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We investigate the stability of stochastic delay differential systems with delayed impulses by Razumikhin methods. Some criteria
on the pth moment and almost sure exponential stability are obtained. It is shown that an unstable stochastic delay system can
be successfully stabilized by delayed impulses. Moreover, it is also shown that if a continuous dynamic system is stable, then,
under some conditions, the delayed impulses do not destroy the stability of the systems. The effectiveness of the proposed results
is illustrated by two examples.

1. Introduction

Impulsive dynamical systems have attracted considerable
interest in science and engineering in recent years because
they provide a natural framework formathematicalmodeling
of many real world problems where the reactions undergo
abrupt changes [1–3]. These systems have found important
applications in various fields, such as control systems with
communication constraints [4], sampled-data systems [5, 6],
and mechanical systems [7]. On the other hand, impulsive
control based on impulsive systems can provide an efficient
way to deal with plants that cannot endure continuous control
inputs [3]. In recent years, the impulsive control theory has
been generalized from deterministic systems to stochastic
systems and has been shown to have wide applications
[8].

Stability is one of the most important issues in the study
of impulsive stochastic delay differential systems (see e.g., [9–
15]). Particularly, under condition 𝐸𝑉(𝜑(0) + 𝐼𝑘(𝜑, 𝑡), 𝑡) ≤

𝜌1𝑘𝐸𝑉(𝑥, 𝑡
−
), 𝑡 = 𝑡𝑘, the 𝑝th moment exponential and

almost sure exponential stability were investigated in [12–
14]. In [12, 13], the authors show that unstable continuous
dynamic systems can be stabilized by impulses.The condition
𝜌1𝑘 < 1 is assumed in [12] for any 𝑘 ∈ N, which is loosen
in [13]. More recently, the condition 𝜌1𝑘 < 1 is proved
unnecessary when continuous dynamic systems are stable in
[14].

Inmost of recent research results, the impulses are usually
assumed to take the following form: Δ𝑋(𝑡𝑘) = 𝑋(𝑡

+

𝑘
) −

𝑋(𝑡
−

𝑘
) = 𝐼𝑘(𝑋(𝑡

−

𝑘
), 𝑡𝑘), which indicates the state jump at the

impulse time. However, time delays inevitably occurred in
the transmission of the impulsive information. Hence, input
delays should be considered (see e.g., [5, 16]). In the context of
stability of deterministic differential equations with delayed
impulses, there have appeared several results in the literature
(see e.g., [17–19]). For example, in [17], the asymptotic
stability is investigated for a class of delay-free autonomous
systems with the impulses of Δ𝑋(𝑡+

𝑘
) = 𝐶1𝑘𝑋((𝑡𝑘 − 𝑑𝑘)

−
),

and a sufficient asymptotic stability condition is proposed
involving the sizes of impulse input delays. In [19], Chen and
Zheng considered more general impulses taking the form
Δ𝑋(𝑡
+

𝑘
) = 𝐼𝑘(𝑋(𝑡

−

𝑘
), 𝑋((𝑡𝑘−𝑑𝑘)

−
)) and obtained some criteria

of exponential stability for nonlinear time-delay systems with
delayed impulse effects.

However, most of the existing results of the stability
for systems with delayed impulses were considered for the
deterministic differential systems. It is noticed that many real
world systems are disturbed by stochastic factors. Therefore,
it seems interesting to study the stability of stochastic delay
differential systems with delayed impulses. Recently, the
exponential stability is investigated for impulsive stochas-
tic functional differential system in [20], and exponential
stability and uniform stability in terms of two measures
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were obtained for stochastic differential systems with delayed
impulses. Motivated by the above works, the aim of this
paper is to study 𝑝th moment and almost sure exponential
stability of a stochastic delay differential system with delayed
impulses. It is shown that an unstable stochastic delay system
can be successfully stabilized by delayed impulses. Moreover,
it is also shown that if a continuous dynamic system is stable,
then, under some conditions, the delayed impulses do not
destroy the stability of the systems. Our results can generalize
some existing results in [20, 21].

The paper is organized as follows. In Section 2, we
introduce the notations and definitions. We establish several
stability criteria for stochastic differential delay systems with
delayed impulses in Section 3. In Section 4, two examples are
given to illustrate the effectiveness of our results.

2. Preliminaries

Throughout this paper, let (Ω,F, 𝑃) be a complete probability
space with some filtration {F𝑡}𝑡⩾0 satisfying the usual con-
ditions (i.e., the filtration is increasing and right continuous
whileF0 contains all 𝑃 null sets). Let 𝐵 = (𝐵(𝑡), 𝑡 ≥ 0) be an
𝑚-dimensionalF𝑡-adapted Brownian motion.

For 𝑥 ∈ R𝑑, |𝑥| denotes the Euclidean norm of 𝑥. For
−∞ < 𝑎 < 𝑏 < ∞, we say that a function from [𝑎, 𝑏]

to R𝑑 is piecewise continuous, if the function has at most
a finite number of jumps discontinuous on (𝑎, 𝑏] and are
continuous from the right for all points in [𝑎, 𝑏). Given 𝑟 > 0,
𝑃𝐶([−𝑟, 0];R𝑑) denotes the family of piecewise continuous
functions from [−𝑟, 0] toR𝑑 with norm ‖𝜑‖

𝑟
= sup

−𝑟≤𝜃≤0
𝜑(𝜃).

For 𝑝 ≥ 1 and 𝑡 ≥ 𝑡0, let 𝐿
𝑝

F
𝑡

([−𝑟, 0];R𝑑) be the family ofF𝑡-
adapted and 𝑃𝐶([−𝑟, 0];R𝑑)-valued random variables 𝜑 such
that 𝐸‖𝜑‖𝑝

𝑟
< ∞. Let N = 1, 2, . . . and R+ = [0, +∞).

