-hand
equation (125). We may insert

∫(

1

𝑓

)



𝐹𝑑V =
𝐹

𝑓

− V,

∫ (

1

𝑓

)



V𝑑V =
V
𝑓

− ∫

V

V

𝑑V
𝑓

(fixed V ∈ R)

(134)

and the remaining left-hand equation (125) is expressed by
the identity

1 ⋅ (𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

) + 𝐹 ⋅ 𝑃
𝑢
1

+ V ⋅ 𝑃V
0

+

1

𝑓

⋅ (𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

+ 𝐹 ⋅ 𝑞
𝑢
1

+ V ⋅ 𝑞V
0

) + (

𝐹

𝑓

− V)

⋅ (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

+ 𝐹 ⋅ 𝑄
𝑢
1
𝑢
1

+ V ⋅ 𝑄
𝑢
1
V
0

)

+ (

V
𝑓

− ∫

𝑑V
𝑓

) ⋅ (𝑞V
0

+ 𝐹 ⋅ 𝑄V
0
𝑢
1

+ V ⋅ 𝑄V
0
V
0

)

= 0.

(135)

Functions 𝑃, 𝑞,𝑄 are independent of V and thereby subjected
to very strong conditions by the inspection of the coefficients
of functions

1, 𝐹, V,
1

𝑓

,

1

𝑓

𝐹,

1

𝑓

V, (
𝐹

𝑓

− V)𝐹, (
𝐹

𝑓

− V) V,

V
𝑓

− ∫

𝑑V
𝑓

, (

V
𝑓

− ∫

𝑑V
𝑓

)𝐹, (

V
𝑓

− ∫

𝑑V
𝑓

) V

(136)

in identity (135).The final result depends on the properties of
function 𝐹 and we mention only a few instructive subcases
here.

(𝜅) The Generic Subcase. Functions (136) are in general
linearly independent over R and identity (135) implies

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

= 𝑃
𝑢
1

= 𝑃V
0

− 𝑄
𝑢
1
𝑥
− 𝑢

1
𝑄
𝑢
1
𝑢
0

= 0, (137)

(𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

) = 𝑄
𝑥𝑥
+ 2𝑢

1
𝑄
𝑥𝑢
0

+ 𝑢
2

1
𝑄
𝑢
0
𝑢
0

= 0, (138)

(𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 𝑄
𝑢
0

+ 2 (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 0,

(139)

(𝑞V
0

) = 𝑄
𝑥V
0

+ 𝑢
1
𝑄
𝑢
0
V
0

= 𝑄
𝑢
1
𝑢
1

= 𝑄
𝑢
1
V
0

= 𝑄V
0
V
0

= 0.

(140)

The unknown functions 𝑃 and 𝑄 can be easily found as
follows. We may suppose that

𝑄 = 𝑎 (𝑥, 𝑢
0
) 𝑢

1
+ 𝑏 (𝑥, 𝑢

0
) V

0
+ 𝑐 (𝑥, 𝑢

0
) ,

𝑏 (𝑥, 𝑢
0
) = 𝐵 ∈ R,

(141)

by using (140). Then 𝑃
𝑥
= 𝑃

𝑢
0

= 𝑃
𝑢
1

= 0; hence 𝑃 = 𝑃(V
0
)

due to (139). Moreover 𝑃 = 𝑎
𝑥
+ 𝑢

1
𝑎
0
which implies 𝑃 =

𝑎
𝑥
∈ R, 𝑎

0
= 0; hence 𝑎 = 𝑎(𝑥) and altogether

𝑎 = 𝐴𝑥 + 𝐴, 𝑃 = 𝐴V
0
+ 𝐶 (𝐴,𝐴, 𝐶 ∈ R) . (142)

Then

𝑐 = 𝐶
1
𝑥 + 𝐶

2
𝑢
0
+ 𝐶

3
(𝐶

1
, 𝐶

2
, 𝐶

3
∈ R) (143)

follows from (138). Hence, 𝐶
2
+ 2𝐴 = 0 due to (139) and

altogether

𝑄 = (𝐴𝑥 + 𝐴) 𝑢
1
+ 𝐵V

0
+ 𝐶

1
𝑥 − 2𝐴𝑢

0
+ 𝐶

3
,

𝑃 = 𝐴V
0
+ 𝐶.

(144)

Recalling moreover (133), we have explicit formulae for the
solutions 𝑃,𝑄 of crucial requirements (125) and the symmetry
problem is resolved. While 𝑃 and𝑄 are mere polynomials, the
total coefficient 𝑃 given by (133) depends on the quadrature
∫(𝑑V/𝑓) and this may be globally rather complicated function.
It follows that, in our approach, the elementary and the
“transcendental” parts of the solution are in a certain sense
separated.

(𝜅𝜄) A Special Case of Function 𝐹. Let us choose 𝐹(V) = 𝑒
V.

Then series (136) becomes quite explicit; namely,

1, 𝑒
V
, V, 𝑒−V, 1, V𝑒−V, (1 − V) 𝑒V,

(1 − V) V, V + 1, (V + 1) 𝑒V, (V + 1) V𝑒V
(145)

and these functions are linearly dependent. Identity (135)
implies smaller number of requirements; the first term in
(137) is combined with (139) into the single equation

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

+ 𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

= 0 (146)
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without any other change. We can state the final solution

𝑄 = (𝐴𝑥 + 𝐴) 𝑢
1
+ 𝐵V

0
+ 𝐶

1
𝑥 + 𝐶

2
𝑢
0
+ 𝐶

3
,

𝑃 = 𝐴V
0
+ (𝐶

2
+ 2𝐴) 𝑥 + 𝐶

(147)

with only one additional parameter 𝐶
2
∈ R if compared to

the previous formulae (144).

(𝜅𝜄𝜄) Another Special Case. Let us eventually mention the very
prominent function 𝐹(V) = V1/2; see [1, 7, 16]. Then the series

1, V1/2, V, 2V1/2, 2V, 2V3/2, V3/2, V2,
2

3

V3/2,
2

3

V2,
2

3

V5/2 (148)

stands for (136) and the relevant identity (135) implies the
system of equations

𝑃
𝑥
+ 𝑢

1
𝑃
𝑢
0

= 0, (149)

𝑃
𝑢
1

+ 2 (𝑞
𝑥
+ 𝑢

1
𝑞
𝑢
0

)

= 𝑃
𝑢
1

+ 2 (𝑄
𝑥𝑥
+ 2𝑢

1
𝑄
𝑥𝑢
0

+ 𝑢
2

1
𝑄
𝑢
0
𝑢
0

) = 0,

(150)

𝑃V
0

+ 2𝑞
𝑢
1

+ 𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

= 𝑃V
0

+ 2𝑄
𝑢
0

+ 3 (𝑄
𝑢
1
𝑥
+ 𝑢

1
𝑄
𝑢
1
𝑢
0

) = 0,

(151)

6𝑞V
0

+ 3𝑄
𝑢
1
𝑢
1

+ 2 (𝑄V
0
𝑥
+ 𝑢

1
𝑄V
0
𝑢
0

)

= 3𝑄
𝑢
1
𝑢
1

+ 8 (𝑄V
0
𝑥
+ 𝑢

1
𝑄V
0
𝑢
0

) = 0,

(152)

𝑄
𝑢
1
V
0

= 0, 𝑄V
0
V
0

= 0. (153)
We are passing to the solution of the system of (149)–(153)
with unknown functions 𝑄 = 𝑄(𝑥, 𝑢

0
, 𝑢

1
, V

0
) and 𝑃 =

𝑃(𝑥, 𝑢
0
, 𝑢

1
, V

0
). Due to (153), we may put
𝑄 = 𝑎 (𝑥, 𝑢

0
) V

0
+ 𝑏 (𝑥, 𝑢

0
, 𝑢

1
) (154)

and then (152) is expressed by 3𝑏
𝑢
1
𝑢
1

+ 8(𝑎
𝑥
+ 𝑢

1
𝑎
𝑢
0

) = 0,
whence easily

𝑏 = −

4

9

𝑎
𝑢
0

𝑢
3

1
−

4

3

𝑎
𝑥
𝑢
2

1
+ 𝑏 (𝑥, 𝑢

0
) 𝑢

1
+
̃
𝑏 (𝑥, 𝑢

0
) . (155)

Moreover (151) reads𝑃V
0

+2(𝑎
𝑢
0

V
0
+𝑏

𝑢
0

)+3(𝑏
𝑢
1
𝑥
+𝑢

1
𝑏
𝑢
1
𝑢
0

) = 0,
whence

𝑃 = − 𝑎
𝑢
0

V2
0
− (2𝑏

𝑢
0

+ 3 (𝑏
𝑢
1
𝑥
+ 𝑢

1
𝑏
𝑢
1
𝑢
0

)) V
0

+ 𝑝 (𝑥, 𝑢
0
, 𝑢

1
) .

(156)

Remaining equations (149) and (150) do not admit such
simple discussion. Using (154) and (155), identity (149) is
equivalent to the system

𝑎
𝑢
0
𝑥
+ 𝑢

1
𝑎
𝑢
0
𝑢
0

= 0

(whence 𝑎 = 𝐴𝑢
0
+ 𝑎 (𝑥) , 𝐴 ∈ R) ,

(157)

2𝑏
𝑢
0
𝑥
+ 3 (𝑏

𝑢
1
𝑥𝑥
+ 𝑢

1
𝑏
𝑢
1
𝑢
0
𝑥
)

+ 𝑢
1
(2𝑏

𝑢
0
𝑢
0

+ 3 (𝑏
𝑢
1
𝑥𝑢
0

+ 𝑢
1
𝑏
𝑢
1
𝑢
0
𝑢
0

)) = 0,

(158)

𝑝
𝑥
+ 𝑢

1
𝑝
𝑢
0

= 0 (159)

of three equations and identity (150) is equivalent to the
system

2𝑏
𝑢
0
𝑢
1

+ 3 (𝑏
𝑢
1
𝑥𝑢
1

+ 𝑏
𝑢
1
𝑢
0

+ 𝑢
1
𝑏
𝑢
1
𝑢
0
𝑢
1

) = 2𝑎

, (160)

𝑝
𝑢
1

+ 2 (𝑏
𝑥𝑥
+ 2𝑢

1
𝑏
𝑥𝑢
0

+ 𝑢
2

1
𝑏
𝑢
0
𝑢
0

) = 0, (161)

if (157) is moreover employed. At the same time, (155) can be
improved as

𝑏 = −

4

9

𝐴𝑢
3

1
−

4

3

𝑎

𝑢
2

1
+ 𝑏 (𝑥, 𝑢

0
) 𝑢

1
+
̃
𝑏 (𝑥, 𝑢

0
) . (162)

With this improvement, (160) reads 2𝑏
𝑢
0

+3(−(8/4)𝑎

+𝑏

𝑢
0

) =

2𝑎
 and it follows that

𝑏 = 2𝑎

𝑢
0
+
̂
𝑏 (𝑥) . (163)

Analogously (158) reads

2 (𝑏
𝑢
0
𝑥
𝑢
1
+
̃
𝑏
𝑢
0
𝑥
) + 3 (−

8

3

𝑎

𝑢
1
+ 𝑏

𝑥𝑥
+ 𝑢

1
𝑏
𝑢
0
𝑥
)

+ 𝑢
1
(2
̃
𝑏
𝑢
0
𝑢
0

+ 3𝑏
𝑢
0
𝑥
) = 0,

(164)

which is equivalent to the system

2
̃
𝑏
𝑢
0
𝑥
+ 6𝑎

(4)
𝑢
0
+ 3

̂
𝑏

= 0, 4𝑎


+
̃
𝑏
𝑢
0
𝑢
0

= 0, (165)

if (163) is inserted. Altogether, it follows that (158) is equiva-
lent to

2
̃
𝑏 = −3𝑎


𝑢
2

0
− 3

̂
𝑏

𝑢
0
+
̃
𝑏
0
(𝑢

0
) +

̃
𝑏
1 (
𝑥) ,

𝑎

= −

1

2

̃
𝑏


0
= 𝐴

3
∈ R,

(166)

whence

𝑎 = 𝐴
3

𝑥
3

6

+ 𝐴
2
𝑥
2
+ 𝐴

1
𝑥 + 𝐴

0
,

̃
𝑏
0
= −𝐴

3
𝑢
2

0
+ 𝐵

1
𝑢
0
+ 𝐵

0

(𝐴
2
, 𝐴

1
, 𝐴

0
, 𝐵

1
, 𝐵

0
∈ R) .

(167)

At the same time, we have improvements

𝑏 = 2 (𝐴
3
+ 2𝐴

2
) 𝑢

0
+
̂
𝑏,

2
̃
𝑏 = −3𝐴

3
𝑢
2

0
− 3

̂
𝑏

𝑢
0
+
̃
𝑏 (𝑢

0
) +

̃
𝑏
1 (
𝑥)

(168)

of the above formulae. Let us eventually turn to the remaining
equations (159) and (161). We begin with (161) which can be
simplified to

𝑝
𝑢
1

+ 2

16

3

𝐴
3
𝑢
2

1
+ 2

̂
𝑏

𝑢
1
− (3

̂
𝑏

𝑢
0
+
̃
𝑏


1
) = 0, (169)

whence

𝑝 = 2

16

3

𝐴
3

𝑢
3

1

3

+
̂
𝑏

𝑢
2

1
− (3

̂
𝑏

𝑢
0
+
̃
𝑏


1
) 𝑢

1

+ �̆� (𝑥, 𝑢
0
) .

(170)
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Then the last requirement (159) is easily simplified as

̂
𝑏

𝑢
2

1
− (3

̂
𝑏
(4)
𝑢
0
+
̃
𝑏


1
) 𝑢

1
+ �̆�

𝑥

+ 𝑢
1
(−3

̂
𝑏

𝑢
1
+ �̆�

𝑢
0

) = 0

(171)

and it follows that

�̆�
𝑥
= 0,

̃
𝑏


1
− 3

̂
𝑏
(4)
+ �̆�

𝑢
0

= 0,
̂
𝑏

= 0, (172)

whence easily

�̆� = �̆� (𝑢
0
) ,

̃
𝑏


1
= −�̆�


= 𝐶

3
∈ R,

̂
𝑏 = 𝐷

2
𝑥
2
+ 𝐷

1
𝑥 + 𝐷

0
,

(173)

̃
𝑏
1
= 𝐶

3

𝑥
3

6

+ 𝐶
2
𝑥
2
+ 𝐶

1
𝑥 + 𝐶

0
,

�̆� = −𝐶
3
𝑢
0
+ 𝐶

(𝐶
3
, 𝐷

2
, . . . , 𝐶 ∈ R) .

