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We study a class of fractional g-integrodifference equations with nonlocal fractional g-integral boundary conditions which have
different quantum numbers. By applying the Banach contraction principle, Krasnoselskii’s fixed point theorem, and Leray-Schauder
nonlinear alternative, the existence and uniqueness of solutions are obtained. In addition, some examples to illustrate our results

are given.

1. Introduction

In this paper, we deal with the following nonlocal fractional
g-integral boundary value problem of nonlinear fractional g-
integrodifference equation:

Dix(t)=f(tx(®),1x®), te(T), o

x(0)=0,  AMbhx(n)=1I'x(®),

where 0 < p,g,7,z2 < 1,1 <a <2,3,9,0 >0,1 € Rare
given constants, D‘; is the fractional g-derivative of Riemann-

Liouville type of order a, I is the fractional ¢-integral of
order y with¢ = p,r,z,andy = 5,9,6, f: [0, TIxRxR —
R is a continuous function.

The early work on g-difference calculus or quantum
calculus dates back to Jackson’s paper [1]. Basic definitions
and properties of quantum calculus can be found in the book
[2]. The fractional g-difference calculus had its origin in the
works by Al-Salam [3] and Agarwal [4]. Motivated by recent
interest in the study of fractional-order differential equations,
the topic of g-fractional equations has attracted the attention
of many researchers. The details of some recent development
of the subject can be found in ([5-17]) and the references cited

therein, whereas the background material on g-fractional
calculus can be found in a recent book [18].

In this paper, we will study the existence and uniqueness
of solutions of a class of boundary value problems for
fractional g-integrodifference equations with nonlocal frac-
tional g-integral conditions which have different quantum
numbers. So, the novelty of this paper lies in the fact that
there are four different quantum numbers. In addition, the
boundary condition of (1) does not contain the value of
unknown function x at the right side of boundary point¢ = T.
One may interpret the q-integral boundary condition in (1)
as the g-integrals with different quantum numbers are related
through a real number A.

The paper is organized as follows. In Section 2, for the
convenience of the reader, we cite some definitions and
fundamental results on g-calculus as well as the fractional
g-calculus. Some auxiliary lemmas, needed in the proofs
of our main results, are presented in Section 3. Section 4
contains the existence and uniqueness results for problem (1)
which are shown by applying Banach’s contraction principle,
Krasnoselskii’s fixed point theorem, and Leray-Schauder’s
nonlinear alternative. Finally, some examples illustrating the
applicability of our results are presented in Section 5.
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2. Preliminaries

To make this paper self-contained, below we recall some
known facts on fractional g-calculus. The presentation here
can be found in, for example, [6, 18, 19].

For g € (0, 1), define

1-4°
l-¢g

[a]q = , a€R. (2)

The g-analogue of the power function (1 — b)* with k €
N = {0,1,2,.. .} is

-1

1-0)%=1,  a-n®=T](1-v7),
i= (3)
keN, beR.
More generally, if y € R, then
| _ b i
_p® = 1
(1-b)¥ = 1'0[1 o (4)

We use the notation 0 = 0 for y > 0. The g-gamma
function is defined by

(1-9*"
L) = ——F7>
T

Obviously, Fq(x +1)= [x]qfq(x).
The g-derivative of a function h is defined by

h(x)_—h(qx) for x#+0
(l—q)x , (6)

(th) 0) = ilino (th) (),

x € R\{0,-1,-2,...}. (5

(D) =

and g-derivatives of higher order are given by

(D3R) (x) = h(x),
7)
(DSR) (x) = D, (DS ') (x),  keN.

The g-integral of a function h defined on the interval [0, b] is
given by

18

(1) ) = [ B dys = x(1-) Yh(xd')d

Il
(=]

(8)
x € [0,b].