In this paper, we consider the following stochastic delay
differential systems with delayed impulses:

𝑑𝑋 (𝑡) = 𝑓 (𝑋𝑡, 𝑡) 𝑑𝑡 + 𝑔 (𝑋𝑡, 𝑡) 𝑑𝐵 (𝑡) ,

𝑡 ̸= 𝑡𝑘, 𝑡 ≥ 𝑡0;

Δ𝑋 (𝑡𝑘) = 𝑋 (𝑡𝑘) − 𝑋 (𝑡
−

𝑘
) = 𝐼𝑘 (𝑋 (𝑡

−
) , 𝑋(𝑡 − 𝑑𝑘)

−
) ,

𝑘 ∈ N;

𝑋𝑡
0

= 𝜉 (𝑡0 + 𝜃) , −𝜏 ≤ 𝜃 ≤ 0,

(1)

where {𝑡𝑘, 𝑘 ∈ N} is a strictly increasing sequence such that
𝑡𝑘 → ∞ as 𝑘 → ∞; {𝑑𝑘 ≥ 0, 𝑘 ∈ N} are the impulsive input
delays satisfying 𝑑 = max𝑘𝑑𝑘 and 𝜏 = max{𝑟, 𝑑}.𝑋𝑡 is defined
by𝑋𝑡(𝜃) = 𝑋(𝑡+𝜃),−𝑟 ≤ 𝜃 ≤ 0. Let𝑋𝑡−(𝜃) = 𝑋((𝑡+𝜃)

−
), −𝑟 ≤

𝜃 ≤ 0, where 𝑋(𝑡−) = lim𝑠→ 𝑡−𝑋(𝑠). The mappings 𝐼 : R𝑑 ×
𝑃𝐶([−𝑟, 0];R𝑑) → R𝑑, 𝑓 : 𝑃𝐶([−𝑟, 0];R𝑑)×R+ → R𝑑, and
𝑔 : 𝑃𝐶([−𝑟, 0];R𝑑) × R+ → R𝑑×𝑚 are all Borel-measurable
functions. For simplicity, denote 𝑉(𝑥(𝑡), 𝑡) by 𝑉(𝑡).

As a standing hypothesis, we assume that 𝑓, 𝑔, and 𝐼 are
assumed to satisfy necessary assumptions so that, for any
𝜉 ∈ 𝐿
𝑝

F
𝑡

([−𝜏, 0];R𝑑), system (1) has a unique global solution,

denoted by𝑋(𝑡; 𝜉), and, moreover,𝑋(𝑡; 𝜉) ∈ 𝐿𝑝
F
𝑡

([−𝑟, 0];R𝑑).
In addition, we assume that 𝑓(0, 𝑡) ≡ 0, 𝑔(0, 𝑡) ≡ 0 and
𝐼𝑘(0, 0) ≡ 0, for all 𝑡 ≥ 𝑡0, 𝑘 ∈ N; then system (1) admits a
trivial solution 𝑋(𝑡) ≡ 0. Moreover, we make the following
assumptions on system (1).
(A1) There is a constant 𝐿 > 0, such that

𝐸 (
󵄨󵄨󵄨󵄨𝑓 (𝑋𝑡, 𝑡)

󵄨󵄨󵄨󵄨

𝑝
+
󵄨󵄨󵄨󵄨𝑔 (𝑋𝑡, 𝑡)

󵄨󵄨󵄨󵄨

𝑝
) < 𝐿 sup
−𝑟≤𝜃≤0

𝐸|𝑋 (𝑡)|
𝑝
,

𝑡 ≥ 𝑡0.

(2)

(A2) There exist nonnegative bounded sequences {ℎ1𝑘} and
{ℎ2𝑘} such that

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ1𝑘 |𝑥| + ℎ2𝑘

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 , 𝑘 ∈ N. (3)

Set ℎ = sup
𝑘
(ℎ1𝑘 + ℎ2𝑘).

Let 𝐶2,1(R𝑑 × [𝑡0 − 𝑟,∞);R+) denote the family of all
nonnegative functions 𝑉(𝑥, 𝑡) on R𝑑 × [𝑡0 − 𝑟,∞) that are
continuously twice differentiable in 𝑥 and once in 𝑡. For each
𝑉 ∈ 𝐶

2,1
(R𝑑 × [𝑡0 − 𝑟,∞);R+), define an operator L𝑉 :

𝑃𝐶([−𝑟, 0];R𝑑) ×R+ → R𝑑 for system (1) by

L𝑉 (𝑋𝑡, 𝑡) = 𝑉𝑡 (𝑥, 𝑡) + 𝑉𝑥 (𝑥, 𝑡) 𝑓 (𝑋𝑡, 𝑡)

+
1

2
trace [𝑔𝑇 (𝑋𝑡, 𝑡) 𝑉𝑥𝑥 (𝑥, 𝑡) 𝑔 (𝑋𝑡, 𝑡)] ,

(4)

where

𝑉𝑡 (𝑥, 𝑡) =
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑡
,

𝑉𝑥 (𝑥, 𝑡) = (
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥1

, . . . ,
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥𝑑

) ,

𝑉𝑥𝑥 (𝑥, 𝑡) = (
𝜕
2
𝑉 (𝑥, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗

)

𝑑×𝑑

.

(5)

The purpose of this paper is to discuss the stability of
system (1). Let us begin with the following definition.

Definition 1. The trivial solution of system (1) is said to be as
follows.

(1)𝑝thmoment exponentially stable, if, for any initial data
𝜉 ∈ 𝐿
𝑝

F
𝑡0

([−𝑟, 0];R𝑑), the solution𝑋(𝑡) satisfies

𝐸|𝑋 (𝑡)|
𝑝
≤ 𝐶𝐸

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝
𝑒
−𝜆(𝑡−𝑡

0
)
, (6)

or, equivalently,

lim sup
𝑡→∞

1

𝑡
log𝐸|𝑋 (𝑡)|

𝑝
≤ −𝜆, (7)

where 𝜆 and 𝐶 are positive constants independent of 𝑡0.
(2) Almost sure exponentially stable, if the solution 𝑋(𝑡)

satisfies

lim sup
𝑡→∞

1

𝑡
log |𝑋 (𝑡)| < −𝜆, (8)

for any initial data 𝜉 ∈ 𝐿𝑝
F
𝑡0

([−𝑟, 0];R𝑑) and 𝜆 > 0.
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3. Main Results

Before establishing the main results, we derive the following
lemma, which is useful to present the main results.

Lemma 2. Let assumptions (A1) and (A2) hold. Suppose that
inf𝑘∈N{𝑡𝑘 − 𝑡𝑘−1} = 𝛽1 and (𝑙1 − 1)𝛽1 < 𝑑 ≤ 𝑙1𝛽1 for some
positive integer 𝑙1. Then

𝐸|𝑋 (𝑡)|
𝑝
≤ 𝐾1𝐸

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
, 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0 + 𝑑] , (9)

where𝐾1 = 3
𝑙
1
(𝑝−1)

(1 + ℎ)
𝑙
1𝑒
3
𝑝−1
𝐿(𝑑
𝑝
+𝑑
𝑝/2
).