(174)

The solution is eventually done. It depends on the parameters

𝐴,𝐴
3
, 𝐴

2
, 𝐴

1
, 𝐴

0
, 𝐵

1
, 𝐵

0
, 𝐶

3
, 𝐶

2
, 𝐶

1
, 𝐶

0
, 𝐶, 𝐷

2
, 𝐷

1
, 𝐷

0
∈ R

(175)

in the total number of 15. This is seemingly in contradic-
tion with [1, 7, 16] where 14-dimensional symmetry group
(namely, the exceptional simple Lie group G

2
) was declared.

However, our final symmetry in fact depends on the sum
𝐵
0
+ 𝐶

0
as follows from (166), (167), and (174) and therefore

no contradiction appears. We will not explicitly state the
resulting symmetries 𝑍 for obvious reason here. Recall that
they are given by (99) where 𝑧, 𝑝 are clarified in (109) and
(124). Coefficients appearing in (124) are clarified in (133),
(156), and (170) and in (154), (157), (162), (168), (173), and
(174).

It should be moreover noted that our approach is of the
universal nature while themethod of explicit calculations which
provides the infinitesimal transformations in [7] rests on a lucky
accident; see [7,Theorem 3.2, and the subsequent discussion].

Remark 29. Variations 𝑍 were easily found in (𝜄𝜄𝜄). Due
to Theorem 26 and Remark 27, infinitesimal symmetries
satisfy moreover L

𝑍
𝜋
0
= 𝜆𝜋

0
or, alternatively saying, they

preserve the Pfaffian equation 𝜋
0

= 0, and this property
was just employed. We will now prove the converse without
use of Theorem 24. The reasoning is as follows. Let a
variation 𝑍 preserve Pfaffian equation 𝜋

0
= 0. Then 𝑍

preserves the space of adjoint variables 𝑥, 𝑢
0
, 𝑢

1
, V

0
, V

1
of

this Pfaffian equation. In this finite-dimensional space, the
variation 𝑍 generates a group which can be prolonged to
the higher-order jet variables. It follows that 𝑍 is indeed an
infinitesimal transformation.

Remark 30. Let us briefly mention the case 𝐹(V
1
) = 𝐴V

1
+

𝐵 (𝐴, 𝐵 ∈ R; 𝐴 ̸= 0) as yet excluded by condition (90). In this
linear case, clearly

L
𝐷
𝛼
1
= L

𝐷
(𝑑𝑢

1
− (𝐴V

1
+ 𝐵) 𝑑𝑥)

= 𝑑 (𝐴V
1
+ 𝐵) − 𝐴V

2
𝑑𝑥 = 𝐴𝛽

1
,

L
𝐷
(𝛼

1
− 𝐴𝛽

0
) = 0,

𝜏 = 𝛼
1
− 𝐴𝛽

0
= 𝑑 (𝑢

1
− 𝐴V

0
− 𝐵𝑥) ∈ R (Ω)

(176)

and we may introduce standard filtration

R (Ω) ⊂ Ω
0
= Ker2Ω

1
⊂ Ω

1

= KerΩ
1
⊂ Ω

0
= Ω

1
⊂ Ω

1
= Ω

2
⊂ ⋅ ⋅ ⋅ ,

(177)

where 𝜏 is a basis ofR(Ω) and the forms

𝜋
0
= 𝛼

0
, 𝜋

1
= 𝛼

1
,

𝜋
2
= L

𝐷
𝛼
1
= 𝐴𝛽

1
, . . . , 𝜋

𝑙
= 𝐴𝛽

𝑙−1

(178)

provide a basis of module Ω
𝑙
(𝑙 ≥ 1). The symmetries can be

easily found.They are the prolonged contact transformations
m defined by m∗

𝛼
0

= 𝜆𝛼
0
depending moreover on the

parameter 𝑡 = 𝑢
1
− 𝐴V

0
− 𝐵𝑥. Roughly saying, the geometry

of the linear second-order equation 𝑢
2

= 𝐴V
1
+ 𝐵 is

identical with the contact geometry of curves in R2. Quite
analogous result can be obtained also for theMonge equation
𝐹(𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
) = 0 and, in much greater generality, for the

system of two Pfaffian equations in four-dimensional space
[17].

Remark 31. Let us once more return to the crucial require-
ment (125) where operators D and 𝜕/𝜕V

1
are applied to

unknown functions 𝑃 and𝑄. We have employed the simplic-
ity of the second operator 𝜕/𝜕V

1
in the above solution; see

formula (133). However, analogous “complementary”method
can be applied to the first operator D as follows. Let us
introduce new variables

𝑥 = 𝑥, 𝑢
0
= 𝑢

0
− 𝑢

1
𝑥 +

𝐹𝑥
2

2

,

𝑢
1
= 𝑢

1
− 𝐹𝑥, V

0
= V

0
− V

1
𝑥, V = V

1

(179)

with the obvious inverse transformation (not stated here).
Then

D =

𝜕

𝜕𝑥

,

𝜕

𝜕V
1

=

𝑓

2

𝑥
2 𝜕

𝜕𝑢
0

− 𝑥(𝑓

𝜕

𝜕𝑢
1

+

𝜕

𝜕V
0

) +

𝜕

𝜕V

(𝑓 = 𝑓 (V
1
) = 𝑓 (V))

(180)

in terms of new variables. We again abbreviate V = V = V
1
.

Passing to new coordinates, the left-hand requirement (125)
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is simplified as 𝑃 = 𝑃(𝑢
0
, 𝑢

1
, V

0
, V). The middle requirement

(125) reads

𝑓
2
(

𝑓

2

𝑥
2
𝑃
𝑢
0

− 𝑥 (𝑓𝑃
𝑢
1

+ 𝑃V
0

) + 𝑃V) + 𝑓

𝑄
𝑥
= 0

(𝑄 = 𝑄 (𝑥, 𝑢
0
, 𝑢

1
, V

0
, V))

(181)

and determines the function 𝑄 in terms of new variables as

𝑄 = −

𝑓
2

𝑓

(

𝑓

6

𝑥
3
𝑃
𝑢
0

−

𝑥
2

2

(𝑓𝑃
𝑢
1

+ 𝑃V
0

) + 𝑥𝑃V) + 𝑞,

𝑞 = 𝑞 (𝑢
0
, 𝑢

1
, V

0
, V) ,

(182)

where 𝑞 is constant of integration. This is a polynomial in
variable 𝑥 and it follows easily that the remaining right-hand
requirement (130) applied to function 𝑄 is equivalent to the
system

𝑃
𝑢
0
𝑢
0

= 0, P
𝑢
0

= 0, 𝑞V = 0,

𝑓𝑞
𝑢
1

+ 𝑞V
0

+

𝜕

𝜕V
(

𝑓
2

𝑓

𝑃V) = 0,

𝑓
3

𝑓

𝑃
𝑢
0
V +

𝑓
2

𝑓

(𝑓P

𝑢
1

+PV
0

) +

1

3

𝜕

𝜕V
(

𝑓
3

𝑓

𝑃
𝑢
0

)

= 0,

𝑓𝑞
𝑢
0

+ 2

𝑓
2

𝑓

PV +

𝜕

𝜕V
(

𝑓
2

𝑓

P) = 0

(P = 𝑓𝑃
𝑢
1

+ 𝑃V
0

) .

(183)

We will not discuss this alternative approach here in more
detail.

Remark 32. Though the symmetries of (77) can be completely
determined by applying the common methods, several for-
mally quite different ways of the calculation are possible.
It would certainly be of practical interest which of them
is the “most economical” one. Let us mention such an
alternative way for better clarity. We start with the “opposite”
transcription

𝑑V
𝑑𝑥

= 𝐺(

𝑑
2
𝑢

𝑑𝑥
2
) (𝐺 = 𝐹

−1
, the inverse function) (184)

of (77). The primary concepts are retained, the same under-
lying space M, diffiety Ω, and contact forms 𝛼

𝑟
, 𝛽

𝑟
(𝑟 =

0, 1, . . .). However, we choose 𝑥, 𝑢
0
, 𝑢

1
, . . . , V

0
for new coordi-

nates onM from now on and the forms

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .) ,

𝛽
0
= 𝑑V

0
− 𝐺 (𝑢

2
) 𝑑𝑥

(185)

for new basis ofΩ. We have moreover

𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+ 𝐺

𝜕

𝜕V
0

(186)

in terms of new coordinates. The standard filtration is
formally simplified. The forms

𝜋
𝑟
= L

𝑟

𝐷
𝜋
0

(𝑟 = 0, 1, . . . ; 𝜋
0
= 𝛽

0
− 𝐺


𝛼
1
+ 𝐷𝐺


𝛼
0
)

(187)

may be taken for new standard basis if the inequality𝐷2
𝐺

̸= 0

is supposed. This follows from the obvious formulae

𝜋
1
= L

𝐷
𝜋
0
= 𝐷

2
𝐺

𝛼
0
,

𝜋
2
= L

𝐷
𝜋
1
= 𝐷

3
𝐺

𝛼
0
+ 𝐷

2
𝐺

𝛼
1
, . . . ,

(188)

simplifying the analogous left-hand side (93). Then, analo-
gously to (95) and (99), we introduce the variations

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝑧
1

𝑟

𝜕

𝜕𝑢
𝑟

+ 𝑧
2

0

𝜕

𝜕V
0

= 𝑧

𝜕

𝜕𝑑𝑥

+∑𝐷
𝑟
𝑝

𝜕

𝜕𝜋
𝑟

(189)

of diffiety Ω where 𝑧 = 𝑍𝑥 and 𝑝 = 𝜋
0
(𝑍) may be arbitrary

functions. Recall that we have even infinitesimal symmetry of
Ω if and only if the requirement (100) is satisfied. However
clearly

𝑑𝜋
0
= 𝑑𝑥 ∧ 𝜋

1

+ 𝐺

𝛼
1
∧ 𝛼

2
+ (𝐺


𝑢
3
𝛼
2
+ 𝐺


𝛼
3
) ∧ 𝛼

0

(190)

and one can obtain the resolving equations as follows. First of
all, we obtain equations

𝑧𝐷
2
𝐺

+ 𝐺


𝑢
3
𝑎
2
+ 𝐺


𝑎
3
+ 𝑝

𝑢
0

= 𝜆𝐷𝐺

,

𝑝V
0

= 𝜆

(𝑎
𝑟
= 𝛼

𝑟 (
𝑍))

(191)

which determine coefficients 𝑧 and 𝜆 analogously to (107).
Moreover

𝐺

𝑎
2
− 𝑝

𝑢
1

− 𝐺

𝑝V
0

= 𝐺

𝑎
1
− 𝐺


𝑢
3
𝑎
0
+ 𝑝

𝑢
2

= 𝐺

𝑎
0
− 𝑝

𝑢
3

= 𝑝
𝑢
𝑟

= 0 (𝑟 > 3)

(192)

are conditions for the unknown function 𝑝 = 𝑝(𝑥, 𝑢
0
, . . . ,

𝑢
3
, V

0
) analogous to (108). The “vertical” coefficients 𝑎

𝑟
can

be expressed in terms of functions 𝑝,𝐷𝑝,𝐷2
𝑝 and 𝐷3

𝑝, by
using the equation

𝐷
2
𝐺

⋅ 𝑎

0
= 𝐷

2
𝐺

⋅ 𝛼

0 (
𝑍) = 𝜋

1 (
𝑍) = 𝐷𝜋

0 (
𝑍) = 𝐷𝑝 (193)

and the recurrence 𝑎
𝑟+1

= 𝐷𝑎
𝑟
. As yet the calculations

are much easier then for the above case of formulae (110);
however, the resulting resolving system of three equations
analogous to (112)–(114) is again complicated and will not
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be explicitly stated here. Remarkable task appears when we
investigate the corresponding crucial requirements and try to
determine the structure of function 𝑝 in terms of new coor-
dinates. For instance, the “very prominent” and seemingly
rather artificial case (𝜅𝜄𝜄) turns into the “simplest possible”
and quite natural equation 𝑑V/𝑑𝑥 = (𝑑

2
𝑢/𝑑𝑥

2
)
2 in new

coordinates.

7. Brief Digression to the Calculus
of Variations

The classical Lagrange problem of the calculus of varia-
tions deals with an underdetermined system of differential
equations (better with a diffiety) together with a variational
integral. We are interested in internal symmetries of this
variational problem.

Let us start with a diffiety Ω ⊂ Φ(M). We choose
a standard filtrationΩ

∗
and the corresponding standard basis

𝜋
𝑗

𝑟
(𝑗 = 1, . . . , 𝜇(Ω); 𝑟 = 0, 1, . . . ). For better clarity, we

suppose the controllable case R(Ω) = 0. Let 𝑥 ∈ F(M)

be an independent variable. Let us consider 𝑥-parametrized
solutions p of diffiety Ω in the sense

p : I → M (I ⊂ R) ,

p∗𝜔 = 0 (𝜔 ∈ Ω) ,

p∗𝑥 = 𝑥 ∈ I ⊂ R.

(194)

Here I ⊂ R is a closed interval 𝑎 ≤ 𝑥 ≤ 𝑏 with a little
confusion: letter 𝑥 denotes both a function on M and the
common coordinate (that is, a point) in R.

Definition 33. Avector field𝑉 ∈ T(M) is called a variation of
solution p of diffietyΩ if p∗L

𝑉
𝜔 = 0 (𝜔 ∈ Ω). This is a mere

slight adaptation of the familiar classical concept.

Lemma 34. A vector field𝑉 ∈ T(M) is a variation of p if and
only if

p∗𝜋𝑗
𝑟+1

(𝑉) = p∗𝐷𝜋𝑗
𝑟
(𝑉) =

𝑑

𝑑𝑥

p∗𝜋𝑗
𝑟
(𝑉)

(𝑗 = 1, . . . , 𝜇 (Ω) ; 𝑟 = 0, 1, . . .) .

(195)

Proof. A variation 𝑉 satisfies p∗L
𝑉
𝜋
𝑗

𝑟
= 0, where

p∗L
𝑉
𝜋
𝑗

𝑟
= p∗ (𝑉⌋ 𝑑𝜋𝑗

𝑟
+ 𝑑𝜋

𝑗

𝑟
(𝑉))

= p∗ (−𝜋𝑗
𝑟+1

(𝑉) + 𝐷𝜋
𝑗

𝑟
(𝑉)) 𝑑𝑥

(196)

by virtue of (55).