If a € [0,b] and h is defined in the interval [0, b], then its
integral from a to b is defined by

b b a
J h(s)dgs = J h(s)dgs - J h(s)d,s. )
a 0 0
Similar to derivatives, an operator I‘I; is given by
(Ioh) (x) = h(x),

(Iih) (x) = 1, (I 'h) (x), Kk eN.

(10)
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The fundamental theorem of calculus applies to operators D,
and Iq; that is,

(D,I,h) (x) = h(x), (11)
and if /1 is continuous at x = 0. Then
(1,D,h) (x) = h(x) = h (0). (12)

Definition 1. Let v > 0 and h be a function defined on [0, T'].
The fractional g-integral of Riemann-Liouville type is given
by (Igh)(x) = h(x) and

(I;h) (x) = J: (x - qs)(%l)h (s)dys,

1
L) (13)

v>0, xel0,T].

Definition 2. The fractional g-derivative of Riemann-
Liouville type of order v > 0 is defined by (Dgh)(x) = h(x)
and

(Dlh) (x) = (DLL"R) (x), v >0, (14)
where [ is the smallest integer greater than or equal to v.

Definition 3. For any m,n > 0,
1
(m-1) (n-1)
B, (m,n) = L u™ V(1 - qu)"du (15)

is called the g-beta function.

The expression of g-beta function in terms of the g-
gamma function can be written as

~ I, (m) I, (n)

B, (m,n) =

4 (16)

T, (m+n)

Lemma 4 (see [4]). Let o, > 0, and f be a function defined
in [0, T]. Then, the following formulas hold:

(1) (P13 ) (x) = (157 f)(x);
() (DS )(x) = f().

Lemma5 (see [6]). Let o > 0 and v be a positive integer. Then,
the following equality holds:

(12031) 9
- -1 x(x—wk A (17)
= (Dqqu) (x) - ];)m (qu) (0) .

3. Some Auxiliary Lemmas

Lemma 6. Let«, 3 > 0, and 0 < q < 1. Then one has

1
L (n- qs)(“_l)sﬁdqs = ﬂ“*ﬁBq (. p+1). (18)
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Proof. Using the definitions of g-analogue of power function
and g-beta function, we have

1 (@-1) B
Jo (n—qs)” s"dys

=(1-q) niq"(n ~qng") " (nq")’

n=0
n _o— ny(e—1) n
=(1-¢q ﬂzq (1 -aq")* g
(19)
— _ “"’ﬁzq (05 l)qnﬁ
1
_ o atf (a=1) (B)
=n" L (1-gs)" 's7ds
= }’IOH-ﬁBq ((X,ﬁ + 1) .
The proof is complete. O

Lemma?7. Letw, 3,y > 0, and 0 < p,q,r < 1. Then one has

nox oy o _ -
J, [ ] o= = an) =)V 2y

0
1 o+
:me(oc,[J’+y+l)Bq(ﬁ,y+l)l7 By,
' (20)

Proof. Taking into account Lemma 6, we have

nrx ry - . i
Jo Jo L (”I—px)( 1)(x_q}v)(ﬁ 1)(y—rz)(y DerdqydPx

L (a-1) (B-1 ()
Ol L L (n—px)" "(x-qy)" yVdyd,x

(@1 [* (B-1)
J (- px)*" L (x-q) "V yVd yd,x

bl

]. n o— -+
- B By 1) [ 1= p0) Vadx
[V], 0

=B, (a0, B+y+1)B, (B Ly + 1) P,
[V],
(21)

This completes the proof. O

Lemma 8. Let B,y > 0, A € R, and 0 < p,q,r < 1. Then,
for y € C([0,T],R), the unique solution of boundary value
problem,

Dgx(t) =y (0,

te(0,T), 1<a<2  (22)

subject to the nonlocal fractional condition,

x(0)=0,  Albx(n) = I'x(§), (23)

