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Under suitable hypotheses on control coefficients, we study Halpern’s method to approximate strongly common fixed points of
a nonexpansive mapping and of a nonspreading mapping or a fixed point of one of them. A crucial tool in our results is the
regularization with the averaged type mappings.

1. Introduction

Let 𝐻 be a real Hilbert space with the inner product ⟨⋅, ⋅⟩,
which induces the norm ‖ ⋅ ‖.

Let 𝐶 be a nonempty, closed, and convex subset of𝐻. Let
𝑇 be a nonlinearmapping of𝐶 into itself; we denote by Fix(𝑇)
the set of fixed points of 𝑇, that is, Fix(𝑇) = {𝑧 ∈ 𝐶 : 𝑇𝑧 = 𝑧}.

We recall that a mapping 𝑇 is said to be nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

The problem of finding fixed points of nonexpansive
mappings has been widely investigated by many authors.

Halpern [1] was the first to consider the following explicit
method:

𝑥
1
∈ 𝐶, 𝑥

𝑛+1
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (2)

where (𝛼
𝑛
)
𝑛∈N ⊂ [0, 1] and 𝑢 ∈ 𝐶 is fixed.

Moreover, Halpern proved in [1] the following theorem
on the convergence of (2) for a particular choice of (𝛼

𝑛
)
𝑛∈N.

Theorem 1. Let 𝐶 be a bounded, closed, and convex subset
of Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping. For any initialization 𝑥

1
∈ 𝐶 and anchor 𝑢 ∈ 𝐶,

define a sequence (𝑥
𝑛
)
𝑛∈N in 𝐶 by

𝑥
𝑛+1

= 𝑛
−𝜃
𝑢 + (1 − 𝑛

−𝜃
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (3)

where 𝜃 ∈ (0, 1).Then (𝑥
𝑛
)
𝑛∈N converges strongly to the element

of Fix(𝑇) nearest to 𝑢.

He also showed that the control conditions,

(𝐶1) lim
𝑛→∞

𝛼
𝑛
= 0,

(𝐶2) ∑
∞

𝑛=1
𝛼
𝑛
= ∞,

are necessary for the convergence of (2) to a fixed point of 𝑇.
Subsequently, several authors carefully studied the fol-

lowing problem: are the control conditions (𝐶1) and (𝐶2)

sufficient for the convergence of (2)?
In this direction, C. E. Chidume and C. O. Chidume [2]

and Suzuki [3], independently, proved that the conditions
(𝐶1) and (𝐶2) are sufficient to assure the strong convergence
to a fixed point of 𝑇 of the following iterative sequence:

𝑥
1
, 𝑢 ∈ 𝐶;

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) (𝜆𝑥
𝑛
+ (1 − 𝜆) 𝑇𝑥

𝑛
) , ∀𝑛 ≥ 1.

(4)

Recently, in the setting of Banach spaces, Song and Chai [4],
under the same conditions (𝐶1) and (𝐶2) but under stronger
hypotheses on the mapping, obtained strong convergence of
Halpern iterations (2). In particular, they assumed that 𝐸
is a real reflexive Banach space with a uniformly Gateâux
differentiable norm and with the fixed point property for
nonexpansive self-mappings, and considered an important
subclass of nonexpansive mappings which is the firmly type
nonexpansive mappings.
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Let 𝑇 be a mapping with domain 𝐷(𝑇). 𝑇 is said to be
firmly type nonexpansive [4] if for all𝑥, 𝑦 ∈ 𝐷(𝑇), there exists
𝑘 ∈ (0, +∞) such that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

− 𝑘
(𝑥 − 𝑇𝑥) − (𝑦 − 𝑇𝑦)



2

. (5)

Amore general class of firmly type nonexpansivemappings is
the class of the strongly nonexpansive mappings. Recall that
a mapping 𝑇 : 𝐶 → 𝐶 is said to be strongly nonexpansive if

(1) 𝑇 is nonexpansive;
(2) 𝑥
𝑛
− 𝑦
𝑛
− (𝑇𝑥

𝑛
− 𝑇𝑦
𝑛
) → 0, whenever (𝑥

𝑛
)
𝑛∈N and

(𝑦
𝑛
)
𝑛∈N are sequences in 𝐶 such that (𝑥

𝑛
− 𝑦
𝑛
)
𝑛∈N is

bounded and ‖𝑥
𝑛
− 𝑦
𝑛
‖ − ‖𝑇𝑥

𝑛
− 𝑇𝑦
𝑛
‖ → 0.