Remark 35. It follows easily that a vector field 𝑍 ∈ T(M)

is a variation of diffiety Ω in the sense of Definition 8 if
and only if 𝑍 is a variation of every solution p of Ω; see
Lemma 23. Conversely, if 𝑉 is a variation of a solution p
then there exist many variations 𝑍 of Ω such that 𝑍 = 𝑉 at
every point of p, and they are characterized by the identities
p∗𝜋𝑗

0
(𝑍) = p∗𝜋𝑗

0
(𝑉) (𝑗 = 1, . . . , 𝜇(Ω)) along the curve p; see

formula (72). We conclude that the concepts “variation 𝑍 of
Ω” and “variations𝑉 of p” are closely related. Roughly saying,
variations 𝑉 of p are “restrictions” of variations 𝑍 ofΩ to the
curve p.

Definition 36. A couple {Ω, 𝜑} where Ω ⊂ Φ(M) is a diffiety
and 𝜑 ∈ Φ(M) is a differential form will be identified with
a variational problem in the (common) sense that diffiety
Ω represents the differential constraints to the variational
integral ∫𝜑. A solution p of Ω is called an extremal of this
variational problem, if

∫ p∗L
𝑉
𝜑 = ∫ p∗ 𝑉⌋ 𝑑𝜑 = 0 (special variations 𝑉)

(197)

for every variation𝑉 of pwhich is vanishing at the endpoints
p(𝑎), p(𝑏) ∈ M.This definition provides the common classical
extremals; see Remark 43.

Remark 37. The phrase “variation 𝑉 of p” can be replaced
with “variation 𝑉 of Ω”. The form 𝜑 can be replaced with
arbitrary form 𝜑 + 𝜔 (𝜔 ∈ Ω). The extremals do not change.

Theorem 38. To every standard basis of Ω and given 𝜑 ∈

Φ(M) there exists unique form �̆� ∈ Φ(M) such that

�̆� ≅ 𝜑 (modΩ) ,

𝑑�̆� ≅ 0 (modΩ ∧ Ω and all initial forms 𝜋𝑗
0
) .

(198)

In accordance with (198) we assume that

𝑑�̆� ≅ ∑𝑒
𝑗
𝜋
𝑗

0
∧ 𝑑𝑥 (modΩ ∧ Ω) . (199)

Then a solution p of Ω is extremal if and only if p∗𝑒𝑗 = 0 (𝑗 =

1, . . . , 𝜇(Ω)) and therefore if and only if

p∗ 𝑍⌋ 𝑑�̆� = 0 (𝑍 ∈ T (M)) (200)

for all vector fields 𝑍 ∈ T(M).

Proof (see [9]). For a given 𝜑 ∈ Φ(M), let us look at a top-
order summand

𝑑𝜑 ≅ ∑𝑎
𝑗

𝑟
𝜋
𝑗

𝑟
∧ 𝑑𝑥 = ⋅ ⋅ ⋅ + 𝑎

𝐽

𝑅
𝜋
𝐽

𝑅
∧ 𝑑𝑥

(modΩ ∧ Ω) .

(201)

If 𝑅 > 0, the summand can be deleted if the primary dif-
ferential form 𝜑 is replaced with the new form 𝜑 + 𝑎

𝐽

𝑅
𝜋
𝐽

𝑅−1
.

The extremals do not change. The procedure is unique and
terminates in form �̆� satisfying (198).Then (200) follows from
the identity

p∗ 𝑍⌋ 𝑑�̆� = p∗ 𝑍⌋∑𝑒
𝑗
𝜋
𝑗

0
∧ 𝑑𝑥 = p∗∑𝑒

𝑗
𝜋
𝑗

0
(𝑍) 𝑑𝑥, (202)

where the functions 𝜋𝑗
0
(𝑍) may be quite arbitrary if 𝑍 is

a variation, see Lemma 34.
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Definition 39. The differential form �̆� can be regarded for the
internal Poincaré-Cartan form of our variational problem and
equations 𝑒𝑗 = 0 (𝑗 = 1, . . . , 𝜇(Ω)) for the Euler-Lagrange
system.

We turn to the symmetries.

Definition 40. A symmetry m of diffiety Ω is called a sym-
metry of variational problem {Ω, 𝜑}, if m∗

𝜑 ≅ 𝜑 (modΩ).
A variation (infinitesimal symmetry) 𝑍 ofΩ is called a vari-
ation (infinitesimal symmetry, resp.) of variational problem
{Ω, 𝜑}, if L

𝑍
𝜑 ∈ Ω. Let 𝑉 ∈ T(M) be a variation of

a solution p of diffietyΩ. Then𝑉 is called a Jacobi vector field
of p, if moreover p∗L

𝑉
𝜑 = 0. Roughly saying, variations

𝑍 of variational problem {Ω, 𝜑} are “universal” Jacobi vector
fields for all solutions p ofΩ. In classical theory, Jacobi vector
fields are introduced only for the particular case when p is an
extremal.

We will see in the following example that Poincaré-
Cartan forms �̆� simplify the calculation of symmetries and
variations. On this occasion, we also recall the following
admirable result.

Theorem 41 (E. Noether). If 𝑍 is a variation of varia-
tional problem {Ω, 𝜑} and �̆� is a Poincaré-Cartan form then
p∗�̆�(𝑍) = const. for every extremal p.

Proof. We haveL
𝑍
�̆� ∈ Ω, p∗𝜔 = 0 (𝜔 ∈ Ω), and therefore

0 = p∗L
𝑍
�̆� = p∗ (𝑍⌋ 𝑑�̆� + 𝑑�̆� (𝑍))

= p∗𝑑�̆� (𝑍) = 𝑑p∗�̆� (𝑍)
(203)

by virtue of (200).

Remark 42. Many concepts of the classical calculus of vari-
ations lose the geometrical meaning if the higher-order
symmetries are accepted; for example, this concerns the
common concept of a nondegenerate variational problem
and even the order of a variational integral. On the other
hand, the most important concepts can be appropriately
modified; for example, the Hilbert-Weierstrass extremality
theory together with the Hamilton-Jacobi equations [18–21]
since the Poincaré-Cartan forms �̆� make “absolute sense”
along the extremals.

Remark 43. In the common classical calculus of variations,
extremals p are defined by the property ∫ p∗L

𝑉
𝜑 = 0, where

variations 𝑉 satisfy certain weak boundary conditions at the
endpoints (“fixed ends” or transversality) in order to delete
some “boundary effects” of the variational integral. Much
stronger conditions appear in Definition 36. Therefore

classical extremals ⊂ our extremals. (204)

However, 𝜑 can be replaced by the form �̆�. Then

∫ p∗L
𝑉
�̆� = ∫ p∗ 𝑉⌋ 𝑑�̆� + boundary term. (205)

For the above special variations 𝑉, the boundary term
vanishes. If p is extremal in the sense of Definition 36, then
(200) and Remark 15 may be applied and it follows that

classical extremals ⊃ our extremals. (206)

In topical Griffiths’ theory [22], extremals are defined by the
property

p∗ 𝑍⌋ 𝑑 (𝜑 + 𝜔) = 0

(all 𝑍 ∈ T (M) , appropriate 𝜔 ∈ Ω depending on p)
(207)

which is clearly equivalent to the condition

∫ p∗ 𝑍⌋ 𝑑 (𝜑 + 𝜔) = ∫ p∗L
𝑍
(𝜑 + 𝜔) = 0

(special vector fields 𝑍, appropriate 𝜔 ∈ Ω) ,

(208)

where 𝑍 are vector fields vanishing at the endpoints. This
condition trivially implies

∫ p∗L
𝑉
(𝜑 + 𝜔) = 0 hence ∫ p∗L

𝑉
𝜑 = 0

(special variations 𝑉)
(209)

with variations 𝑉 vanishing at the endpoints; see Remark 35.
Therefore

Griffiths extremals ⊂ our extremals. (210)

The converse inclusion

Griffiths extremals ⊃ our extremals (211)

is, however, trivial since the universal form �̆� = 𝜑+�̆� (�̆� ∈ Ω)

satisfies p∗𝑍⌋𝑑�̆� = 0 even for every extremal in the sense of
Definition 36. We conclude that all the mentioned concepts
of extremals are identical. (We apologize for this hasty
exposition. Roughly saying, the Griffiths’ theory and our
approach are almost identical. The Griffiths’ correction 𝜔 ∈

Ω depending on p is made universal here. The classical
approach rests on a special choice of boundary conditions for
the variations𝑉. However, such a special choice is misleading
since it does not affect the resulting family of extremals and
we prefer a universal choice here as well.)

8. Particular Example of a Variational Integral

A simple illustrative example is necessary at this place. Let
us again deal with diffiety Ω of Section 6. So we recall
coordinates 𝑥, 𝑢

0
, 𝑢

1
, V

0
, V

1
, . . . of the underlying space M,

the contact forms𝛼
𝑟
,𝛽

𝑟
(𝑟 = 0, 1, . . .) generatingΩ, the vector

field

𝐷 =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ 𝐹

𝜕

𝜕𝑢
1

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

=

𝜕

𝜕𝑥

+ ∑

𝜔∈Ω

0 ⋅

𝜕

𝜕𝜔

∈ H,

(212)
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and the standard basis 𝜋
0
, 𝜋

1
, . . . of Ω. We moreover intro-

duce variational integrals

∫𝜑 (𝜑 = 𝑔𝑑𝑥, 𝑔 ∈ F (M)) . (213)

Assuming 𝜕𝑔/𝜕𝜋
𝑟
= 0 (𝑟 > 𝑅) and therefore

𝑑𝑔 = 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝑢
0

𝛼
0
+

𝜕𝑔

𝜕𝑢
1

𝛼
1
+∑

𝜕𝑔

𝜕V
𝑟

𝛽
𝑟

= 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝜋
0

𝜋
0
+ ⋅ ⋅ ⋅ +

𝜕𝑔

𝜕𝜋
𝑅

𝜋
𝑅
,

(214)

we introduce the functions

𝑔
𝑅
=

𝜕𝑔

𝜕𝜋
𝑅

,

𝑔
𝑟−1

=

𝜕𝑔

𝜕𝜋
𝑟−1

− 𝐷𝑔
𝑟 (𝑟 = 𝑅, . . . , 1) .

(215)

Then

�̆� = 𝑔𝑑𝑥 + 𝑔
1
𝜋
0
+ ⋅ ⋅ ⋅ + 𝑔

𝑅
𝜋
𝑅−1 (216)

is the Poincaré-Cartan form since the identity

𝑑�̆� = 𝑔
0
⋅ 𝜋

0
∧ 𝑑𝑥 (modΩ ∧ Ω) (217)

can be directly verified. In accordance with formula (199)
where 𝑒 = 𝑒

1
, 𝜋

0
= 𝜋

1

0
is abbreviated, we have 𝑒 = 𝑔

0
. Let

us denote

𝑒 = 𝑒 [𝑔] = 𝑔
0

=

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ ⋅ ⋅ ⋅ + (−1)
𝑅
𝐷
𝑅 𝜕𝑔

𝜕𝜋
𝑅

,

(218)

for better clarity. The following simple result will be needed.

Lemma 44. Identity 𝑒[𝑔] = 0 is equivalent to the equation
𝑔 = 𝐷𝐺 with appropriate 𝐺 ∈ F(M).

Proof. By virtue of (200), the identity is equivalent to the
congruence 𝑑�̆� ≅ 0 (modΩ ∧ Ω). However, if the rule
𝑑(𝑑�̆�) = 0 is applied to the congruence, it follows easily that
𝑑�̆� = 0 identically. Therefore �̆� = 𝑑𝐺 ≅ 𝐷𝐺𝑑𝑥 (modΩ) by
using the Poincaré lemma.

Let us mention symmetries m and variations 𝑍 of our
variational problem in more detail. In the favourable case
𝜇(Ω) = 1, the task is not difficult.

The symmetry m of our variational problem {Ω, 𝜑}

clearly preserves the unique Poincaré-Cartan form �̆� and
therefore also the vector field D = 𝐷/𝑔 ∈ H determined
by the condition �̆�(D) = 1. We suppose 𝑔 ̸= 0 here. It follows
that all differential forms

�̆�
0
= LD�̆� = D⌋ 𝑑�̆� + 𝑑�̆� (D) = 𝑒𝜋

0
⋅D𝑥 =

𝑒

𝑔

𝜋
0
,

�̆�
𝑟+1

= LD�̆�𝑟 (𝑟 = 0, 1, . . .)

(219)

are preserved, too. Let us moreover suppose 𝑒 = 𝑒[𝑔] ̸= 0.
Clearly

�̆�
1
=

1

𝑔

L
𝐷
𝜋
0
=

1

𝑔

(𝐷

𝑒

𝑔

𝜋
0
+

𝑒

𝑔

𝜋
1
) ,

�̆�
𝑟+1

=

1

𝑔

LD𝜋𝑟 ≅
𝑒

𝑔
𝑟+1

𝜋
𝑟

(mod 𝑑𝑥, 𝜋
0
, . . . , 𝜋

𝑟
) .

(220)

Therefore �̆�, �̆�
0
, �̆�

1
, . . . is invariant basis of module Φ(M) in

the sense

m∗
�̆� = �̆�,

m∗
�̆�
𝑟
= �̆�

𝑟 (𝑟 = 0, 1, . . .) .

(221)

It follows that the symmetries m 𝑜𝑓 our variational prob-
lem {Ω, 𝜑} can be comfortably determined. Quite analogous
conclusion can be made for the infinitesimal symmetries, of
course.

Passing to the variations 𝑍 of the variational problem,
we have explicit formula (99) for the variations of Ω and
moreover condition L

𝑍
𝜑 ∈ Ω equivalent to L

𝑍
�̆� ∈ Ω.

However,

L
𝑍
�̆� = 𝑍⌋ 𝑑�̆� + 𝑑�̆� (𝑍)

≅ 𝑍⌋ (𝑒𝜋0
∧ 𝑑𝑥) + 𝐷�̆� (𝑍) 𝑑𝑥

= (𝑒𝑝 + 𝐷�̆� (𝑍)) 𝑑𝑥 (modΩ)

(222)

and therefore

0 = 𝑒𝑝 + 𝐷�̆� (𝑍) = 𝑒𝑝 + 𝐷𝐺

(𝐺 = 𝑔𝑧 + 𝑔
0
𝑝 + 𝑔

1
𝐷𝑝 + ⋅ ⋅ ⋅ + 𝑔

𝑅
𝐷
𝑅
𝑝) .

(223)

Assume 𝑔 ̸= 0. We obtain condition 𝑒[𝑒𝑝] = 0 for the
unknown function 𝑝. In more precise notation and in full
detail

𝑒 [𝑒 [𝑔] 𝑝]

= (

𝜕

𝜕𝜋
0

− 𝐷

𝜕

𝜕𝜋
1

+ ⋅ ⋅ ⋅ ) (

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ ⋅ ⋅ ⋅ ) 𝑝

= 0.