3
is given by
)tta_l
“O = o, (BT, @
nors
% Jo J-o (’7 - ps)(ﬁ_l)(s - qu)(a_l)}’ (u) dq” dPS
toc—l
oL ()T, (@) (24)
& s
. Jo Jo - rs)(y_l)(s - qu)(“_l)y (w)dgud,s
t(t— (a-1)
o, %y (5)dys
where
_ rr (0‘) aty-1 r ( ) ¢x+ﬁ—1
T (ary) y)f T ((X ﬁ) #0.  (25)

Proof. From 1 < & < 2, we let n = 2. Using the Definition 2
and Lemma 4, (22) can be expressed as

(I5D2 %) (1) = (I0y) (). (26)
From Lemma 5, we have

t t— (a=1)
x(t) = kyt“ "+ kyt* 7 4 j (t-a9)
0

I, (0 y(s)dgs  (27)

for some constants k;,k, € R. It follows from the first
condition of (23) that k, = 0. Applying the Riemann-
Liouville fractional p-integral of order § > 0 for (27) with
k, = 0 and taking into account of Lemma 6, we have

(-1
1Bx(t) = L (e~ ([)3)

S (e (a=1)

I, (@)
"L (B )J (k-

p

J e

I, (@)
F ((x+ﬁ)

XJO J:(t_ps

(u) dqu> dps
s+

1
r rp (ﬁ) rq (‘x)

)(ﬁl)ocld

)(ﬁ_n(s - qu)(“_l)y (u)dgud,s

oc+ﬁ—1 1
LT, @

YF V(s = qu)* ™y w) daud,s.
(28)



In particular, we have

I, (@) . 1
Iﬁ -k p a+f-1
Px(i/l) lrp (0‘+ﬁ)11 rp(ﬁ)rq(“)
T NBD @D
X Jo L (n=ps)" (s—qu)™ "y dud,s.

(29)

Using the Riemann-Liouville fractional r-integral of order
y > 0 and repeating the above process, we get

L (&)

T, (a+y)

1

14 — .
Irx (E) - kl rr (y) rq ((X)

§a+y—1

& s
% Jo Jo (&= rs)(y_l)(s - qu)(ail)y (u) dq“ d,s.

(30)
The second nonlocal condition of (23) implies
kl = #
Qrp (/3) rq ()
nors - w
8 Jo Jo (7 - ps)(ﬁ 1)(5 - qu)( 1))’ (w) dq” dPs
31
o (31)
Qr, (y) I (@)

& s
x J-o J‘o O rs)(y_l)(s - qu)(a_l))’ (wdud,s.

Substituting the values of k; and k, in (27), we get the desired
result in (24). O
4. Main Results

In this section, we denote € = C([0,T],R) as the Banach
space of all continuous functions from [0,T] to R endowed
with the norm defined by [lx|| = sup,¢opx(#)]. In view of
Lemma 8, we define an operator @ : € — € by
(@x) (1)
~ /\ttx—l
ar, (B) L, (@)
?’] S
(B-1) (a—1)
<[] 0= s - aw)

x f (u,x (u), Ifx (u)) dqu dps
tafl

- Qr, (y) T, ()
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& s
x L L € =r9)7 (s - qu)“™”
x f (u, x (u), Ifx (u)) dqu d,s

‘(- g9
+ L W'f (s,x (s) ,Ifx (s)) dqs,

(32)

where Q#0 is defined by (25). It should be noticed that
problem (1) has solutions if and only if the operator @ has
fixed points.

For the sake of convenience of proving the results, we set

o—1
A MT

QIT, ()

n***B, (B +1)L,
I, (x+1)

q“+ﬁ+SBq (0,0 +1)B,(Ba+8+1)L,
" I (@, +1)

Toc—l

_ 33
"It () 9

§B, (pa+1)L,
I (a+1)

a+y+d
+£ +y+ Bq((x,8+1)B,(y,oc+6+1)L2]

I, (a)T, (8 +1)

T T‘”‘SBq (6,5 + 1)
+ L, + L,
I, (x+1) I, I, 6+1)

>

- Al T“"ln‘”ﬁBp (Ba+1)
C1QIT, (B)T, (w+ 1)

TOL_IEOH—YBr (%‘x + 1) . TtX
IQIT, (y) T, (@+1) T, (a+1)

(34)

The first result on the existence and uniqueness of solu-
tions is based on the Banach contraction mapping principle.