Saejung [5] proved the strong convergence of Halpern’s iter-
ations (2) for strongly nonexpansive mappings in a Banach
space 𝐸 such that one of the following conditions is satisfied:

(i) 𝐸 is uniformly smooth;
(ii) 𝐸 is reflexive, strictly convex with a uniformly

Gateâux differentiable norm.

In the setting of Hilbert spaces, Kohsaka and Takahashi
[6] defined 𝑇 : 𝐶 → 𝐶 a nonspreading mapping if

2
𝑇𝑥 − 𝑇𝑦



2

≤
𝑇𝑥 − 𝑦



2

+
𝑥 − 𝑇𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐶. (6)

The following Lemma is a useful characterization of non-
spreading mapping.

Lemma 2 (see [7]). Let 𝐶 be a nonempty closed subset of
Hilbert space𝐻. Then, a mapping 𝑇 : 𝐶 → 𝐶 is nonspreading
if and only if

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 2⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐶.

(7)

Observe that if 𝑇 is a nonspreading mapping from 𝐶 into
itself and Fix(𝑇) ̸= 0, then 𝑇 is quasi-nonexpansive; that is,

𝑇𝑥 − 𝑝
 ≤

𝑥 − 𝑝
 , ∀𝑥 ∈ 𝐶, ∀𝑝 ∈ Fix (𝑇) . (8)

Further, the set of fixed points of a quasi-nonexpansive
mapping is closed and convex [8].

Osilike and Isiogugu [9] studied Halpern’s type for 𝑘-
strictly pseudononspreading mappings 𝑇, which are a more
general class of the nonspreading mappings.

To obtain the strong convergence of (2), they replaced the
mapping 𝑇 with the averaged type mapping 𝑇

𝛿
, that is, with

the mapping

𝑇
𝛿
= (1 − 𝛿) 𝐼 + 𝛿𝑇, 𝛿 ∈ (0, 1) . (9)

Iemoto and Takahashi [7] approximated common fixed
points of a nonexpansive mapping 𝑇 and of a nonspreading
mapping 𝑆 in aHilbert space usingMoudafi’s iterative scheme
[10]. They obtained the following Theorem that states the
weak convergence of their iterative method.

Theorem 3. Let𝐻 be a Hilbert space and let𝐶 be a nonempty,
closed, and convex subset of𝐻. Assume that Fix(𝑆)∩Fix(𝑇) ̸= 0.
Define a sequence (𝑥

𝑛
)
𝑛∈N as follows:

𝑥
1
∈ 𝐶

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
[𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
] ,

(10)

for all 𝑛 ∈ N, where (𝛼
𝑛
)
𝑛∈N, (𝛽𝑛)𝑛∈N ⊂ [0, 1]. Then, the

following hold.

(i) If lim inf
𝑛→∞

𝛼
𝑛
(1 − 𝛼

𝑛
) > 0 and ∑∞

𝑛=1
(1 − 𝛽

𝑛
) < ∞,

then (𝑥
𝑛
)
𝑛∈N converges weakly to 𝑝 ∈ Fix(𝑆).

(ii) If∑∞
𝑛=1

𝛼
𝑛
(1−𝛼
𝑛
) = ∞ and∑∞

𝑛=1
𝛽
𝑛
< ∞, then (𝑥

𝑛
)
𝑛∈N

converges weakly to 𝑝 ∈ Fix(𝑇).
(iii) If lim inf

𝑛→∞
𝛼
𝑛
(1 − 𝛼

𝑛
) > 0 and lim inf

𝑛→∞
𝛽
𝑛
(1 −

𝛽
𝑛
) > 0, then (𝑥

𝑛
)
𝑛∈N converges weakly to 𝑝 ∈ Fix(𝑆) ∩

Fix(𝑇).