(224)

This is formally a very simple condition concerning the
unknown function 𝑝; alas, it is not easy to be resolved.
Paradoxically, variations 𝑍 cause serious difficulties.

For better clarity, we continue this example with par-
ticular choice of the variational integral. Let us consider
variational integral ∫𝑔(𝑥, 𝑢

0
, V

0
)𝑑𝑥. Equation (214) reads

𝑑𝑔 = 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝑢
0

𝛼
0
+

𝜕𝑔

𝜕V
0

𝛽
0

= 𝐷𝑔𝑑𝑥 +

𝜕𝑔

𝜕𝜋
0

𝜋
0
+

𝜕𝑔

𝜕𝜋
1

𝜋
1
+

𝜕𝑔

𝜕𝜋
2

𝜋
2

(225)
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and it follows that

𝜕𝑔

𝜕𝜋
0

= −2𝑔
𝑢
0

𝐷𝑓

𝐶

+ 𝑔V
0

𝐴

𝐶
2
,

𝜕𝑔

𝜕𝜋
1

= 𝑔
𝑢
0

𝑓

𝐶

+ 𝑔V
0

𝐵

𝐶
2
,

𝜕𝑔

𝜕𝜋
2

=

𝑔V
0

𝐶

(226)

by using (93). We have 𝑅 = 2 and therefore

�̆� = 𝑔𝑑𝑥 + (

𝜕𝑔

𝜕𝜋
1

− 𝐷

𝜕𝑔

𝜕𝜋
2

)𝜋
0
+

𝜕𝑔

𝜕𝜋
2

𝜋
1
,

𝑒 =

𝜕𝑔

𝜕𝜋
0

− 𝐷

𝜕𝑔

𝜕𝜋
1

+ 𝐷
2 𝜕𝑔

𝜕𝜋
2

(227)

by virtue of (215)–(218). Both the Poincaré-Cartan form �̆�

and the Euler-Lagrange equation 𝑒 = 0 can be expressed
in terms of common coordinates, if derivatives (226) are
inserted. We omit the final formulae here. Passing to the
symmetries m, we may simulate the moving frames method
and express the differential

𝑑�̆� = ∑𝐶
𝑟
�̆�
𝑟
∧ �̆� +∑

𝑟<𝑠

𝐶
𝑟𝑠
�̆�
𝑟
∧ �̆�

𝑠

= �̆�
0
∧ �̆� +∑

𝑟<𝑠

𝐶
𝑟𝑠
�̆�
𝑟
∧ �̆�

𝑠

(228)

in terms of the invariant basis (221). Then all coefficients 𝐶
𝑟𝑠

are invariants of symmetrym; that is,

m∗
𝐶
𝑟𝑠
= 𝐶

𝑟𝑠
hence m∗

D
𝑘
𝐶
𝑟𝑠
= D

𝑘
𝐶
𝑟𝑠

(D =

𝐷

𝑔

) .

(229)

In fact we have obtained all invariants. (Hint: for instance,
differential

𝑑�̆�
0
= 𝑑LD�̆� = LD𝑑�̆�

= ∑D𝐶
𝑟𝑠
�̆�
𝑟
∧ �̆�

𝑠
+LD (�̆�

0
∧ �̆�)

+∑𝐶
𝑟𝑠
LD (�̆�

𝑟
∧ �̆�

𝑠
)

(230)

does not provide any novelty.) It follows that the symmetry
problem is resolved. Compatibility of the system of (229)
ensures the existence of symmetries m 𝑜𝑓 the variational
problem {Ω, 𝜑} 𝑠𝑖𝑛𝑐𝑒 the Frobenius theorem can be applied to
the Pfaffian system (221). In the most favourable case, 𝐶

𝑟𝑠

are even constants. Explicit calculation of invariants 𝐶
𝑟𝑠
is a

lengthy but routine procedure. First of all

𝑑�̆� ≅ 𝑑𝑔
1
∧ 𝜋

0
+ 𝑑𝑔

2
∧ 𝜋

1
+ 𝑔

1
𝑑𝜋

0

+ 𝑔
2
𝑑𝜋

1 (mod 𝑑𝑥)
(231)

by using the primary formula (216). Then

𝑑𝑔
1
≅ ∑

𝜕𝑔
1

𝜕𝜋
𝑟

𝜋
𝑟
, 𝑑𝑔

2
≅ ∑

𝜕𝑔
2

𝜕𝜋
𝑟

𝜋
𝑟 (mod 𝑑𝑥) (232)

may be substituted where the coefficient can be determined
analogously as in (226). As the differential

𝑑𝜋
0
≅ 𝛽

1
∧ (𝑓


𝛼 − 𝑓𝑓


𝛽
0
+ 𝑓

V
2
𝛼
0
)

+ 𝑓

𝛽
2
∧ 𝛼

0 (mod 𝑑𝑥)
(233)

is concerned, we refer to formula in Section 6. The contact
forms must be replaced with the standard basis by using the
right-hand formulae (93).Thenwemay use the lucky identity

𝑑𝜋
1
= 𝑑L

𝐷
𝜋
0
= L

𝐷
𝑑𝜋

0 (234)

in order to determine the last summand in (231). In the end,
the standard basis 𝜋

𝑟
in (231) can be easily replaced by the

invariant forms �̆�
𝑟
(𝑟 = 0, 1, . . .) and we are done.

9. The Order-Increasing Case

Let us eventually return to the main topic, the differential
equations. We will finish this paper with decisive examples
of higher-order symmetries, namely, with symmetries of the
Monge equation

𝑑𝑤

𝑑𝑥

= 𝐹(𝑥, 𝑢, V, 𝑤,
𝑑𝑢

𝑑𝑥

,

𝑑V
𝑑𝑥

) (235)

involving three unknown functions 𝑢 = 𝑢(𝑥), V = V(𝑥), and
𝑤 = 𝑤(𝑥). Let us directly turn to the internal theory carried
out by using the underlying spaceM with coordinates

𝑥, 𝑢
𝑟
, V

𝑟
, 𝑤

0 (𝑟 = 0, 1, . . .) , (236)

diffietyΩ ⊂ Φ(M) with the basis

𝛼
𝑟
= 𝑑𝑢

𝑟
− 𝑢

𝑟+1
𝑑𝑥,

𝛽
𝑟
= 𝑑V

𝑟
− V

𝑟+1
𝑑𝑥 (𝑟 = 0, 1, . . .) ,

𝛾
0
= 𝑑𝑤

0
− 𝐹 (𝑥, 𝑢

0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) 𝑑𝑥

(237)

and the total derivative

𝐷 =

𝜕

𝜕𝑥

+∑𝑢
𝑟+1

𝜕

𝜕𝑢
𝑟

+∑ V
𝑟+1

𝜕

𝜕V
𝑟

+ 𝐹

𝜕

𝜕𝑤
0

∈ H. (238)

We also introduce functions and differential forms

𝑤
𝑟
= 𝐷

𝑟
𝑤
0
∈ F (M) ,

𝛾
𝑟
= L

𝑟

𝐷
𝛾
0
= 𝑑𝑤

𝑟
− 𝑤

𝑟+1
𝑑𝑥 ∈ Ω

(𝑟 = 0, 1, . . .)

(239)

for the formal reasons.Thenatural filtrationΩ
∗
in accordance

with the order is such that the forms 𝛼
0
, . . . , 𝛼

𝑙
, 𝛽

0
, . . . , 𝛽

𝑙
, 𝛾

0

are taken for the basis of submodule Ω
𝑙
⊂ Ω (𝑙 = 0, 1, . . .).

Let us determine the corresponding standard filtration Ω
∗
.

Clearly

L
𝐷
𝛾
0
= 𝛾

1
= 𝐹

𝑢
0

𝛼
0
+ 𝐹V

0

𝛽
0
+ 𝐹

𝑤
0

𝛾
0

+ 𝐹
𝑢
1

𝛼
1
+ 𝐹V

1

𝛽
1

(240)



Abstract and Applied Analysis 23

and therefore

L
𝐷
(𝛾

0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0
)

= (𝐹
𝑢
0

− 𝐷𝐹
𝑢
1

) 𝛼
0
+ (𝐹V

0

− 𝐷𝐹V
1

) 𝛽
0
+ 𝐹

𝑤
0

𝛾
0
∈ Ω

0
.

(241)

Denoting 𝜋 = 𝛾
0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0
, we obtain

L
𝐷
𝜋 = (𝐹

𝑢
0

− 𝐷𝐹
𝑢
1

) 𝛼
0
+ (𝐹V

0

− 𝐷𝐹V
1

) 𝛽
0
+ 𝐹

𝑤
0

𝛾
0

= 𝐴𝛼
0
+ 𝐵𝛽

0
+ 𝐹

𝑤
0

𝜋 ∈ Ω
0

(𝐴 = 𝐹
𝑢
0

− 𝐷𝐹
𝑢
1

+ 𝐹
𝑤
0

𝐹
𝑢
1

, 𝐵 = 𝐹V
0

− 𝐷𝐹V
1

+ 𝐹
𝑤
0

𝐹V
1

) .

(242)

We will not deal with the case when 𝐴 = 𝐵 = 0 identically.
Let us instead suppose that𝐴 ̸= 0 from now on.ThenR(Ω) =

0 and we may introduce standard filtration Ω
∗
of diffiety Ω

where the form

𝜋
1

0
= 𝜋 = 𝛾

0
− 𝐹

𝑢
1

𝛼
0
− 𝐹V

1

𝛽
0

(243)

generates Ω
0
and in general the forms

𝜋
1

𝑟
= L

𝑟

𝐷
𝜋 (𝑟 = 0, . . . , 𝑙) ,

𝜋
2

𝑟
= 𝛽

𝑟 (𝑟 = 0, . . . , 𝑙 − 1)

(244)

generate module Ω
𝑙
(𝑙 ≥ 1). Notation (53) with indices is

retained here. With this preparation, we are passing to the
symmetries of diffiety Ω. Theorem 26 and Remark 27 fail
since 𝜇(Ω) = 2 in our case. There exist many standard
filtrations of Ω and we may also expect the existence of the
order-destroying symmetries.

The preparation is done; however, before passing to
quite explicit examples, certain general aspects are worth
mentioning. We recall Figure 3 which can be transparently
illustrated just at this place for the first time.

First of all, every order-preserving symmetrym on scheme
(a) of Figure 3 obviously satisfies certain formulae

m∗
𝛼
0
= 𝑎

1
𝛼
0
+ 𝑎

2
𝛽
0
+ 𝑎

3
𝛾
0
,

m∗
𝛽
0
= 𝑏

1
𝛼
0
+ 𝑏

2
𝛽
0
+ 𝑏

3
𝛾
0
,

m∗
𝛾
0
= 𝑐

1
𝛼
0
+ 𝑐

2
𝛽
0
+ 𝑐

3
𝛾
0
,

det(
𝑎
1
𝑎
2
𝑎
3

𝑏
1
𝑏
2
𝑏
3

𝑐
1
𝑐
2
𝑐
3

) ̸= 0,

(245)

where the coefficients cannot be in fact arbitrary since they
are subjected to identity (240). In more detail, we have

𝐷𝑊 ⋅m∗
𝛾
1

= L
𝐷
m∗

𝛾
0

= 𝐷𝑐
1
𝛼
0
+ 𝐷𝑐

2
𝛽
0
+ 𝐷𝑐

3
𝛾
0
+ 𝑐

1
𝛼
1
+ 𝑐

2
𝛽
1
+ 𝑐

3
𝛾
1

(𝑊 = m∗
𝑥)

(246)

in accordance with (63). Alternatively (240) implies

m∗
𝛾
1
= m∗

𝐹
𝑢
0

⋅m∗
𝛼
0
+ ⋅ ⋅ ⋅ +m∗

𝐹V
1

⋅m∗
𝛽
1
, (247)

where the formsm∗
𝛼
0
, . . . ,m∗

𝛽
1
can be expressed in terms of

forms 𝛼
0
, . . . , 𝛾

1
. The comparison provides many unpleasant

interrelations among coefficients 𝑎1, . . . , 𝑐3.
However, by using the standard basis, the same symmetry

satisfies shorter formulae

m∗
𝜋
1

0
= 𝑎𝜋

1

0

(hence, automatically 𝐷𝑊m∗
𝜋
1

1
= 𝐷𝑎𝜋

1

0
+ 𝑎𝜋

1

1
) ,

m∗
𝜋
2

0
= 𝑏

1

0
𝜋
1

0
+ 𝑏

2

0
𝜋
2

0
+ 𝑏

1

1
𝜋
1

1

(248)

with coefficients subjected only to the inequalities 𝑎 ̸= 0 and
𝑏
2

0
̸= 0 at this place. We employ the fact that both triples

𝛼
0
, 𝛽

0
, 𝛾

0
and 𝜋

1

0
, 𝜋

2

0
, 𝜋

1

1
are bases of module Ω

0
. Moreover

m∗ preserves the natural filtration Ω
∗
and therefore also the

corresponding standard filtration Ω
∗
. Especially, the initial

termΩ
0
is preserved andm∗

𝜋
1

0
is a mere multiple of 𝜋1

0
.

The order-preserving infinitesimal symmetry 𝑍 corre-
sponding to scheme (a) satisfies either the system

L
𝑍
𝛼
0
= 𝜆

1
𝛼
0
+ 𝜆

2
𝛽
0
+ 𝜆

3
𝛾
0
,

L
𝑍
𝛽
0
= 𝜇

1
𝛼
0
+ 𝜇

2
𝛽
0
+ 𝜇

3
𝛾
0
,

L
𝑍
𝛾
0
= ]

1
𝛼
0
+ ]

2
𝛽
0
+ ]

3
𝛾
0

(249)

with coefficients subjected to many identities analogous as
above or, alternatively, the equivalent and shorter system

L
𝑍
𝜋
1

0
= 𝜇𝜋

1

0

(hence L
𝑍
𝜋
1

1
= 𝐷𝜇𝜋

1

0
+ (𝜇 − 𝐷𝑍𝑥) 𝜋

1

1
) ,

L
𝑍
𝜋
2

0
= 𝜆

1

0
𝜋
1

0
+ 𝜆

2

0
𝜋
2

0
+ 𝜆

1

1
𝜋
1

1

(250)

with arbitrary coefficients in terms of the standard basis. For
the middle equation use the identity

L
𝑍
𝜋
1

1
= L

𝑍
L

𝐷
𝜋
1

0
= L

𝐷
L

𝑍
𝜋
1

0
− 𝐷𝑧𝜋

1

1
(𝑧 = 𝑍𝑥) .

(251)

This follows from the Lie bracket formula [𝐷, 𝑍] = 𝐷𝑧 ⋅ 𝐷

which is true if and only if 𝑍 is a variation of diffiety Ω.
The Cartan’s general equivalence method [23] can be applied
to this order-preserving symmetry problem; however, we will
mention the Lie approach later on.