Proof. Since (𝑙1 − 1)𝛽1 < 𝑑 ≤ 𝑙1𝛽1, the maximum number of
impulsive times on the interval (𝑡0, 𝑡0 + 𝑑] is 𝑙1. Suppose that
the impulsive instants on (𝑡0, 𝑡0 +𝑑] are 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑚 ≤ 𝑙1. For
𝑡 ∈ (𝑡0, 𝑡1), using (A1), we have

𝐸|𝑋 (𝑡)|
𝑝
= 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜉 (0) + ∫

𝑡

𝑡
0

𝑓 (𝑋𝑠, 𝑠) 𝑑𝑠 + ∫

𝑡

𝑡
0

𝑔 (𝑋𝑠, 𝑠) 𝑑𝐵 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 3
𝑝−1

[𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
+ (𝑡 − 𝑡0)

𝑝−1
𝐸∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨𝑓 (𝑋𝑠, 𝑠)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑠

+(𝑡 − 𝑡0)
(𝑝−2)/2

𝐸∫

𝑡

𝑡
0

󵄨󵄨󵄨󵄨𝑔 (𝑋𝑠, 𝑠)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑠]

≤ 3
𝑝−1

[𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
+ 𝐿(𝑡 − 𝑡0)

𝑝−1
∫

𝑡

𝑡
0

𝐸 sup
𝑡
0
−𝑟≤𝑢≤𝑠

|𝑋 (𝑢)|
𝑝
𝑑𝑠

+𝐿(𝑡 − 𝑡0)
(𝑝−2)/2

∫

𝑡

𝑡
0

𝐸 sup
𝑡
0
−𝑟≤𝑢≤𝑠

|𝑋 (𝑢)|
𝑝
𝑑𝑠]

≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
+ 3
𝑝−1

𝐿

× [(𝑡 − 𝑡0)
𝑝−1

+ (𝑡 − 𝑡0)
(𝑝−2)/2

]

× ∫

𝑡

𝑡
0

𝐸 sup
𝑡
0
−𝑟≤𝑢≤𝑠

|𝑋 (𝑢)|
𝑝
𝑑𝑠,

(10)

which implies

𝐸 sup
𝑡
0
−𝑟≤𝑠≤𝑡

|𝑋 (𝑠)|
𝑝
≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
+ 3
𝑝−1

𝐿 (𝑑
𝑝−1

+ 𝑑
(𝑝−2)/2

)

× ∫

𝑡

𝑡
0

𝐸 sup
𝑡
0
−𝑟≤𝑢≤𝑠

|𝑋 (𝑢)|
𝑝
𝑑𝑠.

(11)

Using the Gronwall inequality, it follows that

𝐸 sup
𝑡
0
−𝑟≤𝑠≤𝑡

|𝑋 (𝑠)|
𝑝
≤ 3
𝑝−1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
𝑒
3
𝑝−1
𝐿(𝑑
𝑝−1
+𝑑
(𝑝−2)/2
)(𝑡−𝑡
0
)
,

𝑡 ∈ (𝑡0, 𝑡1) .

(12)

According to (A2), we get

󵄨󵄨󵄨󵄨𝑋 (𝑡1)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡
−

1
) + 𝐼𝑘 (𝑋 (𝑡

−

1
) , 𝑋 ((𝑡1 − 𝑑1)

−
))
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑋 (𝑡
−

1
)
󵄨󵄨󵄨󵄨 + ℎ11

󵄨󵄨󵄨󵄨𝑋 (𝑡
−

1
)
󵄨󵄨󵄨󵄨 + ℎ12

󵄨󵄨󵄨󵄨󵄨
𝑋 ((𝑡1 − 𝑑1)

−
)
󵄨󵄨󵄨󵄨󵄨
.

(13)

It follows that

𝐸
󵄨󵄨󵄨󵄨𝑋 (𝑡1)

󵄨󵄨󵄨󵄨

𝑝
≤ 3
𝑝−1

(1 + ℎ) 𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
𝑒
3
𝑝−1
𝐿(𝑑
𝑝−1
+𝑑
(𝑝−2)/2
)(𝑡−𝑡
0
)
.

(14)

Hence,

𝐸|𝑋 (𝑡)|
𝑝
≤ 3
𝑝−1

(1 + ℎ) 𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
𝑒
3
𝑝−1
𝐿(𝑑
𝑝−1
+𝑑
(𝑝−2)/2
)(𝑡
1
−𝑡
0
)
,

𝑡 ∈ [𝑡0 − 𝜏, 𝑡1] .

(15)

Repeating the above argument gives that, for 𝑡 ∈ [𝑡0 − 𝜏, 𝑡𝑚],

𝐸|𝑋 (𝑡)|
𝑝
≤ 3
𝑙
1
(𝑝−1)

(1 + ℎ)
𝑙
1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
𝑒
3
𝑝−1
𝐿(𝑑
𝑝−1
+𝑑
(𝑝−2)/2
)(𝑡
𝑚
−𝑡
0
)
.

(16)

Since there are no impulses on (𝑡𝑚, 𝑡0 + 𝑑], we obtain

𝐸|𝑋 (𝑡)|
𝑝
≤ 3
𝑙
1
(𝑝−1)

(1 + ℎ)
𝑙
1

𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝

𝜏
𝑒
3
𝑝−1
𝐿(𝑑
𝑝−1
+𝑑
(𝑝−2)/2
)𝑑
,

𝑡 ∈ [𝑡0 − 𝜏, 𝑡0 + 𝑑] .

(17)

This completes the proof.

When the continuous dynamics in system (1) is unstable,
the following theorem shows that the system (1) can be
stabilized by the delayed impulses.