Theorem 9. Let f : [0,T] x R xR — R be a continuous
function satisfying the assumption:
(H,) there exist constants L, L, > 0 such that

|f (t,wy, w,) - f(t’wpwz”

B B (35)
£L1|w1—w1|+L2|w2—w2|,
foreacht € [0,T] and w,, w,, w,,w, € R.
I
A<O<1, (36)

where A is given by (33), then the boundary value problem (1)
has a unique solution on [0, T].
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Proof. We transform problem (1) into a fixed point problem,
x = @Qx, where the operator @ is defined by (32). By applying
the Banach contraction mapping principle, we will show that
@ has a fixed point which is the unique solution of problem
(D).

Setting sup, (o111 f(£,0,0)| = M < o and choosing

r> , (37)

where 0 < ¢ < 1, and the constant ¥ defined by (34), we will
show that @B, C B,, where B, = {x € € : ||x|| < r}. For any
x € B,, we have

|@x (1)l

< Sup L
" teror | 1QIT, (B) T, ()

nos 2 o
<[] 0= p " Vs =)

X |f (u,x (u), Ijx (u))' dqu dps
toc—l

Tl ()L, @
& s
CNGD. @)
XL Jo & —rs)" (s —qu)
X |f (u,x(u),lfx (u))'dqudrs

t f— (1)
. J (t—gs)

) T,@ 'f(s,x(s),[jx(s))|dqs]>.

(38)
The assumption (H,) implies that

If (t.w,wy)| < | f (L w,w,) = f(£,0,0)] + | (£,0,0)]

<Ly |w |+ L, |w|+ M,
(39)

forallt € [0,T] and w;, w, € R.
Then, by using Lemmas 6 and 7, we have

|@x (1)l

B |A| Ttxfl
— I, (BT, (@

n (s B "
<[] = p9® s

X |f (u,x (u), ng (u))' dqu dps

5
Tot—l
Yol ()T, @
& s
<[] €= s
X |f (u,x(u) ,Ifx (u))| dqudrs
T(r- qs)(“_l) 8
+ L W |f (s,x(s),sz(s))'dqs
B |A|Ttx71
“ I, (BT, (@
s _ -
<[] = p9® Vs
w61
X <L1r + L,r L %dzv + M) dgud,s
Toc—l
TIoI, ()T, @
& s
8 Jo Jo (§-r9)* (s~ qu)(ail)
w oy, NB-1)
X <L1r +L,r L %dzv + M) dgud,s
+ JT (T - ‘15)(“_1)
o I(e)
S(s— zv)(‘s_l) )
X (Llr + Lyr JO Wdzv +M |dgs
_ T
1QIT, (B) T, (@)
T L M)B
x(@< e M)B, (B + 1)
L rrloﬁ—ﬂ+5
+m&1 (0,6 +1)B, (Ba+d+ 1))
Tot—l
Yol ()T, @
X (ﬁ (Lyr + M) B, (p,a+ 1)
[a]g '
L Tf“+y+6
+m3q((x,6+ 1B, (pa+d+ 1))
™ B, (0,6 +1)
e, M T oL e e
=Ar+¥YM <.
(40)

Then, we have ||@x| < r which yields @B, c B,.