With this result, the simplest possible order-increasing
symmetry m on scheme (c) of Figure 3 can be introduced by
the equations

m∗
𝜋
1

0
= 𝑎

1
𝜋
1

0
+ 𝑎

2
𝜋
2

0
,

m∗
𝜋
2

0
= 𝑏

1
𝜋
1

0
+ 𝑏

2
𝜋
2

0
+ 𝑏 (𝑎

1
𝜋
1

1
+ 𝑎

2
𝜋
2

1
) ,

det(𝑎
1
𝑏
1
− 𝑏𝐷𝑎

1

𝑎
2
𝑏
2
− 𝑏𝐷𝑎

2) ̸= 0.

(252)
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Let us prove the invertibility ofm. Clearly

𝐷𝑊m∗
𝜋
1

1
= L

𝐷
m∗

𝜋
1

0

= 𝐷𝑎
1
𝜋
1

0
+ 𝐷𝑎

2
𝜋
2

0
+ 𝑎

1
𝜋
1

1
+ 𝑎

2
𝜋
2

1

(253)

and it follows that

m∗
𝜋
2

0
− 𝑏𝐷𝑊m∗

𝜋
1

1

= (𝑏
1
− 𝑏𝐷𝑎

1
) 𝜋

1

0
+ (𝑏

2
− 𝑏𝐷𝑎

2
) 𝜋

2

0
∈ m∗

Ω.

(254)

Inclusions 𝜋1
0
, 𝜋

2

0
∈ m∗

Ω therefore hold true and Lemma 21
can be applied.

In order to state another example to scheme (c), let us
consider the equations

m∗
𝜋
1

0
= 𝑎

1

0
𝜋
1

0
+ 𝑎

2

0
𝜋
2

0
+ 𝑎

1

1
𝜋
1

1
+ 𝑎

2

1
𝜋
2

1
,

m∗
𝜋
2

0
= 𝑏

1

0
𝜋
1

0
+ 𝑏

2

0
𝜋
2

0
+ 𝑏

1

1
𝜋
1

1
+ 𝑏

2

1
𝜋
2

1
.

(255)

Invertibility of such morphismm is ensured if 𝑏𝑖
1
= 𝑏𝑎

𝑖

1
, 𝑏

𝑖

0
−

𝑏𝑎
𝑖

0
= 𝑎𝑎

𝑖

1
(𝑖 = 1, 2) for appropriate factors 𝑎 ̸= 0, 𝑏 and if

moreover

det(𝑎
1

1
𝑎
1

0
− 𝐷𝑎

1

1

𝑎
2

1
𝑎
2

0
− 𝐷𝑎

2

1

) ̸= 0. (256)

For the proof of invertibility, applyL
𝐷
to the inclusion

1

𝑎

(m∗
𝜋
2

0
− 𝑏m∗

𝜋
1

0
) = 𝑎

1

1
𝜋
1

0
+ 𝑎

2

1
𝜋
2

0
∈ m∗

Ω (257)

and verify that 𝜋1
0
, 𝜋

2

0
∈ m∗

Ω.
In both examples, the common general equivalencemethod

[23] fails. The corresponding variations 𝑍 can be introduced
and are rather interesting though they do not generate any
symmetry groups. See Remark 46 below.

It is also easy to illustrate scheme (b) of Figure 3 by using
the symmetriesm and infinitesimal symmetries 𝑍 such that

m∗
𝜋
1

0
= 𝑎

1
𝜋
1

0
+ 𝑎

2
𝜋
2

0
,

m∗
𝜋
2

0
= 𝑏

1
𝜋
1

0
+ 𝑏

2
𝜋
2

0
,

det(𝑎
1
𝑎
2

𝑏
1
𝑏
2) ̸= 0,

L
𝑍
𝜋
1

0
= 𝜆

1
𝜋
1

0
+ 𝜆

2
𝜋
2

0
,

L
𝑍
𝜋
2

0
= 𝜇

1
𝜋
1

0
+ 𝜇

2
𝜋
2

0
.

(258)

(Hint: Theorem 24 can be trivially applied and the natural
filtration is not preserved, if 𝑎2 ̸= 0 and 𝜆

2
̸= 0.) Another

example is provided by the equations

m∗
𝜋
1

0
= 𝑎

1

0
𝜋
1

0
+ 𝑎

2

0
𝜋
2

0
+ 𝑎

2

1
𝜋
2

1
,

m∗
𝜋
2

0
= 𝑏𝜋

2

0
,

L
𝑍
𝜋
1

0
= 𝜇

1

0
𝜋
1

0
+ 𝜇

2

0
𝜋
2

0
+ 𝜇

2

1
𝜋
2

1
,

L
𝑍
𝜋
2

0
= 𝜇𝜋

2

0

(259)

“symmetrical” to the order-preserving case. The classical
Lie’s infinitesimal symmetries and the Cartan’s equivalence
method can be both applied without any change.

We have briefly indicated only the simplest devices here
and refer to [2, Section 4] for the universal construction.
A complete overview of all possible higher-order symmetries
of (235) is lying beyond any actual imagination. For instance,
the composition m

1
∘ m

2
of symmetries and the conjugate

groups m ∘ m(𝜆) ∘ m−1 to a given group provide much
more complicated examples than the original components
m

1
,m

2
,m, and m(𝜆). The definition equations for such

composition of symmetries can be directly found and they look
rather depressively for the time being.

10. Concluding Examples on
Infinitesimal Symmetries

We deal only with a simplified equation (235), namely, with
the equation

𝑑𝑤

𝑑𝑥

= 𝐹(

𝑑𝑢

𝑑𝑥

,

𝑑V
𝑑𝑥

) (260)

for good reasons to be clarified in the Appendix. Let us
abbreviate

𝐹
1
= 𝐹

𝑢
1

, 𝐹
1
= 𝐹V

1

, 𝐹
11
= 𝐹

𝑢
1
𝑢
1

,

𝐹
1

1
= 𝐹

𝑢
1
V
1

, 𝐹
11
= 𝐹V

1
V
1

(261)

from now on. The crucial identity (240) then reads

L
𝐷
𝛾
0
= 𝛾

1
= 𝐹

1
𝛼
1
+ 𝐹

1
𝛽
1

(262)

and we recall the standard basis 𝜋1
𝑟
= L𝑟

𝐷
𝜋
1

0
, 𝜋

2

𝑟
= L𝑟

𝐷
𝜋
2

0
=

𝛽
𝑟
(𝑟 = 0, 1, . . .), where

𝜋
1

0
= 𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1
𝛽
0
,

𝜋
1

1
= −𝐷𝐹

1
𝛼
0
− 𝐷𝐹

1
𝛽
0

(263)

in terms of the simplified notation. The formulae

𝑑𝜋
1

0
= 𝑑𝑥 ∧ 𝜋

1

1
+ (𝐹

11
𝛼
0
+ 𝐹

1

1
𝛽
0
) ∧ 𝛼

1

+ (𝐹
1

1
𝛼
0
+ 𝐹

11
𝛽
0
) ∧ 𝛽

1
,

𝑑𝜋
2

0
= 𝑑𝑥 ∧ 𝛽

1

(264)

easily follow. On this occasion, we also recall more general
adjustments

𝜆m∗
L

𝐷
𝜔 = L

𝐷
m∗

𝜔

(𝜔 ∈ Ω, 𝜆 = 𝐷𝑊,𝑊 = m∗
𝑥) ,

(265)

(L
𝐷
𝜔) (𝑍) = 𝐷 (𝜔 (𝑍)) (𝜔 ∈ Ω) (266)

of Lemmas 17 and 23. The factor 𝜆 ̸= 0 appearing here can be
defined by the congruencem∗

𝑑𝑥 ≅ 𝜆𝑑𝑥 (modΩ) as well.
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Several symmetry problems for (260) will be mentioned.
We start with examples on infinitesimal symmetries 𝑍 and
demonstrate our approach both using the traditional order-
preserving case and then employing two technically quite
analogous order-increasing symmetry problems. The calcu-
lations are elementary but not of a mere mechanical nature
and the concise form of the final results is worth attention.
That is, by using the series (268) with the standard basis, the
unknown functions 𝑧, 𝑝, and 𝑞 satisfy quite reasonable and
explicitly solvable conditions. Denoting

𝑎
0
= 𝛼

0 (
𝑍) , 𝑎

1
= 𝛼

1 (
𝑍) = 𝐷𝑎

0
,

𝑝 = 𝜋
1

0
(𝑍) , 𝑞 = 𝜋

2

0
(𝑍) = 𝛽

0 (
𝑍) ,

𝑧 = 𝑍𝑥,

(267)

we simulate the procedure of Section 6 and ourmethod again
rests on the explicit formula

𝑍 = 𝑧

𝜕

𝜕𝑥

+∑𝐷
𝑟
𝑝

𝜕

𝜕𝜋
1

𝑟

+∑𝐷
𝑟
𝑞

𝜕

𝜕𝜋
2

𝑟

(268)

for all variations 𝑍. We recall that infinitesimal symmetries 𝑍
moreover satisfy certain additional requirements in order to
ensure the conditions of Theorem 24. The choice of such
requirements which is arbitrary to a large extent (dotted lines
in Figure 3(b)) strongly affects the final result, the resulting
symmetries𝑍. Altogether taken, reasonings of this Section 10
belong to the Lie’s theory appropriately adapted to the infinite-
dimensional spaces. On the contrary, we will conclude this
paper with only few remarks on the true (not group-like)
higher-order symmetries m in subsequent Section 11. The
reasonings can be related to the E.Cartan’s general equivalence
method [16, 23] and they would deserve more space than it is
possible here.

Let us turn to proper examples.

(𝜄) The Order-Preserving Symmetry Problem.We again inten-
tionally start with a mere “traditional” case. Let us deal with
infinitesimal symmetries 𝑍 satisfying

L
𝑍
𝜋
1

0
= 𝜇𝜋

1

0
= 𝜇 (𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1
𝛽
0
) ,

L
𝑍
𝜋
2

0
= 𝜆

1

0
𝜋
1

0
+ 𝜆

2

0
𝜋
2

0
+ 𝜆

1

1
𝜋
1

1

= 𝜇
1
𝛼
0
+ 𝜇

2
𝛽
0
+ 𝜇

3
𝛾
0
.

(269)

We use the “hybrid” equations involving both the standard
basis and the contact forms. Let us recall the explicit for-
mula (268) for all variations. We have moreover the above
equations (269) in order to obtain the true infinitesimal
symmetries. In more detail

𝑍⌋ 𝑑𝜋
1

0
+ 𝑑𝑝 = 𝜇 (𝛾

0
− 𝐹

1
𝛼
0
− 𝐹

1
𝛽
0
) ,

𝑍⌋ 𝑑𝜋
2

0
+ 𝑑𝑞 = 𝜇

1
𝛼
0
+ 𝜇

2
𝛽
0
+ 𝜇

3
𝛾
0

(270)

should be satisfied. Analogously as in Section 6, this is
expressed by the resolving system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 = 𝑝

𝑢
0

+ 𝜇𝐹
1
,

𝑧𝐷𝐹
1
+ 𝐹

1

1
𝑎
1
+ 𝐹

11
𝐷𝑞 = 𝑝V

0

+ 𝜇𝐹
1
,

𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 0,

𝐹
1

1
𝑎
0
+ 𝐹

11
𝑞 + 𝑝V

1

= 0,

(271)

𝑝
𝑤
0

= 𝜇,

𝑝
𝑢
𝑟

= 𝑝V
𝑟

= 0 (𝑟 ≥ 2) ,

𝑞
𝑢
0

= 𝜇
1
, 𝑞V

0

= 𝜇
2
, 𝑞

𝑤
0

= 𝜇
3
,

𝑞
𝑢
𝑟

= 0 (𝑟 ≥ 1) ,

𝑧 + 𝑞V
1

= 0,

𝑞V
𝑟

= 0 (𝑟 ≥ 2)

(272)

by using (264) and𝛽
1
(𝑍) = 𝐷𝛽

0
(𝑍) = 𝐷𝑞. It follows that only

(271) with 𝜇 = 𝑝
𝑤
0

, 𝑧 = −𝑞V
1

inserted and coefficients 𝑎
0
, 𝑎

1

given by

𝑎
0
𝐷𝐹

1
+ 𝑞𝐷𝐹

1
+ 𝐷𝑝 = 0, 𝑎

1
= 𝐷𝑎

0
(273)

are the most important.
Let us denote Δ = (𝐹

1

1
)
2
− 𝐹

11
𝐹
11 and assume Δ ̸= 0 from

now on. Equations (271) are equivalent to

Δ𝐷𝑞 = det(
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1
𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1
𝐹
1

1

) ,

Δ𝑎
1
= det(𝐹

1

1
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1

𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1
+ 𝑞V

1

𝐷𝐹
1
,

) ,

(274)

Δ𝑞 = det(
𝐹
11

𝑝
𝑢
1

𝐹
1

1
𝑝V
1

) ,

Δ𝑎
0
= det(𝑝𝑢1 𝐹

1

1

𝑝V
1

𝐹
11) .

(275)

We have unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
)

(276)

and let us pass to the solution of (273), (274), and (275).
The first equation (273) multiplied by function Δ reads

(𝐹
11
𝑢
2
+ 𝐹

1

1
V
2
) Δ𝑎

0
+ (𝐹

1

1
𝑢
2
+ 𝐹

11V
2
) Δ𝑞

+ (D𝑝 + 𝑝
𝑢
1

𝑢
2
+ 𝑝V

1

V
2
) Δ = 0

(277)

and therefore implies only the identity

D𝑝 = 0 (D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ V
1

𝜕

𝜕V
0

+ 𝐹

𝜕

𝜕𝑤
0

) , (278)
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if both equations (275) are accepted (direct verification).
Alternatively saying, second equation (275) can be regarded
for a definition of function 𝑎

0
if (278) is taken into account.