Theorem 3. Let the assumptions in Lemma 2 hold. Assume
that there exist positive constants 𝑐1, 𝑐2, 𝛾1, and 𝜆 and 𝑝 ≥ 1

such that

(H1) 𝑐1|𝑥|
𝑝
≤ 𝑉(𝑥, 𝑡) ≤ 𝑐2|𝑥|

𝑝;
(H2) for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 ∈ N,

𝐸L𝑉 (𝜑 (𝜃) , 𝑡) ≤ 𝛾1𝐸𝑉 (𝜑 (0) , 𝑡) , (18)

provided that 𝜑 ∈ 𝐿
𝑝

F
𝑡

([−𝑟, 0];R𝑑) satisfies 𝐸𝑉(𝜑(𝜃), 𝑡 + 𝜃) ≤
𝑞𝐸𝑉(𝜑(0), 𝑡), 𝜃 ∈ [−𝑟, 0];

(H3) there exist nonnegative constant sequences 𝜌1𝑘, 𝜌2𝑘, and
𝜂𝑘 such that

𝐸𝑉 (𝑡, 𝑥 + 𝐼𝑘 (𝑥, 𝑦)) ≤ 𝜌1𝑘𝜂𝑘𝐸𝑉 (𝑥, 𝑡
−
)

+ 𝜌2𝑘𝜂𝑘𝐸𝑉 (𝑦, (𝑡 − 𝑑𝑘)
−
) , 𝑡 = 𝑡𝑘,

(19)

where∏∞
𝑘=1

𝜂𝑘 < ∞;

(H4) let 𝛾 = sup
𝑚∈N{𝜌1𝑚 + 𝜌2𝑚𝑒

𝜆𝑑
}, 𝑞 ≥ (𝑒

𝜆𝑟
/𝛾) and 𝛾 <

𝑒
−(𝛾
1
+𝜆)𝛽
2 , where 𝛽2 = sup

𝑘∈N{𝑡𝑘 − 𝑡𝑘−1} < ∞.
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Then the trivial solution of system (1) is 𝑝th moment
exponentially stable.

Proof. Define 𝑊(𝑡) = 𝑒
𝜆(𝑡−𝑡
0
−𝑑)
𝑉(𝑡). From Itô’s differential

formula, we have

𝑑𝑊 (𝑡) = L𝑊(𝑡) + 𝑒
𝜆(𝑡−𝑡
0
−𝑑)
𝑉𝑥 (𝑋𝑡, 𝑡) 𝑔 (𝑋𝑡, 𝑡) 𝑑𝐵 (𝑡) ,

(20)

for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 ∈ N. It is easy to calculate that

L𝑊(𝑡) = 𝜆𝑒
𝜆(𝑡−𝑡
0
−𝑑)
𝑉 (𝑡) + 𝑒

𝜆(𝑡−𝑡
0
−𝑑)

L𝑉 (𝑡) . (21)

Let Δ𝑡 > 0 be small enough such that 𝑡 + Δ𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘), then

𝐸𝑊(𝑡 + Δ𝑡) − 𝐸𝑊 (𝑡) = ∫

𝑡+Δ𝑡

𝑡

𝐸L𝑊(𝑠) 𝑑𝑠, (22)

which implies that

𝐷
+
𝐸𝑊(𝑡) = 𝐸L𝑊(𝑡) , 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘) , 𝑘 ∈ N. (23)

In view of Lemma 2 and (H1), we obtain

𝐸𝑊(𝑡) ≤ 𝑐2𝐾1𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝
≤ 𝛾𝑀, 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0 + 𝑑] , (24)

where𝑀 = 𝑐2𝐾1𝐸‖𝜉‖
𝑝
/𝛾. In the following, we will prove

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ≥ 𝑡0 + 𝑑. (25)

We first show that

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ∈ [𝑡0 + 𝑑, 𝑡1) . (26)

Suppose that it is not true; then there exist some 𝑡 ∈ (𝑡0+𝑑, 𝑡1)
such that 𝐸𝑊(𝑡) > 𝑀. Set 𝑡∗ = inf{𝑡 ∈ [𝑡0 + 𝑑, 𝑡1) : 𝐸𝑊(𝑡) >

𝑀}; we have 𝑡∗ ∈ (𝑡0 + 𝑑, 𝑡1) and 𝐸𝑊(𝑡
∗
) = 𝑀. Let 𝑡∗ =

sup{𝑡 ∈ [𝑡0 + 𝑑, 𝑡
∗
) : 𝐸𝑊(𝑡) ≤ 𝛾𝑀}. For 𝑡 ∈ [𝑡∗, 𝑡

∗
], we see

that

𝐸𝑊(𝑡) ≥ 𝛾𝑀 ≥ 𝛾𝐸𝑊(𝑡 + 𝜃) , 𝜃 ∈ [−𝑟, 0] . (27)

Hence,

𝐸𝑉 (𝑋 (𝑡) , 𝑡) ≥ 𝛾𝑒
−𝜆𝑟

𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃)

≥
1

𝑞
𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃) , 𝜃 ∈ [−𝑟, 0] .

(28)

Combining this with (H2), we obtain that, for 𝑡 ∈ [𝑡∗, 𝑡
∗
],

𝐷
+
𝐸𝑊(𝑡) ≤ 𝑒

𝜆(𝑡−𝑡
0
−𝑑)

(𝛾1 + 𝜆) 𝐸𝑉 (𝑡) = (𝛾1 + 𝜆) 𝐸𝑊 (𝑡) .

(29)

So, we derive that

𝐸𝑊(𝑡
∗
) ≤ 𝐸𝑊(𝑡∗) 𝑒

(𝛾
1
+𝜆)(𝑡
∗
−𝑡
∗
)
≤ 𝛾𝑀𝑒

(𝛾
1
+𝜆)𝛽
2 < 𝑀.

(30)

It is a contradiction; therefore, (26) holds for 𝑡 ∈ (𝑡0 + 𝑑, 𝑡1).

Now, we assume that 𝐸𝑊(𝑡) ≤ ∏
𝑚−1

𝑘=1
𝜂𝑘𝑀, 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚),

𝑚 ∈ N. We will show that

𝐸𝑊(𝑡) ≤

𝑚

∏

𝑘=1

𝜂𝑘𝑀, 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1) . (31)

By (H3), we derive that

𝐸𝑊(𝑡𝑚) = 𝑒
𝜆(𝑡
𝑚
−𝑡
0
−𝑑)
𝐸𝑉 (𝑡𝑚) ≤ 𝑒

𝜆(𝑡
𝑚
−𝑡
0
−𝑑)

× (𝜌1𝑚𝜂𝑚𝐸𝑉 (𝑡
−

𝑚
) + 𝜌2𝑚𝜂𝑚𝐸𝑉 ((𝑡𝑚 − 𝑑𝑚)

−
))

≤ 𝜌1𝑚𝜂𝑚𝐸𝑊(𝑡
−

𝑚
) + 𝜌2𝑚𝑒

𝜆𝑑
𝜂𝑚𝐸𝑊((𝑡𝑚 − 𝑑𝑚)

−
)

≤ (𝜌1𝑚 + 𝜌2𝑚𝑒
𝜆𝑑
)

𝑚

∏

𝑘=1

𝜂𝑘𝑀

= 𝛾

𝑚

∏

𝑘=1

𝜂𝑘𝑀.