Next, for any x, y € € and for each t € [0,T], we have

|@x (t) - @y (1)

_ !
~1QIT, ()T (@)

nos . o
<[] 0= Vs -
x (| f (wx (), I2x (w))

~f (wy ), Ly w)|) dgud,s

Ta—l
Tl ()T, @

& s
x Jo JO (& - rs)(y_l)(s - qu)(“fl)
X (|f (u,x(u),]fx (u))
~f (wy @), By w)|) dyud,s

e

o T

x(|f (559, Ex9) = £ (57, Ly )] dys

o re!
1AL (AL, @

nors 5 -
<[] =29 s )
0 Jo
(Ll

(- zv) 0D
N

. T o) dzv) dgud,s

Tlx—l
T ()L, @

& s
8 Jo JO (&= (s - qu)*"

x(me—yn+LAu—yu

J~u (u _ ZV)(B’I)

X . I o) dzv>dqudrs

(a-1)

s JT (T -as)

0 I, (@)
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(L=l Lol

S(s— zv)(5_1)
X J-O —rz ©) dzv) dgs
= Ay
(41)

The above result implies that [|@x — @yl < Allx — yl. As
A < 1, @Q is a contraction. Hence, by the Banach contraction
mapping principle, we deduce that @ has a fixed point which
is the unique solution of problem (1). O

The second existence result is based on Krasnoselskii’s
fixed point theorem.

Lemma 10 (Krasnoselskii’s fixed point theorem [20]). Let M
be a closed, bounded, convex, and nonempty subset of a Banach
space X. Let A, B be the operators such that (a) Ax + By € M
whenever x, y € M; (b) A is compact and continuous; (c) B
is a contraction mapping. Then there exists z € M such that
z = Az + Bz.

Theorem 11. Assume that f : [0,T] x R xR — R
is a continuous function satisfying the assumption (H,). In
addition one supposes that

(H,) |f(t,wy, w,)| < x(t), for all (t,w;, w,) € [0,T] xR x
R and x € C([0,T],R").

If

T™ T*°B, (a,8 + 1)
L L<1, (42
LD Loy S “

then the boundary value problem (1) has at least one solution
on [0, T].

Proof. Let us set SUP;¢ (o] |x(t)] = |lx|]l and choose a suitable
constant p as

p = llx| Y, (43)

where ¥ is defined by (34). Now, we define the operators @,
and @, on the set B, = {x e B :lxll < p}as

(@,x) (1)
- L
ar, (BT, (a)

nos . o
<[] 0= Vs -

x f (u,x (u), Ifx (u)) dqu dps
ta—l

B Qr, (y) T, ()
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& s
x L L &= r9)" (s - qu)*™
x f (u,x (u) ,Ijx (u)) dqu d,s

t _ (a-1)
(@,x) (t) = L %f (s,x (s), Ijx (s)) dgs.
q
(44)

Firstly, we will show that the operators @, and @, satisfy
condition (a) of Lemma 10. For x, y € B,, we have

[@,x + G,y|
AT
1QIT, (B) T, ()
" (-1 (a-1)
X L Jo (- ps)* (s - qu) dgud,s

Toc—l
QIT, ()T, @) (45)

< x|

+ [l

& s
X J J E—rs)V V(s qu)(a_l)dqu d,s
0 Jo

T (T _ (a=1)
+ [kl L (q—s)d s

L) @

= Wil < p.
Therefore (Q,x) + (Q,y) € B, Further, condition (H,)
coupled with (42) implies that @, is contraction mapping.
Therefore, condition (c) of Lemma 10 is satisfied.

Finally, we will show that @, is compact and continuous.
Using the continuity of f and (H,), we deduce that the

operator @, is continuous and uniformly bounded on B,.
We define sup(t’wl)wz)E[O)T]xB;If(t, w,,w,)] = N < oo. For

ti,t, € [0, T] witht, <t, and x € B,, we have

|(@1x) (t,) = (@,x) (t1)|
_ W 57" 157
1T, (A)T, @

n (s _ o
<[] =29 V- qu)

X |f (u,x (u) ,ng (u))| dqu dps
et -7

Tl ()L, @

& (s
X Jo Jo &~ rs)(y—l)(s - qu)(a_l)