Let us denote 𝐺 = Δ𝑎
0
for a moment. Then

𝐷𝐺 = 𝐷Δ ⋅ 𝑎
0
+ Δ ⋅ 𝐷𝑎

0
= 𝐷Δ ⋅

𝐺

Δ

+ Δ ⋅ 𝑎
1
,

Δ ⋅ 𝐷𝐺 − 𝐺 ⋅ 𝐷Δ = 𝑎
1
⋅ (Δ)

2

(279)

and the second equation (274) reads

Δ ⋅ 𝐷𝐺 − 𝐺 ⋅ 𝐷Δ = Δ ⋅ det (⋅ ⋅ ⋅ ) (280)

with the same determinant. Lower-order terms clearly pro-
vide the equation

D𝐺 = det(𝐹
1

1
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1

𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1) (281)

and coefficients of V
2
give

Δ ⋅ 𝐺V
1

− 𝐺 ⋅ Δ V
1

= 0, hence 𝐺 = 𝑔 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) Δ (282)

for appropriate function𝑔; however trivially𝑔 = 𝑎
0
.With this

result, we obtain

Δ (𝑔
𝑢
1

Δ + 𝑔Δ
𝑢
1

) − 𝑔Δ ⋅ Δ
𝑢
1

= Δ det(𝐹
1

1
𝑞V
1

𝐹
11

𝐹
11

𝑞V
1

𝐹
1

1

) = (Δ)
2
𝑞V
1

(283)

by inspection of coefficients of V
2
. It follows that 𝑔

𝑢
1

= 𝑞V
1

,
whence

𝑔 = 𝑅 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) 𝑢

1
+ 𝑆 (𝑥, 𝑢

0
, V

0
, 𝑤

0
) ,

𝑞 = 𝑅 (𝑥, 𝑢
0
, V

0
, 𝑤

0
) V

1
+ 𝑇 (𝑥, 𝑢

0
, V

0
, 𝑤

0
) .

(284)

Analogously the lower-order terms of the first equation (274)
give

Δ ⋅D𝑞 = det(
𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
𝐹
11

𝑝V
0

+ 𝑝
𝑤
0

𝐹
1
𝐹
1

1

) , (285)

while the second-order terms do not provide any new
requirements.

Let us finally recall (275) with 𝑎
0
= 𝑔 and 𝑞 given by (284)

inserted. These equations turn into the compatible system

𝑝
𝑢
1

+ (𝑅𝑢
1
+ 𝑆) 𝐹

11
+ (𝑅V

1
+ 𝑇) 𝐹

1

1
= 0,

𝑝V
1

+ (𝑅𝑢
1
+ 𝑆) 𝐹

1

1
+ (𝑅V

1
+ 𝑇) 𝐹

11
= 0

(286)

for the function 𝑝 with the solution

𝑝 = (𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) 𝑅 − 𝐹

1
𝑆 − 𝐹

1
𝑇 + 𝐶

(𝐶 = 𝐶 (𝑥, 𝑢
0
, V

0
, 𝑤

0
)) .

(287)

Then (278) is expressed by the crucial requirement

(𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) ⋅D𝑅 − 𝐹

1
⋅D𝑆 − 𝐹

1
⋅D𝑇 +D𝐶 = 0

(288)

for the functions𝑅, 𝑆,𝑇 and𝐶. One canmoreover verify with
the help of

0 = (D𝑝)
𝑢
1

= D (𝑝
𝑢
1

) + 𝑝
𝑢
0

+ 𝑝
𝑤
0

𝐹
1
,

0 = (D𝑝)V
1

= D (𝑝V
1

) + 𝑝V
0

+ 𝑝
𝑤
0

𝐹
1

(289)

that the remaining equations (281) and (285) become identi-
ties.

Let us summarize our achievements. Assuming (𝐹1
1
)
2

̸=

𝐹
11
𝐹
11
, 𝑎𝑙𝑙 infinitesimal symmetries (268) are determined

by formula (287), the second equation (284) and 𝑧 =

−𝑞V
1

= −𝑅 𝑤𝑖𝑡ℎ functions 𝑅, 𝑆, 𝑇, 𝐶 of variables 𝑥
0
, 𝑢

0
, V

0
,

𝑤
0
satisfying (288).
Traditional methods are sufficient to analyze thoroughly

(288). Passing to more details, we have

(𝐹 − 𝐹
1
𝑢
1
− 𝐹

1V
1
) (𝑢

1
𝑅
𝑢
0

+ V
1
𝑅V
0

+ 𝐹𝑅
𝑤
0

)

− 𝐹
1
(𝑆

𝑥
+ 𝑢

1
(𝑆

𝑢
0

+ 𝑅
𝑥
) + V

1
𝑆V
0

+ 𝐹𝑆
𝑤
0

)

− 𝐹
1
(𝑇

𝑥
+ 𝑢

1
𝑇
𝑢
0

+ V
1
(𝑇V
0

+ 𝑅
𝑥
) + 𝐹𝑇

𝑤
0

)

+ 𝐶
𝑥
+ 𝑢

1
𝐶
𝑢
0

+ V
1
𝐶V
0

+ 𝐹 (𝐶
𝑤
0

+ 𝑅
𝑥
) = 0.

(290)

Analogously as in Section 6, the large series of coefficients

𝐹𝑢
1
, 𝐹

1
(𝑢

1
)
2
, 𝐹

1V
1
𝑢
1
, 𝐹V

1
, 𝐹

1
𝑢
1
V
1
, . . . , 1, 𝑢

1
, V

1
, 𝐹 (291)

appears. If these functions are R-linearly independent, only
the solution 𝑅, 𝑆, 𝑇, 𝐶 such that

𝑅
𝑢
0

= 𝑅V
0

= 𝑅
𝑤
0

= 𝑆
𝑥
= 𝑆

𝑢
0

+ 𝑅
𝑥

= ⋅ ⋅ ⋅ = 𝐶V
0

= 𝐶
𝑤
0

+ 𝑅
𝑥
= 0

(292)

is possible. It follows that

𝑅 = 𝑎
1
𝑥 + 𝑎

2
, 𝑆 = −𝑎

1
𝑢
0
+ 𝑎

3
,

𝑇 = −𝑎
1
V
0
+ 𝑎

4
, 𝐶 = −𝑎

1
𝑤
0
+ 𝑎

5
,

(293)

where 𝑎
1
, . . . , 𝑎

5
∈ R are arbitrary constants. This result

provides the obvious symmetries which are self-evident at
a first glance, the coordinate shifts and the similarity.

For a special choice of function 𝐹, the symmetry group
may be very large and less trivial. We can mention the case
𝐹 = 𝑢

1
V
1
. Then the arising system of five equations

𝑅
𝑥
+ 𝑆

𝑢
0

+ 𝑇V
0

− 𝐶
𝑤
0

= 𝑅
𝑢
0

+ 𝑇
𝑤
0

= 𝑅V
0

+ 𝑆
𝑤
0

= 𝑇
𝑥
− 𝐶

𝑢
0

= 𝑆
𝑥
− 𝐶V

0

= 0

(294)

for the unknown functions

𝑅 = 𝑅 (𝑥, 𝑢
0
, V

0
) , 𝑆 = 𝑆 (𝑥, 𝑢

0
, 𝑤

0
) ,

𝑇 = 𝑇 (𝑥, V
0
, 𝑤

0
) = 𝐶 (𝑢

0
, V

0
, 𝑤

0
) ,

(295)
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can be resolved by

𝑅 = 𝑎
1
𝑥 + 𝑎

2
𝑢
0
+ 𝑎

3
V
0
+ 𝑎

4
,

𝑆 = 𝑎
5
𝑥 + 𝑎

6
𝑢
0
− 𝑎

3
𝑤
0
+ 𝑎

7
,

𝑇 = 𝑎
8
𝑥 + 𝑎

9
V
0
− 𝑎

2
𝑤
0
+ 𝑎

10
,

𝐶 = 𝑎
8
𝑢
0
+ 𝑎

6
V
0
+ (𝑎

1
+ 𝑎

6
+ 𝑎

9
) 𝑤

0
+ 𝑎

11
,

(296)

where 𝑎
1
, . . . , 𝑎

11
∈ R are arbitrary constants.

We omit more examples, in particular the interesting
cases (with R-linear dependence of functions 𝐹 − 𝐹

1
𝑢
1
−

𝐹
1V

1
, 𝐹

1
, 𝐹

1
, 1) where the infinitesimal symmetries depend on

arbitrary functions and the “degenerate” cases when either
Δ = 0 or𝐷𝐹

1
= 𝐷𝐹

1
= 0 identically.

(𝜄𝜄) The Order-Increasing Infinitesimal Symmetry. Let us men-
tion variations (268) satisfying moreover the equations

L
𝑍
𝜋
1

0
= 𝜇

1

0
𝜋
1

0
+ 𝜇

2

0
𝜋
2

0
+ 𝜇

2

1
𝜋
2

1
, L

𝑍
𝜋
2

0
= 𝜇𝜋

2

0
(297)

which provide the order-increasing case, if 𝜇2
1

̸= 0. One can
then obtain the resolving system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 − 𝑝

𝑢
0

− 𝑝
𝑤
0

𝐹
1

= 𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 𝑧 + 𝑞V
1

= 0

(298)

for the unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, V
0
, V

1
) , 𝑧 = 𝑧 (𝑥, V

0
, V

1
)

(299)

and moreover formula

𝜇
2

1
= 𝐹

1

1
𝑎
0
+ 𝐹

11
𝑞 + 𝑝V

1

= −𝐹
1

1

𝑞𝐷𝐹
1
+ 𝐷𝑝

𝐷𝐹
1

+ 𝐹
11
𝑞 + 𝑝V

1

(300)

for the coefficient𝜇2
1
.Wemention only the particular case𝐹 =

𝑢
1
V
1
. Then the resolving system reads −𝑞V

1

V
2
+ 𝐷𝑞 − 𝑝

𝑢
0

−

𝑝
𝑤
0

V
1
= 𝑞 + 𝑝

𝑢
1

= 0 and admits the solution

𝑝 = −𝑞𝑢
1
+ (𝑞

𝑥
+ 𝑞V

0

V
1
) 𝑢

0
+ 𝑃 (𝑥, V

1
𝑢
0
− 𝑤

0
, V

0
, V

1
) ,

(301)

where the functions 𝑞 = 𝑞(𝑥, V
0
, V

1
) and 𝑃 = 𝑃(𝑥, V

1
𝑢
0
−

𝑤
0
, V

0
, V

1
) may be arbitrarily chosen. Since the above coeffi-

cient

𝜇
2

1
= −

1

V
2

(𝑞𝑢
2
+ 𝐷𝑝) + 𝑝V

1
(302)

does not in general vanish, we have a large family of order-
increasing infinitesimal symmetries.

(𝜄𝜄𝜄) Another Order-Increasing Case. Let usmention variations
(268) satisfying the equations

L
𝑍
𝜋
1

0
= 𝜆

1
𝜋
1

0
+ 𝜆

2
𝜋
2

0
, L

𝑍
𝜋
2

0
= 𝜇

1
𝜋
1

0
+ 𝜇

2
𝜋
2

0
(303)

which provide an order-increasing case if𝜆2 ̸= 0.The resolving
system

𝑧𝐷𝐹
1
+ 𝐹

11
𝑎
1
+ 𝐹

1

1
𝐷𝑞 − 𝑝

𝑢
0

− 𝑝
𝑤
0

𝐹
1
= 0,

𝐹
11
𝑎
0
+ 𝐹

1

1
𝑞 + 𝑝

𝑢
1

= 𝐹
1

1
𝑎
0
+ 𝐹

11
𝑞 + 𝑝V

1

= 0,

𝑞
𝑢
0

+ 𝑞
𝑤
0

𝐹
1
= 𝑞V

1

+ 𝑧 = 0

(304)

for the unknown functions

𝑝 = 𝑝 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, 𝑢

1
, V

1
) ,

𝑞 = 𝑞 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
) ,

𝑧 = 𝑧 (𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
)

(305)

looks more complicated. One can also obtain the formula

𝜆
2
= 𝑞V

1

𝐷𝐹
1
− 𝐹

1

1
𝑎
1
− 𝐹

11
𝐷𝑞 + 𝑝V

0

+ 𝑝
𝑤
0

𝐹
1 (306)

for the important coefficient 𝜆2. Let us again mention only
the particular case 𝐹 = 𝑢

1
V
1
. Then the resolving system is

simplified as

𝑞V
1

V
2
− 𝐷𝑞 + 𝑝

𝑢
0

+ 𝑝
𝑤
0

V
1
= 𝑞 + 𝑝

𝑢
1

= 𝑞𝑢
2
+ 𝐷𝑝 − 𝑝V

1

V
2
= 𝑞

𝑢
0

+ 𝑞
𝑤
0

V
1
= 0.

(307)

It follows immediately that 𝑝 = −𝑞𝑢
1
+ 𝑃 and the resolving

system is reduced to the equations

D𝑞 = 𝑃
𝑢
0

+ 𝑃
𝑤
0

V
1
, 𝑢

1
D𝑞 = D𝑃,

𝑞
𝑢
0

+ 𝑞
𝑤
0

V
1
= 0

(D =

𝜕

𝜕𝑥

+ 𝑢
1

𝜕

𝜕𝑢
0

+ V
1

𝜕

𝜕V
0

+ 𝐹

𝜕

𝜕𝑤
0

)

(308)

for the unknown functions 𝑃 and 𝑞 of variables
𝑥, 𝑢

0
, V

0
, 𝑤

0
, V

1
. This implies that 𝑞 = 𝑄(𝑥, 𝑤, V

0
, V

1
),

where 𝑤 = 𝑤
0
− V

1
𝑢
0
and we obtain two equations

𝑄
𝑥
+ 𝑄V

0

V
1
= 𝑃

𝑢
0

+ 𝑃
𝑤
0

V
1
, 𝑃

𝑥
+ 𝑃V

0

V
1
= 0 (309)

with the solution 𝑃 = 𝑃(V
0
− 𝑥V

1
, 𝑤

0
− 𝑢

0
V
1
, V

1
) + 𝑄, where

𝑃 may be arbitrary function while 𝑄 = 𝑄(𝑥, 𝑢
0
, V

0
, 𝑤

0
, V

1
) is

a fixed particular solution of differential equation

𝑄
𝑥
+ 𝑄V

0

V
1
= 𝑄

𝑢
0

+ 𝑄
𝑤
0

V
1

(310)

satisfying moreover the identity 𝑄
𝑥
+ 𝑄V

0

V
1
= 0. We may

choose the particular solution 𝑄 = (𝑄
𝑥
+ 𝑄V

0

V
1
)𝑢

0
. Then the

identity turns into the requirement (𝜕/𝜕𝑥 + V
1
𝜕/𝜕V

0
)
2
𝑄 = 0

which is satisfied if

𝑄 = 𝑄
1
(𝑤, V

1
) 𝑥 + 𝑄

0
(𝑤, V

1
) (𝑤 = 𝑤

0
− V

1
𝑢
0
) . (311)

Altogether taken, we have obtained the final solution

𝑝 = −𝑞𝑢
1
+ 𝑃 + (𝑄

𝑥
+ 𝑄V

0

V
1
) 𝑢

0
,

𝑞 = 𝑄 = 𝑄
1
𝑥 + 𝑄

0
,

(312)
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where

𝑃 = 𝑃 (V
0
− 𝑥V

1
, 𝑤, V

1
) , 𝑄

1
= 𝑄

1
(𝑤, V

1
) ,

𝑄
0
= 𝑄

0
(𝑤, V

1
) , 𝑤 = 𝑤

0
− V

1
𝑢
0

(313)

and 𝑃, 𝑄
1
, 𝑄

0
are quite arbitrary functions. The above-

mentioned coefficient 𝜆2 does not in general vanish. (Indeed,
look at the top-order summands

𝜆
2
= ⋅ ⋅ ⋅ − 𝐹

1

1
𝑎
1
+ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − 𝑎

1
+ ⋅ ⋅ ⋅ , (314)

where V
2
𝑎
0
= ⋅ ⋅ ⋅ + 𝐷𝑝 by virtue of (263); hence, V

2
𝑎
1
= ⋅ ⋅ ⋅ +

𝐷
2
𝑝 = ⋅ ⋅ ⋅−𝐷

2
(𝑞𝑢

1
) = ⋅ ⋅ ⋅−𝑞𝑢

3
may be substituted.)We again

have an order-increasing infinitesimal symmetry.