(32)

Now, we assume that (31) is not true. Set 𝑡∗ = inf{𝑡 ∈

[𝑡𝑚, 𝑡𝑚+1) : 𝐸𝑊(𝑡) > ∏
𝑚

𝑘=1
𝜂𝑘𝑀}; then we have 𝑡∗ ∈ (𝑡𝑚, 𝑡𝑚+1)

and 𝐸𝑊(𝑡
∗
) = ∏

𝑚

𝑘=1
𝜂𝑘𝑀. Let 𝑡∗ = sup{𝑡 ∈ [𝑡𝑚, 𝑡

∗
) : 𝐸𝑊(𝑡) ≤

𝛾∏
𝑚

𝑘=1
𝜂𝑘𝑀}. For 𝑡 ∈ [𝑡∗, 𝑡

∗
], we have

𝐸𝑊(𝑡) ≥ 𝛾

𝑚

∏

𝑘=1

𝜂𝑘𝑀 ≥ 𝛾𝐸𝑊(𝑡 + 𝜃) , 𝜃 ∈ [−𝑟, 0] . (33)

Hence,

𝐸𝑉 (𝑋 (𝑡) , 𝑡) ≥ 𝛾𝑒
−𝜆𝑟

𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃)

≥
1

𝑞
𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃) , 𝜃 ∈ [−𝑟, 0] .

(34)

This yields that 𝐷+𝐸𝑊(𝑡) ≤ (𝛾1 + 𝜆)𝐸𝑊(𝑡), 𝑡 ∈ [𝑡∗, 𝑡
∗
].

Therefore,

𝐸𝑊(𝑡
∗
) ≤ 𝐸𝑊(𝑡∗) 𝑒

(𝛾
1
+𝜆)(𝑡
∗
−𝑡
∗
)

≤ 𝛾

𝑚

∏

𝑘=1

𝜂𝑘𝑀𝑒
(𝛾
1
+𝜆)𝛽
2 <

𝑚

∏

𝑘=1

𝜂𝑘𝑀,

(35)

which leads to a contradiction. Thus, (31) holds.
By mathematical induction, we have

𝐸𝑊(𝑡) < 𝑀

∞

∏

𝑘=1

𝜂𝑘, 𝑡 ≥ 𝑡0. (36)

This implies that

𝐸|𝑋 (𝑡)|
𝑝
<
𝑀∏
∞

𝑘=1
𝜂𝑘

𝑐1

𝑒
−𝜆(𝑡−𝑡

0
−𝑑)
, 𝑡 ≥ 𝑡0. (37)

This completes the proof.



Abstract and Applied Analysis 5

Remark 4. In Theorem 3, the positive constant 𝜂𝑘 is intro-
duced in (H3), where 𝜂𝑘 > 1 and 𝜂𝑘 ≤ 1 are allowed. As
mentioned in [13], the constant 𝜂𝑘 is introduced in (H3),
which makes it possible to tolerate certain perturbations in
the overall impulsive stabilization process; that is, it is not
strictly required by Theorem 3 that each impulse contributes
to stabilize the system; there can exist some destabilized
impulses. Moreover, when 𝜂3𝑘−2 = 1/2, 𝜂3𝑘−1 = 1/2, 𝜂3𝑘 = 4,
for 𝑘 ∈ N, we haveΠ∞

𝑘=1
𝜂𝑘 < 5 and∑∞

𝑘=1
(𝜂𝑘 − 1) = +∞. Then,

Theorem 3 can be used, but the results in [20, 21] cannot be
applicable to this case.

In the following theorem, we will show that if the
continuous dynamics is stable, then, under some condition,
the system is still stable with the delayed impulsive effects.

Theorem 5. Assume that the assumptions in Lemma 2 hold.
Suppose that there exist positive constants 𝑐1, 𝑐2, 𝛾2, and 𝜆 and
𝑝 ≥ 1 such that

(H1) 𝑐1|𝑥|
𝑝
≤ 𝑉(𝑡, 𝑥) ≤ 𝑐2|𝑥|

𝑝;
(H2) for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), 𝑘 ∈ N and 𝑉 ∈ 𝐶

2,1
(R𝑛 × [𝑡0 −

𝑟,∞);R+),

𝐸L𝑉 (𝜑 (𝜃) , 𝑡) ≤ −𝛾2𝐸𝑉 (𝜑 (0) , 𝑡) , (38)

provided that 𝜑 ∈ 𝐿
𝑝

F
𝑡

([−𝑟, 0];R𝑑) satisfies 𝐸𝑉(𝜑(𝜃), 𝑡 + 𝜃) ≤
𝑞𝐸𝑉(𝜑(0), 𝑡), 𝜃 ∈ [−𝑟, 0];

(H3) 𝐸𝑉(𝑥 + 𝐼𝑘(𝑥, 𝑦), 𝑡) ≤ 𝜌1𝑘𝐸𝑉(𝑥, 𝑡
−
) + 𝜌2𝑘𝐸𝑉(𝑦, (𝑡 −

𝑑𝑘)
−
), for all 𝑡 = 𝑡𝑘;

(H4) sup𝑘∈N{(𝜌1𝑘/min{𝑞𝑒−𝜆𝑟, 𝑒(𝛾2−𝜆)𝛽1}) + 𝜌2𝑘𝑒
𝜆𝑑
} < 1,

𝑞𝑒
−𝜆𝑟

> 1 and 𝛾2 > 𝜆.

Then the trivial solution of system (1) is 𝑝th moment expo-
nentially stable.

Proof. Sincemax𝑘∈N{(𝜌1𝑘/min{𝑞𝑒−𝜆𝑟, 𝑒(𝛾2−𝜆)𝛽1})+𝜌2𝑘𝑒
𝜆𝑑
} < 1,

𝑞𝑒
−𝜆𝑟

> 1 and 𝑒(𝛾2−𝜆)𝛽1 > 1, there exists a constant 𝑞 > 1 such
that

1 < 𝑞 < min {𝑞𝑒−𝜆𝑟, 𝑒(𝛾2−𝜆)𝛽1} ,
𝜌1𝑘

𝑞
+ 𝜌2𝑘𝑒

𝜆𝑑
≤ 1,

𝑘 ∈ N.