X |f (u, x (u), ng (u))| dqu d,s

7
e - N
< t= -
1QIT, (B) T, (@)
n s
x J J (n-ps)P (s - qu)(“fl)dqu dps
o Jo
57 -7 N
+ —_—
1QIT, (y) T, (@)
& s
X J J E—rs)¥ V(s qu)(“fl)dqu d,s
o Jo
e =57 N (7B, (Ba+1)
<
1T, B I, (x+1)
Iﬁ“ﬁﬂNGW&mwuw
1QIT, (v) L+l )
(46)

Actually, as t; — t, — 0 the right-hand side of the
above inequality tends to zero independently of x € B,.
Therefore, @, is relatively compact on B,. Applying the
Arzeld-Ascoli theorem, we get that @, is compact on B,.
Thus all assumptions of Lemma 10 are satisfied. Therefore, the
boundary value problem (1) has at least one solution on [0, T'].
The proof is complete. O

Using the Leray-Schauder nonlinear alternative, we give
the third result.

Lemma 12 (nonlinear alternative for single-valued maps
[21]). Let E be a Banach space, let C be a closed, convex subset
of E, let U be an open subset of C, and let 0 € U. Suppose that
F:U — Cis a continuous, compact (i.e., F(U) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u € OU (the boundary of U in C) and A €

(0,1) withu = AF(u).

For the sake of convenience of proving the last result, we

set
M T 4P B, (B o+ 1)
Y QIT, (B)T, (e + 1)

(47)
T'EB, (patl) T
|QIT, (p) T, (@ +1) T (a+ 1)’
M T F*B, (2,6 + 1) B, (Bac + 8 + 1)
2 1QIT, (B)T, (@) T, (5+1)
T*°B_(a,8 + 1
q(oc +1) (48)

T, @G+ D

T"‘_IEM”‘SBq (0,6 +1)B, (y,a+8+1)
|QIT, (y) T, () I, (8 + 1) .




Theorem 13. Assume that f : [0,T] x RxR — Risa
continuous function. In addition one supposes that

(H;) there exist a continuous nondecreasing function y :
[0,00) — (0, 00) and a function p € C([0,T], R") such that

|f (b w,w,)| < p @) v (Jwy]) + [w,]

(49)
for each (t,w;, w,) € [0,T] x R;
(H,) there exists a constant K > 0 such that
1-d,)K
(-0)K (50)
loly () @,

where @, and ©, are defined by (47) and (48), respectively, and
D, < 1. (51)
Then the boundary value problem (1) has at least one solution
on [0,T].
Proof. Firstly, we will show that the operator @, defined by
(32), maps bounded sets (balls) into bounded sets in €. For a
positive number R, we set a bounded ball in € as By = {x €
@ : |x|| € R}. Then, for t € [0, T], we have
|@x (1)1

B |A| T(X*l
~1QIT, (B) T, ()

nors . o
<[] 0= Vs -

X |f (u, x (u) ,Ifx (u))| dqudps

Toc—l
Tl ()T, @)

& s
<[] = - qu)

0 Jo

X |f (u, x (u) ,Ifx (u))| dqu d,s

T (T (1)
+J (T - gs)

. ) 'f (s,x(s),ng (s))|dqs
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o wr!
~1QIT, (B) T, ()

nors 5 o
<[] 0= V- )
X (P () y (llx[l)

Y (u— zv)(‘s_l)
+ x| L Wdzv dgud,s

Ttx—l
T ()L, @

& s
x L L &= r9)" (s - qu)*™

X (P (@)  (llx[)

N )
Tl L %dzv) dud,s
T _ (a-1)
. J (T - gs)
0 I, (@)
S (s— zv)(a_l)
x(p@hpmﬂn+nmyL——fzg;—dﬂ>df
B |A|Tocfl
~1QIT, (B)
(B (B 1) Py (R)
I (a+1)

N Ri**P*B, (0,6 + 1) B, (Ba+ 5+ 1))

L, ()T, (5+1)