Remark 45. Variations 𝑍 satisfying (269) preserve the Pfaf-
fian system 𝜋

1

0
= 𝜋

2

0
= 𝜋

1

1
= 0 and therefore generate

a group for analogous reasons as in Remark 29. Variations
𝑍 satisfying (297) preserve the Pfaffian system 𝜋

1

0
= 𝜋

2

0
=

𝜋
2

1
= 0 and the case of requirements (303) is quite trivial

in this respect. It follows that we have indeed obtained the
infinitesimal symmetries 𝑍.

11. Concluding Example on
Order-Increasing Symmetries

Passing from infinitesimal symmetries 𝑍 to the true sym-
metries m, the linear theory is replaced with highly non-
linear area of Pfaffian equations and the prolongation into
involutiveness. In accordance with E. Cartan’s notice, nobody
should expect such easily available results as in the Lie’s
infinitesimal theory. Our modest aim is twofold: to perform
an economical reduction of the symmetry problem to finite
dimension and to point out a useful interrelation between
appropriate variations 𝑍 and one-parameter families m(𝑡) of
higher-order symmetries. We again deal only with (260).

(𝜄) Setting the Problem. Let us deal with symmetries m such
that

m∗
𝜋
𝑖

0

= 𝑎
𝑖
𝛼
0
+ 𝑏

𝑖
𝛽
0
+ 𝑐

𝑖
𝛾
0

= (𝑎
𝑖
+ 𝐹

1
𝑐
𝑖
) 𝛼

0
+ (𝑏

𝑖
+ 𝐹

1
𝑐
𝑖
) 𝛽

0
+ 𝑐

𝑖
𝜋
1

0
(𝑖 = 1, 2) .

(315)

Invertibility ofm is obviously ensured if

det(
𝑎
1
+ 𝐹

1
𝑐
1
𝑎
2
+ 𝐹

1
𝑐
2

𝑏
1
+ 𝐹

1
𝑐
1
𝑏
2
+ 𝐹

1
𝑐
2
) = 0,

det(
𝑎
1
𝑎
2
𝐷𝑎

1
− 𝑢𝐷𝑎

2

𝑏
1
𝑏
2
𝐷𝑏

1
− 𝑢𝐷𝑏

2

𝑐
1
𝑐
2

𝐷𝑐
1
− 𝑢𝐷𝑐

2

) ̸= 0,

(316)

where

𝑢 =

𝑎
1
+ 𝐹

1
𝑐
1

𝑎
2
+ 𝐹

1
𝑐
2
=

𝑏
1
+ 𝐹

1
𝑐
1

𝑏
2
+ 𝐹

1
𝑐
2
. (317)

We tacitly suppose 𝑎
2
+ 𝐹

1
𝑐
2

̸= 0, 𝑏
2
+ 𝐹

1
𝑐
2

̸= 0 and one
can observe that the particular case 𝑢 = 0 provides the
traditional order-preserving symmetries. Equations (315) can
be simplified to the equivalent system of equations

m∗
𝜋
1

0
− 𝑢m∗

𝜋
2

0
= V𝜋1

0
,

m∗
𝜋
2

0
= 𝑎𝛼

0
+ 𝑏𝛽

0
+ 𝑐𝛾

0
,

(318)

where V = 𝑐
1
−𝑢𝑐

2 and 𝑎 = 𝑎
2
, 𝑏 = 𝑏

2
, 𝑐 = 𝑐

2.The invertibility
is ensured by the inequalities

V ̸= 0, det(
𝑎 𝐹

1
𝐷𝐹

1

𝑏 𝐹
1
𝐷𝐹

1

𝑐 −1 0

) ̸= 0. (319)

Equations (318) will be represented by a Pfaffian system
in a certain finite-dimensional space; however, let us again
simplify the notation by bars; for example,

𝑥 = m∗
𝑥, 𝜋

𝑖

𝑟
= m∗

𝜋
𝑖

𝑟
, 𝛼

𝑟
= m∗

𝛼
𝑟
,

𝛽
𝑟
= 𝜋

2

𝑟
= m∗

𝛽
𝑟
= m∗

𝜋
2

𝑟
,

(320)

and so like. Then we have the system

𝜋
1

0
− 𝑢𝜋

2

0
= V𝜋1

0
, 𝜋

2

0
= 𝑎𝛼

0
+ 𝑏𝛽

0
+ 𝑐𝛾

0
(321)

which should be completed by the exterior derivatives

𝑑𝜋
1

0
− 𝑢𝑑𝜋

2

0
− 𝑑𝑢 ∧ 𝜋

2

0
= 𝑑V ∧ 𝜋1

0
+ V𝑑𝜋1

0
,

𝑑𝜋
2

0
= 𝑑𝑎 ∧ 𝛼

0
+ 𝑑𝑏 ∧ 𝛽

0
+ 𝑑𝑐 ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + 𝐹
1
𝑐) 𝛼

1
+ (𝑏 + 𝐹

1
𝑐) 𝛽

1
) .

(322)

We refer to (264) for terms 𝑑𝜋1
0
, 𝑑𝜋1

0
appearing here. We

have obtained the compatibility problem of (322).The familiar
prolongation criterion can be shortly expressed as follows.
All coefficients and variables with bars are functions of the
primary jet variables. So we may suppose, for example,

𝑑𝑢 = 𝑈𝑑𝑥 +∑𝑢
1

𝑟
𝛼
𝑟
+∑𝑢

2

𝑟
𝛽
𝑟
+ 𝑢

3

0
𝛾
0

(𝑈 = 𝐷𝑢)

(323)

(with summands of uncertain lengths) and analogously for
𝑑V, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐 with a little adjustment for the differential

𝑑𝑥 = 𝜆 (𝑑𝑥 +∑𝜆
1

𝑟
𝛼
𝑟
+∑𝜆

2

𝑟
𝛽
𝑟
+ 𝜆

3

0
𝛾
0
)

(𝜆 = 𝐷𝑥 = 𝐷m∗
𝑥 = 𝐷𝑊) .

(324)

Such substitutions into (322) should give identities. However,
a short inspection of the summand 𝐹

11
𝛼
0
∧ 𝛼

1
in differential

𝑑𝜋
1

0
implies that then necessarily either 𝑢 = 0 (the group case)

or 𝐹
11
= 0 identically.

(𝜄𝜄) A Particular Case. It follows that the assumption 𝐹 =

𝑓(V
1
)𝑢

1
+ 𝑔(V

1
) is necessary; however, let us again suppose
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𝐹 = 𝑢
1
V
1
from now on.Then (321) may be retained and (322)

become more explicit

𝑑𝑥 ∧ (𝜋
1

1
− 𝑢𝜋

2

1
) + 𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
− 𝑑𝑢 ∧ 𝜋

2

0

= 𝑑V ∧ 𝜋1
0
+ V (𝑑𝑥 ∧ 𝜋1

1
+ 𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
) ,

(325)

𝑑𝑥 ∧ 𝜋
2

1
= 𝑑𝑎 ∧ 𝛼

0
+ 𝑑𝑏 ∧ 𝛽

0
+ 𝑑𝑐 ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + V
1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
) .

(326)

We turn to the prolongation procedure in more detail.

(𝜄𝜄𝜄) On the Equation (326). The prolongation should satisfy
the identity

𝜆 (𝑑𝑥 +∑𝜆
1

𝑟
𝛼
𝑟
+∑𝜆

2

𝑟
𝛽
𝑟
+ 𝜆

3

0
𝛾
0
)

∧

1

𝜆

(𝐴𝛼
0
+ 𝐵𝛽

0
+ 𝐶𝛾

0
+ (𝑎 + V

1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
)

= (𝐴𝑑𝑥 +∑𝑎
1

𝑟
𝛼
𝑟
+∑𝑎

2

𝑟
𝛽
𝑟
+ 𝑎

3

0
𝛾
0
) ∧ 𝛼

0

+ ⋅ ⋅ ⋅ + (𝐶𝑑𝑥 +∑𝑐
1

𝑟
𝛼
𝑟
+∑𝑐

2

𝑟
𝛽
𝑟
+ 𝑐

3

0
𝛾
0
) ∧ 𝛾

0

+ 𝑑𝑥 ∧ ((𝑎 + V
1
𝑐) 𝛼

1
+ (𝑏 + 𝑢

1
𝑐) 𝛽

1
) ,

(327)

where 𝐴 = 𝐷𝑎, 𝐵 = 𝐷𝑏, 𝐶 = 𝐷𝑐. All summands with factor
𝑑𝑥∧ mutually cancel.Thenwe conclude that necessarily𝜆1

𝑟
=

𝜆
2

𝑟
= 0 (𝑟 > 1) and also 𝑎1

𝑟
= ⋅ ⋅ ⋅ = 𝑐

2

𝑟
= 0 (𝑟 > 1). It follows

that the problem is reduced to finite dimension: 𝑥, 𝑎, 𝑏, 𝑐 are
functions only of coordinates𝑥, 𝑢

0
, V

0
, 𝑢

1
, V

1
. Even the explicit

formulae can be easily obtained as follows

𝑎
1

1
= 𝜆

1

1
𝐴 − 𝜆

1

0
(𝑎 + V

1
𝑐) , . . . , 𝑏

2

1
= 𝜆

2

1
𝐵 − 𝜆

2

0
(𝑏 + 𝑢

1
𝑐) ,

𝑏
1

0
− 𝑎

2

0
= 𝜆

1

0
𝐵 − 𝜆

2

0
𝐴,

𝑐
1

0
− 𝑎

3

0
= 𝜆

1

0
𝐶 − 𝜆

3

0
𝐴,

𝑐
2

0
− 𝑏

3

0
= 𝜆

2

0
𝐶 − 𝜆

3

0
𝐵

(328)

for the prolongationwheremoreover𝜆1
1
(𝑏+𝑢

1
𝑐) = 𝜆

2

1
(𝑎+V

1
𝑐)

is supposed.

(𝜄]) On the Equation (325). Calculations modulo 𝑑𝑥 are also
sufficient here. The prolongation should satisfy

(𝜆
1

0
𝛼
0
+ 𝜆

2

0
𝛽
0
+ 𝜆

3

0
𝛾
0
+ 𝜆

1

1
𝛼
1
+ 𝜆

2

1
𝛽
1
)

∧ (𝑉𝜋
1

0
+ V𝜋1

1
+ 𝑈𝜋

2

0
)

− (∑𝑢
1

𝑟
𝛼
𝑟
+∑𝑢

2

𝑟
𝛽
𝑟
+ 𝑢

3

0
𝛾
0
) ∧ 𝜋

2

0

− (∑ V1
𝑟
𝛼
𝑟
+∑ V2

𝑟
𝛽
𝑟
+ V3

0
𝛾
0
) ∧ 𝜋

1

0

= −𝛽
0
∧ 𝛼

1
− 𝛼

0
∧ 𝛽

1
+ V (𝛽

0
∧ 𝛼

1
+ 𝛼

0
∧ 𝛽

1
) ,

(329)

where 𝑈 = 𝐷𝑢, 𝑉 = 𝐷V. We have used the identity

𝜋
1

1
− 𝑢𝜋

2

1
=

1

𝜆

L
𝐷
(𝜋

1

0
− 𝑢𝜋

2

0
) +

𝑈

𝜆

𝜋
2

0
, (330)

where 𝜋1
0
− 𝑢𝜋

2

0
= V𝜋1

0
is moreover substituted. In order to

prove the existence of prolongation, the right-hand side terms
should be made more explicit. We recall the identity (263)
which gives

𝜋
1

1
+ V

2
𝛼
0
+ 𝑢

2
𝜋
2

0
= 0,

𝜋
1

2
+ V

2
𝛼
0
+ V

1
𝛼
1
+ 𝑢

3
𝜋
2

0
+ 𝑢

2
𝜋
2

1
= 0

(331)

and uniquely determines the forms 𝛼
0
and 𝛼

1
in terms of

forms 𝜋1
1
, 𝜋

2

0
, 𝜋

1

2
, 𝜋

2

1
and therefore in terms of contact forms

𝛼
𝑟
, 𝛽

𝑟
, and 𝛾

0
, if the rule (265) is applied to the primary

equations (321). The result is that

𝛽
0
∧ 𝛼

1
= 𝜋

2

0
∧ (a certain sum of forms

𝛼
0
, 𝛽

0
, 𝛾

0
, 𝛼

1
, 𝛽

1
, 𝛼

2
, 𝛽

2
)

𝛼
0
∧ 𝛽

1
= −

1

V
2

(𝑢
2
𝜋
2

0
+ 𝜋

1

1
) ∧ (a certain sum of forms

𝛼
0
, 𝛽

0
, 𝛾

0
, 𝛼

1
, 𝛽

1
) .

(332)

On the other hand, inequalities (266) imply that the factors

𝑉𝜋
1

0
+ V𝜋1

1
+ 𝑈𝜋

2

0
, 𝜋

2

0
, 𝜋

1

1
(333)

on the left-hand side of (329) are linearly independent andwe
conclude that the prolongation can be realized. Moreover 𝑢
becomes a function of second-order coordinates while 𝑥 and
V are functions of first-order coordinates 𝑥, 𝑢

0
, V

0
, 𝑤

0
, 𝑢

1
, V

as before. The problem is again reduced to finite-dimension;
however, we do not state explicit formula for the prolongation
here.