(39)

By Lemma 2 and (H1), we have

𝐸𝑊(𝑡) ≤ 𝑐2𝐾1𝐸
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

𝑝
≤
1

𝑞
𝑀, 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0 + 𝑑] , (40)

where𝑀 = 𝑐2𝑞𝐾1𝐸 ‖ 𝜉‖
𝑝. We first show

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ∈ [𝑡0 + 𝑑, 𝑡1] . (41)

This can be verified by a contradiction. Suppose that it is not
true, then there exist some 𝑡 ∈ [𝑡0 + 𝑑, 𝑡1) such that 𝐸𝑊(𝑡) >

𝑀. Set 𝑡∗ = inf{𝑡 ∈ [𝑡0 + 𝑑, 𝑡1) : 𝐸𝑊(𝑡) ≤ 𝑀}, then 𝑡∗ ∈

(𝑡0 + 𝑑, 𝑡1). Let 𝑡∗ = sup{𝑡 ∈ [𝑡0 + 𝑑, 𝑡∗) : 𝐸𝑊(𝑡) ≥ (1/𝑞)𝑀}.
For 𝑡 ∈ [𝑡∗, 𝑡∗], we get

𝑞𝐸𝑊 (𝑡) ≥ 𝑀 ≥ 𝐸𝑊(𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0. (42)

Hence,

𝐸𝑉 (𝑋 (𝑡) , 𝑡) ≥
1

𝑞
𝑒
−𝜆𝑟

𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃)

≥
1

𝑞
𝐸𝑉 (𝑋 (𝑡 + 𝜃) , 𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0.

(43)

It follows that, for 𝑡 ∈ [𝑡∗, 𝑡∗],

𝐷
+
𝐸𝑊(𝑡) ≤ 𝜆𝑒

𝜆(𝑡−𝑡
0
−𝑑)
𝐸𝑉 (𝑡) − 𝛾2𝑒

𝜆(𝑡−𝑡
0
−𝑑)
𝐸𝑉 (𝑡)

= (𝜆 − 𝛾2) 𝐸𝑊 (𝑡) < 0,

(44)

which yields that 𝐸𝑊(𝑡∗) ≤ 𝐸𝑊(𝑡∗) = (1/𝑞)𝑀 < 𝑀. This is
a contradiction; therefore, (41) holds for [𝑡0 + 𝑑, 𝑡1).

Now we assume that

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚) , 𝑚 ∈ N. (45)

We will show that

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1) . (46)

In order to do this, we first prove that

𝐸𝑊(𝑡
−

𝑚
) ≤

1

𝑞
𝑀. (47)

Suppose this is not true, then 𝐸𝑊(𝑡
−

𝑚
) > (1/𝑞)𝑀. There exist

two possible cases as follows.

Case 1. 𝐸𝑊(𝑡) > (1/𝑞)𝑀, for all 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚). Obviously, for
𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚),

𝑞𝐸𝑊 (𝑡) ≥ 𝑀 ≥ 𝐸𝑊(𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0. (48)

Thus, we can get 𝐷+𝐸𝑊(𝑡) ≤ (𝜆 − 𝛾2)𝐸𝑊(𝑡), which implies
that

𝐸𝑊(𝑡
−

𝑚
) ≤ 𝐸𝑊(𝑡𝑚−1) 𝑒

(𝜆−𝛾
2
)(𝑡
𝑚
−𝑡
𝑚−1
)

≤ 𝐸𝑊(𝑡𝑚−1) 𝑒
(𝜆−𝛾
2
)𝛽
1 <

1

𝑞
𝑀.

(49)

This is a contradiction.

Case 2. There exist some 𝑠 ∈ [𝑡𝑚−1, 𝑡𝑚) such that 𝐸𝑊(𝑠) ≤

(1/𝑞)𝑀. In this case, set 𝑡 = sup{𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚) : 𝐸𝑊(𝑡) <

(1/𝑞)𝑀}; then 𝐸𝑊(𝑡) = (1/𝑞)𝑀. Since, for 𝑡 ∈ [𝑡, 𝑡𝑚),

𝑞𝐸𝑊 (𝑡) ≥ 𝑀 ≥ 𝐸𝑊(𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0, (50)

it follows that𝐷+𝐸𝑊(𝑡) ≤ 0, which gives 𝐸𝑊(𝑡
−

𝑚
) ≤ 𝐸𝑊(𝑡) =

(1/𝑞)𝑀. This is also a contradiction.
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Hence, (47) holds. In the following equation, wewill show
that 𝐸𝑊(𝑡𝑚) ≤ 𝑀. In view of (H3), we obtain

𝐸𝑊(𝑡𝑚) = 𝑒
𝜆(𝑡
𝑚
−𝑡
0
−𝑑)
𝐸𝑉 (𝑡𝑚)

≤ 𝑒
𝜆(𝑡
𝑚
−𝑡
0
−𝑑)

(𝜌1𝐸𝑉 (𝑡
−

𝑚
) + 𝜌2𝐸𝑉 ((𝑡𝑚 − 𝑑𝑚)

−
))

≤ 𝜌1𝐸𝑊(𝑡
−

𝑚
) + 𝜌2𝑒

𝜆𝑑
𝐸𝑊((𝑡𝑚 − 𝑑𝑚)

−
)

≤ (
𝜌1

𝑞
+ 𝜌2𝑒
𝜆𝑑
)𝑀

≤ 𝑀.

(51)

We go on proving (46). Suppose that it is not the case; then,
there exist some 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1). Set 𝑡∗ = inf{𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1) :

𝐸𝑊(𝑡) > 𝑀}; then, we have 𝑡∗ ∈ (𝑡𝑚, 𝑡𝑚+1). If 𝐸𝑊(𝑡) ≥

(1/𝑞)𝑀, set 𝑡∗ = 𝑡𝑚; otherwise, set 𝑡∗ = sup{𝑡 ∈ [𝑡𝑚, 𝑡
∗) :

𝐸𝑊(𝑡) ≤ (1/𝑞)𝑀}. For 𝑡 ∈ [𝑡∗, 𝑡∗], we derive

𝑞𝐸𝑊 (𝑡) ≥ 𝑀 ≥ 𝐸𝑊(𝑡 + 𝜃) , −𝑟 ≤ 𝜃 ≤ 0, (52)

which implies that

𝐸𝑉 (𝑡) ≥
1

𝑞
𝑒
−𝜆𝑟

𝐸𝑉 (𝑡 + 𝜃,𝑋 (𝑡 + 𝜃))

≥
1

𝑞
𝐸𝑉 (𝑡 + 𝜃,𝑋 (𝑡 + 𝜃)) , −𝑟 ≤ 𝜃 ≤ 0.