Toc—l
+ [ —
1QIT, (y)

(EB e ) [ply®
I (x+1)

R£“+”+6Bq (0,6 +1)B, (y,a+8+1)
I, ()T, (6 +1)

RT**°B, (a,8 + 1)
L, (I, (3+1)

lely (R) T
I, (a+1)

(52)

Therefore, we conclude that |Qx| < G.
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Secondly, we will show that @ maps bounded sets into
equicontinuous sets of 6. Let t,t, € [0,T] with t; < t, and
By be a bounded set of C([0, T],R) as in the previous step,
and let x € By. Then we have

|(@x) (1,) - (@x) (t,))
M5 - 657

1QIT, (B) T, (@)

n s _ o
<[], =29 s qu)

0

X |f (u,x (u), ng (u))' dqu dps

a—1 a—1
[ -]

QIT, ()T, @)

& (s
8 Jo L (&= r5)"D(s - qu)“™"

X 'f (u,x (1) ,Ifx (u))' dqu d,s
+ Jtz (1 - q9)"

. F—W) |f (s,x(s) ,Ifx (s))' dqs
q

;| _ (1)
[T (o0, ) s

0 I, (@)

Al |tg“1 - t‘f“l
fe] Fp ([3) Fq ()

< [1] =29 - qu)

0 Jo

x (P(M)ll/(ﬂx")
(4 — zv)@0
+ "X” JO Wdzv dqudps
]

1QIT, (y) T, ()
& (s
8 L L (&= 75)"V(s - qu)“™"
X (P(u)llf(llxll)

Y (u— zv)(‘s_l)
——d dud
1l | Fg ) g

(a=1)

Jtz (t, — qs)

0 Fq (o)

+

X (P (&) v (=)

S (e o N(6-D)
x (p v ) + 31 | %dw) d,s

e -7
QI T, (B)

§ n**FB, (B,ac+ 1) | v (R)
l"q (x+1)

+

Rn“+p+an (0,6 +1)B, (Ba+d+1)
I, (@), @ +1)
e -7
+ e
1QIT, (y)

(E7B s ) [ply @
I, (a+1)

+

RE”‘“’“SBq (0,6 +1)B, (y,a+8+1)
I (I, @ +1)

s =7 lplv ®) |57 = 57| RB, (e, 0 + 1)
T+ 1) I, (@)L 0+1)

(53)

Obviously the right-hand side of the above inequality tends
to zero independently of x € By ast;, — t,. Therefore, by
applying the Arzeld-Ascoli theorem, we deduce that @ : € —
€ is completely continuous.

The result will follow from the Leray-Schauder nonlinear

alternative once we have proved the boundedness of the set
of all solutions to the equation x(t) = w(Q@x)(t) for some 0 <
w < 1. Let x be a solution. Then, for ¢ € [0, T], we have

wAt® !
ar, (B)T, («)

nors _ o
<[] 0= s =™

x f (u, x (u) ,Ifx (u)) dqu dps

(@x) (t) =

-1
wt*

- Qr, (y) T, ()



10

& s
8 Jo Jo (§-r9) (s~ qu)(“il)

x f (u, x (u), ng (u)) dqu d,s

)(06—1)

tt_
+wJ(L
0

T, (@ f (s, x(s), Ifx (s)) dqs

(54)
As before, one can easily find that

x|l = SL;;; lw (@x) (t)] < ||p||1;/(||x||)CD1 + [Ix]| D5, (55)

which can alternatively be written as

(1-@,) [l

Tolw dxp @, 56
lel v (lxl) @, (56)

In view of (H,), there exists K such that ||x|| # K. Let us set

U ={xeC([0,T],R): x| < K}. (57)

Note that the operator @ : 9% - C (0, T, R) is continuous and
completely continuous. From the choice of %, there is no x €
0% such that x = w@x for some w € (0, 1). Consequently, by
the nonlinear alternative of Leray-Schauder type (Lemma 12),
we deduce that @ has a fixed point x € % which is a solution
of problem (1). This completes the proof. O

5. Examples

In this section, we present some examples to illustrate our
results.