Remark 46. In accordance with Lie’s classical theory, the
existence of infinitesimal symmetries 𝑍 (Figure 5(a)) is equiv-
alent to the existence of a one-parameter group m(𝜆) of
symmetries (Figures 3(a) and 3(b)) due to the solvability of
the Lie system ensured by Theorem 24. Alas, the “genuine”
higher-order symmetries (Figure 3(c)) cannot be obtained in
this way and they rest on the toilsomemechanisms of Pfaffian
systems. We nevertheless propose a hopeful conjecture as
follows. Every one-parameter family m(𝑡) of symmetries
ensures the existence of many variations 𝑍(𝑡) depending on
parameter 𝑡 (Figure 5(b)).We believe that the converse can be
proved as well: one-parameter families of symmetries can be
reconstructed from a “sufficiently large” supply of variations.
Indeed, if 𝑡 is regarded as additional variable of the underlying
space, then the family 𝑍(𝑡) turns into a single vector field.

In any case, the existence of many variations is a necessary
condition for the existence of “genuine” higher-order symme-
tries and the following point (]) will be instructive in this
respect.

(]) On the Variations. If a one-parameter family m(𝑡) = m
(abbreviation) satisfies (318) then the corresponding family



30 Abstract and Applied Analysis

P = P(0)

P(𝜆)
}Z

(a) Vector field 𝑍:𝑍P(𝜆) = (𝑑/𝑑𝜆)m(𝜆)P

P

P(t) = m(t)P

}Z(t)

(b) Variations 𝑍(𝑡):𝑍(𝑡)P(𝑡) = (𝑑/𝑑𝑡)m(𝑡)P

Figure 5

𝑍(𝑡) = 𝑍 (abbreviation) of variations clearly satisfies the
system

L
𝑍
𝜋
1

0
− 𝑢L

𝑍
𝜋
2

0
− 𝑢


𝜋
2

0
= V𝜋1

0
,

L
𝑍
𝜋
2

0
= 𝑎


𝛼
0
+ 𝑏


𝛽
0
+ 𝑐


𝛾
0
,

(334)

where 𝑢

= 𝑍𝑢, . . . , 𝑐


= 𝑍𝑐 may be regarded as new

parameters. Assuming formula (268), one can obtain the
resolving system

𝑧V
2
+ 𝐷𝑞 − 𝑝

𝑢
0

− 𝑎
V
1
+ 𝑢𝑞

𝑢
0

= 𝑞
𝑢
0

+ 𝑎
V
1
+ 𝑐

V
2
= 0,

(335)

𝑧𝑢
2
+ 𝑎

1
− 𝑝V

0

− 𝑎

𝑢
1
+ 𝑢


+ 𝑢𝑞V

0

= 𝑞V
0

+ 𝑎

𝑢
1
− 𝑏


+ 𝑐


𝑢
2
= 0,

(336)

𝑞 + 𝑝
𝑢
1

= 𝑞
𝑢
1

= 𝑎
0
+ 𝑝V

1

= 𝑧 + 𝑞V
1

= 𝑝
𝑤
0

− V − 𝑢𝑞
𝑤
0

= 𝑞
𝑤
0

− 𝑎

= 0.

(337)

It follows from right-hand equations (337) that 𝑝 = −𝑞𝑢
1
+ 𝑞,

where 𝑞, 𝑞 do not depend on 𝑢
1
. Recalling the identity

𝑎
0
V
2
+ 𝑞𝑢

2
+ 𝐷𝑝 = 0, (338)

then the middle equations (337) yield the conditions

𝑞
𝑢
0

+ 𝑞
𝑤
0

V
1
= 𝑞

𝑥
+ 𝑞V

0

V
1

= 𝑞
𝑥
+ 𝑞V

0

V
1
− 𝑞

𝑢
0

− 𝑞
𝑤
0

V
1
= 0

(339)

and 𝑞 = 𝑞(𝑥, 𝑢
0
, V

0
, V

1
, 𝑤

0
), 𝑞 = 𝑞(𝑥, 𝑢

0
, V

0
, V

1
, 𝑤

0
). With

this result, (335) turns into identity and (336) reduces to the
equation

𝑢

= 𝑢 (𝑞

𝑤
0

𝑢
1
− 𝑞V

0

) + 𝑢
2
𝑞V
1

+ 𝐷(𝑞V
1

𝑢
1
− 𝑞V

1

) + 𝑞V
0

(340)

for the parameter 𝑢. Equations (339) are trivially satisfied if

𝑞 = 𝑄 (𝑥V
1
− V

0
, 𝑢

0
V
1
− 𝑤

0
, V

1
) ,

𝑞 = 𝑄 (𝑥V
1
− V

0
, 𝑢

0
V
1
− 𝑤

0
, V

1
) .

(341)

There exist many variations corresponding to (318). The neces-
sary condition for the existence of higher-order symmetries is
satisfied.

Remark 47. Let us briefly sketch the connection to
the general equivalence method [23] by using slightly
adapted Cartan’s notation. We consider space R𝑛 (and
its counterpart R

𝑛) with coordinates (𝑥) = (𝑥
1
, . . . , 𝑥

𝑛
)

(or (𝑥) = (𝑥
1
, . . . , 𝑥

𝑛
), resp.) and linearly independent

1-forms 𝜔
1
, . . . , 𝜔

𝑛
(and 𝜔

1
, . . . , 𝜔

𝑛
). In the classical equi-

valence problem, a mapping m should be determined such
that

m∗
𝜔
𝑖
= ∑𝑎

𝑖𝑗 (
𝑢) 𝜔𝑗

(𝑖, 𝑗 = 1, . . . , 𝑛; (𝑥) = m∗
(𝑥) , 𝑢 = 𝑢 (𝑥)) ,

(342)

where (𝑎
𝑖𝑗
(𝑢)) is a matrix of a linear group with parameters

(𝑢) = (𝑢
1
, . . . , 𝑢

𝑟
). In Cartan’s approach, this requirement is

made symmetrical:

m∗
∑𝑎

𝑖𝑗 (
𝑢) 𝜔𝑖

= ∑𝑎
𝑖𝑗 (
𝑢) 𝜔𝑗

((𝑥) = m∗
(𝑥) , 𝑢 = 𝑢 (𝑥, 𝑢)) .

(343)

This provides the invariant differential forms by appropriate
simultaneous adjustments of both sides (343). Such proce-
dure fails, if (𝑎

𝑖𝑗
(𝑥)) is not a matrix of a linear group which

happens just in the case of higher-order symmetries on
Figure 3(c). Then the corresponding total system (342) with
𝑖, 𝑗 = 1, 2, . . . is invertible only in the infinite-dimensional
underlying space M and (𝑎

𝑖𝑗
(𝑢)) need not be even a square

matrix in any finite portion of the system (342). On the
other hand, such a finite portion is quite sufficient since
Lemma 17 ensures the extension on the total space M. The
“symmetrization” procedure cannot be applied, invariant
differential forms need not exist, and only the common
prolongation procedure is available, if the problem is reduced
to a finite-dimensional subspace ofM.

12. Concluding Survey

Our approach to differential equations and our methods dif-
fer from the common traditional use. For better clarity, let us
briefly report themain novelties as follows: clear interrelation
between the external and internal concepts in Remarks 1
and 2; introduction and frequent use of “nonholonomic”
series (18); the “absolute” and coordinate-free Definition 4
of ordinary differential equations; the distinction between
variations and infinitesimal symmetries in Definition 8; the
main tool, the standard bases generalizing the common
contact forms in jet spaces; the invariance of constants 𝐾 =

𝐾(Ω) and 𝜇 = 𝜇(Ω), the controllability concept related to the
Mayer problem; the distinction between order-preserving,
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group-like, and true higher-order symmetries in Figure 1;
technical Lemmas 17, 19, and 23 and Theorem 24 which
provide new universal method of solution of the higher-
order symmetry problem; new explicit formula as (136) for
the famous and “well-known” symmetry problem of a Monge
equation with two unknown functions; the Lagrange varia-
tional problem without Lagrange multipliers and with easy
proofs; seeTheorem 41; particular results of new kind for the
Monge equationwith three unknown functions; a note on the
insufficience of 𝐺-structures in Remark 47.

All these achievements can be carried over the partial
differential equations.

On this occasion, the actual extensive theory of the control
systems

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥, 𝑢) (𝑡 ∈ R, 𝑥 ∈ R
𝑛
, 𝑢 ∈ R

𝑚
) (344)

is worth mentioning. It may be regarded as a mere formally
adapted individual subcase of the theory of underdetermined
systems of ordinary differential equations. However, the
exceptional role of the independent variable 𝑡 (the change of
notation), the state variables 𝑥, and the control 𝑢 is empha-
sized in applications; see [24–26] and references therein. In
particular, only the 𝑡-preserving andmoreover 𝑡-independent
symmetries of the system (344) are accepted. So in our
notation (1), such restriction means that we suppose 𝑥 =

𝑊 = 𝑥 and functions𝑊𝑖 are independent of 𝑥. This is a fatal
restriction of the impact of the theory of control systems. It
follows that the results of this theory do not imply the classical
results by Lie and Cartan; they are of rather special nature.
The lack of new effective methods adapted to the control
systems theory should be moreover noted. The absence of
explicit solutions of particular examples is also symptomatic.
Last but not least, unlike our diffieties, the control systems
cannot be reasonably generalized for the partial differential
equations.

We believe that the internal and higher-order approach
to some nonholonomic theories are possible, for instance,
in the case of the higher-order subriemannian geometry
[12]. It seems that the advanced results [27] in the theory
of geodesics can be appropriately adapted and rephrased in
terms of invariants (as in [28]) instead of adjoint tensor fields.

Appendix

Anontrivial automorphism m of the jet spaceM(3) related to
the theory of differential equation (260) is worth mentioning
[9, pp. 44–46] without additional comments. In terms of
usual jet coordinates 𝑥, 𝑤𝑖

𝑟
(𝑖 = 1, 2, 3; 𝑟 = 0, 1, . . .) on the

spaceM(3), we put

m∗
𝑤
1

0
= 𝑤

1

1
, m∗

𝑤
2

0
= 𝑤

2

1
, m∗

𝑥 = 𝑤
3

1
, (A.1)

and moreover

m∗
𝑤
3

0
= det(

𝑥𝑤
1

1
− 𝑤

1

0
m∗

𝑤
1

1
m∗

𝑤
1

2

𝑥𝑤
2

1
− 𝑤

2

0
m∗

𝑤
2

1
m∗

𝑤
2

2

𝑥𝑤
3

1
− 𝑤

3

0
1 0

) . (A.2)

The morphismm is rigorously defined since the transforms

m∗
𝑤
𝑗

1
=

m∗
𝑤
𝑗

0

m∗
𝑥

, m∗
𝑤
𝑗

2
=

m∗
𝑤
𝑗

1

m∗
𝑥

(𝑗 = 1, 2)
(A.3)

are well-known due to the prolongation (6). The point of
construction is as follows. We have

m∗
(𝑥 − 𝐹 (𝑤

1

0
, 𝑤

2

0
)) = m∗

𝑥 − 𝐹 (m∗
𝑤
1

0
,m∗

𝑤
2

0
)

= 𝑤
3

1
− 𝐹 (𝑤

1

1
, 𝑤

2

1
) .

(A.4)

So, assuming the invertibility of m, differential equations
(260) are identified with subspaces N ⊂ M(3) given by
equations 𝑥 = 𝐹(𝑤

1

0
, 𝑤

2

0
). Every such a subspaceNwith given

𝐹 ̸= const. is clearly isomorphic to the jet space M(2). We
conclude that the diffiety Ω corresponding to given equation
(260) is isomorphic to the diffiety Ω(2) of all curves in three-
dimensional space R3 and therefore admits huge supply of
higher-order symmetries; see [4, Section 7] for quite simple
examples.

Let us turn to the invertibility problem. We introduce
a morphismnwhichwill be identifiedwith the sought inverse
m−1. The definition is as follows. Let us introduce functions
𝑎, 𝑏, 𝑐 determined by three linear equations

det(
𝑎 𝑤

1

1
𝑤
1

2

𝑏 𝑤
2

1
𝑤
2

2

𝑐 1 0

) = 𝑤
3

0
,

det(
𝑎 𝑤

1

1
𝑤
1

3

𝑏 𝑤
2

1
𝑤
2

3

𝑐 1 0

) = 𝑤
3

1
,

det(
𝑎 𝑤

1

2
𝑤
1

3

𝑏 𝑤
2

2
𝑤
2

3

𝑐 0 0

) + det(
𝑎 𝑤

1

1
𝑤
1

4

𝑏 𝑤
2

1
𝑤
2

4

𝑐 1 0

) = 𝑤
3

2
.

(A.5)

It follows that functions 𝑎, 𝑏, 𝑐moreover satisfy

det(
𝐷𝑎 𝑤

1

1
𝑤
1

2

𝐷𝑏 𝑤
2

1
𝑤
2

2

𝐷𝑐 1 0

) = det(
𝐷𝑎 𝑤

1

1
𝑤
1

3

𝐷𝑏 𝑤
2

1
𝑤
2

3

𝐷𝑐 1 0

) = 0 (A.6)

whence the equations

𝐷𝑎 = 𝑤
1

1
n∗𝑥, 𝐷𝑏 = 𝑤

2

1
n∗𝑥,

𝐷𝑐 = 1 ⋅ n∗𝑥 = n∗𝑥
(A.7)

uniquely define function n∗𝑥. We finally put

n∗𝑤1

0
= 𝑤

1

0
n∗𝑥 − 𝑎, n∗𝑤2

0
= 𝑤

2

0
n∗𝑥 − 𝑏,

n∗𝑤3

0
= 𝑥n∗𝑥 − 𝑐

(A.8)

and then
𝐷n∗𝑤1

0
= 𝑤

1

1
n∗𝑥 + 𝑤1

0
𝐷n∗𝑥 − 𝐷𝑎 = 𝑤

1

0
𝐷n∗𝑥,

𝐷n∗𝑤2

0
= ⋅ ⋅ ⋅ = 𝑤

2

0
𝐷n∗𝑥,

𝐷n∗𝑤3

0
= ⋅ ⋅ ⋅ = 𝑥.

(A.9)
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It follows that functions 𝑤1

0
, 𝑤

2

0
, 𝑥 and hence 𝑎, 𝑏, 𝑐 and even

the coordinate 𝑤3

0
can be expressed in terms of certain pull-

backs n∗. Therefore n is invertible and moreover n = m−1.
Indeed, the last three equations read

𝑤
1

0
=

1

𝐷n∗𝑥
𝐷n∗𝑤1

0
= n∗𝐷𝑤1

0
= n∗𝑤1

1
,

𝑤
2

0
= ⋅ ⋅ ⋅ = n∗𝑤2

1
, 𝑥 = ⋅ ⋅ ⋅ = n∗𝑤3

1

(A.10)

in full accordancewith the initial equations (A.1) and formula
(A.2) follows from (A.8).
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