(53)

It follows that 𝐷+𝐸𝑊(𝑡) < 0 for 𝑡 ∈ [𝑡∗, 𝑡
∗]. Consequently,

𝐸𝑊(𝑡∗) < 𝐸𝑊(𝑡∗). This is a contradiction. Thus, (46) holds.
By mathematical induction, we see that

𝐸𝑊(𝑡) ≤ 𝑀, 𝑡 ≥ 𝑡0 − 𝜏. (54)

Then we can get from (H1) that

𝐸|𝑋 (𝑡)|
𝑝
≤
𝑀

𝑐1

𝑒
−𝜆(𝑡−𝑡

0
−𝑑)
, 𝑡 ≥ 𝑡0 − 𝜏. (55)

This completes the proof.

Remark 6. When the continuous system in system (1) is
stable, the system (1) can always be stable with stabilized
impulses. Thus, 𝜌1𝑘 + 𝜌2𝑘 < 1 is permissible in Theorem 5,
and only one constraint 𝑞𝑒−𝜆𝑟 > 1 is assumed for constant 𝑞.
However, 𝜌1 + 𝜌2 ≥ 1 and 𝜌1 + 𝜌2𝑒

𝑐𝜏
> 𝑞 are necessary in

Theorem 3.2 of [20]. Thus, in this aspect, Theorem 5 is more
general than the results existing in [20].

The following theorem shows that the trivial solution of
system (1) is almost sure exponentially stable, under some
additional conditions.

Theorem 7. Suppose that 𝑝 ≥ 1 and the conditions in
Theorem 3 or Theorem 5 hold. Then, the trivial solution of
system (1) is almost sure exponentially stable.

Proof. Using Theorem 3 or Theorem 5, we derive that the
trivial solution of system (1) is 𝑝th moment exponentially
stable. Therefore, there exists a positive constant 𝐶1 such that

𝐸|𝑋 (𝑡)|
𝑝
≤ 𝐶1𝑒

−𝜆(𝑡−𝑡
0
)
. (56)

It is obvious that

𝐸( sup
0≤𝑠≤𝑟

|𝑋 (𝑡 + 𝑠)|
𝑝
)

≤ 4
𝑝−1

(𝐸|𝑋 (𝑡)|
𝑝
+ 𝐸(∫

𝑡+𝑟

𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑋𝑠, 𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

+ 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
0≤𝑠≤𝑟

∫

𝑡+𝑠

𝑡

𝑔 (𝑋𝑢, 𝑢) 𝑑𝐵 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡≤𝑡
𝑘
≤𝑡+𝑟

𝐼𝑘 (𝑋 (𝑡
−
) , 𝑋(𝑡 − 𝑑𝑘)

−
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

) .

(57)

Combining the Hölder inequality with (A1) and (56) implies
that

𝐸∫

𝑡+𝑟

𝑡

󵄨󵄨󵄨󵄨𝑓 (𝑋𝑠, 𝑠)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑠 ≤ 𝐿𝑟

𝑝−1
∫

𝑡+𝑟

𝑡

sup
−𝑟≤𝜃≤0

𝐸|𝑋 (𝑠 + 𝜃)|
𝑝
𝑑𝑠

≤ 𝐶1𝐿𝑟
𝑝
𝑒
−𝜆(𝑡−𝑟−𝑡

0
)
.

(58)

By virtue of Burkholder-Davis-Gundy inequality, (A1), and
(56), we have

𝐸( sup
0≤𝑠≤𝑟

∫

𝑡+𝑠

𝑡

󵄨󵄨󵄨󵄨𝑔 (𝑋𝑢, 𝑢)
󵄨󵄨󵄨󵄨 𝑑𝐵 (𝑢))

≤ 𝐿𝑟
(𝑝/2)−1

∫

𝑡+𝑟

𝑡

sup
−𝑟≤𝜃≤0

𝐸|𝑋 (𝑠 + 𝜃)|
𝑝
𝑑𝑠

≤ 𝐶1𝐶 (𝑝) 𝐿𝑟
𝑝/2
𝑒
−𝜆(𝑡−𝑟−𝑡

0
)
,

(59)

where 𝐶(𝑝) is a positive constant depending on 𝑝 only.
Thanks to (A2) and (56), we see that

𝐸( ∑

𝑡≤𝑡
𝑘
≤𝑡+𝑟

󵄨󵄨󵄨󵄨󵄨
𝐼𝑘 (𝑋 (𝑡

−
) , 𝑋(𝑡 − 𝑑𝑘)

−
)
󵄨󵄨󵄨󵄨󵄨
)

𝑝

≤ 𝑙
𝑝

1
𝐸 sup
𝑡≤𝑡
𝑘
≤𝑡+𝑟

󵄨󵄨󵄨󵄨󵄨
𝐼𝑘 (𝑋 (𝑡

−
) , 𝑋(𝑡 − 𝑑𝑘)

−
)
󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝑙
𝑝

1
2
𝑝−1

𝐶1ℎ𝑒
𝜆𝑑
𝑒
−𝜆(𝑡−𝑟−𝑡

0
)
.