Example 1. Consider the following nonlocal fractional g-
integral boundary value problem:

. -t
Dx (1) = 2sinzt |x (2)] L ° s (t)+—
Py (¢ +4)° 2+Ix@®)]  (6+1) b
0<t<3,
Ly (5 52 (3
x(O) = 513/5)6(5) =12/3x<§>.
(58)

Herea =3/2,q=1/2,6 =7/5,2=3/4,A=1/5=1/2,
p=3/5n=5/2,y =5/2,r =2/3,§ =3/2,T = 3, and

ftx,I9x) = (2sinmt/(e" + 92)(|x1/2 + |x]) + (e /(6 +
t)z))I37//jx +1/2.

Abstract and Applied Analysis

Since | f(t,wy, w,) — f(t, w,, w,)| < (1/25)|lw, — w,| +
(1/36)|w, — w,|, then (H,) is satisfied with L, = 1/25 and
L, = 1/36. By using the Maple program, we find that

_ Iﬂr () oty-1 _ l_‘P (o)

o+p-1
L (a+7y) Iy (a+ )

=~ (0.4141558,

- |/\| T(x—l
lQlT, (B)

11“+ﬁBp (Ba+1)L,
I, (x+1)

;1‘”‘3*53‘1 (0,6 +1)B,(Ba+d+1)L,

i L@, (6+1)

Toc—l
+ —
1QIT, ()

EVB.(y,a+ 1)L,
I, (a+1)

X

£“+”+8Bq (0,6 +1)B, (y,a+8+1)L,
LT, 6 +1)

T™ L T“*5Bq(a,a+1)L
Ty T L

~ 0.8514717 < 1.
(59)

Hence, by Theorem 9, the nonlocal boundary value problem
(58) has a unique solution on [0, 3].

Example 2. Consider the following nonlocal fractional g-
integral boundary value problem:

1 1 (X
2;35) (t) —+t2tan ! (7) 5 (1 + sin (ﬂt))
+Il3//f0x(t), 0<t<l,
B vy 2\ _ 209 (1
0 =0 S (5)=Rx(3)-

(60)

Here a = 9/5,q =2/3,8 = 3/5,z = 1/10, A = 1/50,
B=1/10,p=1/51=2/3,y=2/9,r=1/8,E=1/2,T =
and f(t,x,I°x) = (tan'(mx/2))/(4n* + £*) + (1 +

sin(r1))/(307) + 1% x.
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By using the Maple program, we find that

Lo
S L(a+y)

I, («)
AL P < 0.4691329,

r, (a+ p)

T B, (Bat 1) TEB, (pa+ 1)

L QIT, (B) T, (a+ 1) IQIT, (y) T, (x+1)
TOL

+—
Fq(oc+1)

£a+y—1

=~ 1.0408909,

_ T 'y*P*B (0,6 + 1) B, (B, o+ 8 +1)
? 1QIT, (B)T, ()T, (3 +1)

T*°B, (a,8 + 1)
+ —_—_—
L, ()T, (8+1)

T*'E* B, (0,6 + 1) B, (p,a+ 8+ 1)
|QIT, () T, () T, (8 +1)

~ 0.5751429 < 1.

(61)
Clearly,
|f (twi,w,)]
= ’ﬁtan_1 (%) + ﬁ (1 +sin (1)) + w,
< ﬁ (1 +sinmt) (15 |w, | +4) + |w,].
(62)

Choosing p(t) = 1 + sinnt and y(Jw,|) = (1/120m)(15|w,| +
4), we can show that

(1-@,)K

T T (63)
Ip| v (K) @,

which implies that K > 0.0645811. Hence, by Theorem 13,
the nonlocal boundary value problem (60) has at least one
solution on [0, 1].
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