(60)

Substituting (58)–(60) into (57) gives that

𝐸( sup
0≤𝑠≤𝑟

|𝑋 (𝑡 + 𝑠)|
𝑝
) ≤ 𝐶2𝑒

−𝜆𝑡
, (61)

where 𝐶2 is a positive constant. Then for all 𝜀 ∈ (0, 𝜆) and
𝑛 ∈ N, we have

𝑃(𝜔 : sup
0≤𝑠≤𝑟

|𝑋 (𝑛𝑟 + 𝑠)|
𝑝
> 𝑒
−(𝜆−𝜀)𝑛𝑟

) ≤ 𝐶2𝑒
−𝜀𝑛𝑟

. (62)
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Using the Borel-Cantelli Lemma, we see that there exists an
𝑛0(𝜔) such that, for almost all 𝜔 ∈ Ω, 𝑛 ≥ 𝑛0(𝜔),

sup
0≤𝑠≤𝑟

|𝑋 (𝑡 + 𝑠)|
𝑝
≤ 𝑒
−(𝜆−𝜀)𝑛𝑟

, (63)

where 𝑛𝑟 ≤ 𝑡 ≤ (𝑛 + 1)𝑟. It follows that

lim sup
𝑛→∞

logsup
𝑛𝑟≤𝑡≤(𝑛+1)𝑟

|𝑋 (𝑡)|

(𝑛 + 1) 𝑟
≤
− (𝜆 − 𝜀)

𝑝
, a.s. (64)

Consequently,

lim sup
𝑡→∞

log |𝑋 (𝑡)|

𝑡
≤
− (𝜆 − 𝜀)

𝑝
, a.s. (65)

Let 𝜀 → 0; then the result follows.

4. Numerical Examples

In this section, two numerical examples are given to show
the effectiveness of the main results derived in the preceding
section.

Example 8. Consider a stochastic delay differential system
with delayed impulses as follows:

𝑑𝑋 (𝑡) = [0.5𝑋 (𝑡) + 0.125𝑋 (𝑡 − 0.2)] 𝑑𝑡

+ 0.5𝑋 (𝑡 − 0.2) 𝑑𝐵 (𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ≥ 𝑡0,

Δ𝑋 (𝑡𝑘) = −0.7𝑋 (𝑡
−

𝑘
) + 0.2𝑋 ((𝑡𝑘 − 0.6)

−
) ,

𝑘 ∈ N,

𝑋 (0) = 1.2; 𝑋 (𝜃) = 0, −0.6 ≤ 𝜃 < 0,

(66)

where 𝑡𝑘 − 𝑡𝑘−1 = 0.3. Let 𝑝 = 2, 𝑉(𝑡, 𝑥) = 𝑥
2
, 𝑐1 = 𝑐2 = 1,

and 𝑞 = 4. Then

𝐸L𝑉 (𝑡, 𝑥) = 𝐸|𝑋 (𝑡)|
2
+ 0.25𝐸𝑋 (𝑡)𝑋 (𝑡 − 0.2)

+ 0.25𝐸|𝑋 (𝑡 − 0.2)|
2

≤ 1.5𝐸|𝑋 (𝑡)|
2
+ 0.75𝑞𝐸|𝑋 (𝑡 − 0.2)|

2

≤ 4.5𝐸|𝑋 (𝑡)|
2
.

(67)

Choose 𝛾1 = 4.5, 𝛾 = 0.265, 𝛽1 = 0.2, 𝑑 = 0.6, 𝜌1𝑘 = 0.18,
𝜌2𝑘 = 0.08, 𝜂3𝑘−2 = 1/2, 𝜂3𝑘−1 = 1/2, 𝜂3𝑘 = 4, 𝜆 = 0.1, and ℎ =
𝐿 = 1. Clearly, (A1) and (A2) hold, and 𝑞 > (𝑒

𝜆𝑟
/𝛾) = 2.082,

𝛾 = 0.265 < 𝑒
−(𝛾
1
+𝜆)𝛽
2 = 0.316.Thus, byTheorems 3 and 7 the

trivial solution of system (66) is 𝑝th moment and an almost
sure exponential stability.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

t

X
(
t
)

Figure 1: System without impulses for Example 1.
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(
t
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Figure 2: System with impulses for Example 1.

It can be seen in Figures 1 and 2 that unstable continuous
dynamics of system (66) can be successfully stabilized by
delayed impulses.

Example 9. Consider a stochastic delay differential system
with delayed impulses as follows

𝑑𝑋 (𝑡) = [−0.9𝑋 (𝑡) + 0.125𝑋 (𝑡 − 1)] 𝑑𝑡

+ 0.5𝑋 (𝑡 − 1) 𝑑𝐵 (𝑡) , 𝑡 ̸= 𝑡𝑘, 𝑡 ≥ 𝑡0,

Δ𝑋 (𝑡𝑘) = −0.5𝑋 (𝑡
−

𝑘
)

+ 0.2𝑋 ((𝑡𝑘 − 2)
−
) , 𝑘 ∈ N,

𝑋 (0) = −1; 𝑋 (𝜃) = 0, −2 ≤ 𝜃 < 0,

(68)
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Figure 3: System without impulses for Example 2.
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Figure 4: System with impulses for Example 2.

where 𝑡𝑘 − 𝑡𝑘−1 = 0.5. Let 𝑝 = 2, 𝑉(𝑡, 𝑥) = 𝑥
2
, 𝑐1 = 𝑐2 = 1, and

𝑞 = 4/3; then

𝐸L𝑉 (𝑡, 𝑥) = −1.8𝐸|𝑋 (𝑡)|
2
+ 0.25𝐸𝑋 (𝑡)𝑋 (𝑡 − 1)

+ 0.25𝐸|𝑋 (𝑡 − 1)|
2

≤ −1.3𝐸|𝑋 (𝑡)|
2
+
3𝑞

4
𝐸|𝑋 (𝑡)|

2

= −0.3𝐸|𝑋 (𝑡)|
2
.

(69)

Choose 𝛾2 = 0.3, 𝛽1 = 0.5, 𝑑 = 0.6, 𝜌1𝑘 = 0.5, 𝜌2𝑘 = 0.08,
𝜆 = 0.1, ℎ = 1, and 𝐿 = 1.2. Therefore, (A1) and (A2) hold,
and max𝑘∈N{(𝜌1𝑘/min{𝑞𝑒−𝜆𝑟, 𝑒(𝛾2−𝜆)𝛽1}) +𝜌2𝑘𝑒

𝜆𝑑
} = 0.651 < 1

and 𝑞 = 4/3 > 𝑒
𝜆𝑟

= 1.106. Thus, by Theorems 5 and 7 the
trivial solution of system (68) is 𝑝th moment and an almost
sure exponential stability.

It can be seen from Figures 3 and 4 that the delayed
impulses can robust the stability of the system (68).

5. Conclusion

The 𝑝th moment and almost sure exponential stability
are investigated in this paper. Using Razumikhin methods,
several sufficient conditions are established for stability of
stochastic delay differential systems with delayed impulses.
Finally, two numerical simulation examples are offered to
verify the effectiveness of the main results.
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