In this paper, inspired by Iemoto and Takahashi [7], we
introduce an iterative method of Halpern’s type involving the
averaged typemappings𝑇

𝛿
and 𝑆
𝛿
, where𝑇 is a nonexpansive

mapping and 𝑆 is a nonspreadingmapping.The averaged type
mappings 𝑇

𝛿
and 𝑆
𝛿
have a regularizing role in order to prove

the strong convergence of our iterative scheme. In particular,
we prove that the method strongly converges to the unique
solution 𝑧 of the variational inequality

⟨𝑢 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐷, (11)

where 𝑢 ∈ 𝐶 is an anchor and, depending on the hypotheses
on control coefficients, 𝐷 is the set of fixed points of 𝑇, the
set of fixed points of 𝑆, or the set of common fixed points of
𝑇 and 𝑆.

Suitable tools in our proofs are Maingé’s Lemma [11]
and some techniques used by Maingé in [12] to study the
strong convergence of the viscosity approximation method.
However, Wongchan and Saejung [13] found a small mistake
in Maingé’s proof.

2. Preliminaries

To begin, we collected some lemmas which we will use in our
proofs in the next section.

In the sequel, we denote by𝐻 a real Hilbert space and by
𝐶 a nonempty closed convex subset of𝐻.

Lemma 4. The following known results hold:

(1) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2
= 𝑡‖𝑥‖

2
+(1−𝑡)‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2,
for all 𝑥, 𝑦 ∈ 𝐻 and for all 𝑡 ∈ [0, 1],

(2) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩,

for all 𝑥, 𝑦 ∈ 𝐻.

We recall that for every point 𝑥 ∈ 𝐻, there exists a unique
nearest point in 𝐶, denoted by 𝑃

𝐶
𝑥, such that

𝑥 − 𝑃
𝐶
𝑥
 ≤

𝑥 − 𝑦
 , ∀𝑦 ∈ 𝐶. (12)

Such 𝑃
𝐶
is called the metric projection of𝐻 onto 𝐶.

Lemma [14] characterizes the projection 𝑃
𝐶
.
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Lemma 5. Let𝐶 be a closed and convex subset of a real Hilbert
space and let 𝑃

𝐶
be the metric projection from𝐻 onto 𝐶. Given

that 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶, then 𝑧 = 𝑃
𝐶
𝑥 if and only if there holds

the inequality

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (13)

By Lemma 5, if 𝑢 ∈ 𝐶 is fixed, 𝑧 = 𝑃
𝐶
𝑢 is the unique

solution of the variational inequality (13).
To prove our main theorem, we need some fundamen-

tal properties of the involved mappings in the variational
inequality.

The following result summarizes some significant prop-
erties of 𝐼 − 𝑇 if 𝑇 is a nonexpansive mapping ([15, 16]).

Lemma 6. Let𝐶 be a nonempty closed convex subset of𝐻 and
let 𝑇 : 𝐶 → 𝐶 be nonexpansive. Then,

(1) 𝐼 − 𝑇 : 𝐶 → 𝐻 is (1/2)-inverse strongly monotone,
that is,

1

2

(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦


2

≤ ⟨𝑥 − 𝑦, (𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦⟩,

(14)

for all 𝑥, 𝑦 ∈ 𝐶;
(2) moreover, if Fix(𝑇) ̸= 0, 𝐼−𝑇 is demiclosed at 0; that is,

for every sequence (𝑥
𝑛
)
𝑛∈N weakly convergent to 𝑝 such

that 𝑥
𝑛
− 𝑇𝑥
𝑛
→ 0 as 𝑛 → ∞, it follows 𝑝 ∈ Fix(𝑇).

Iemoto and Takahashi showed the demiclosedness of 𝐼 −
𝑆 at 0 and a suitable property of 𝐼 − 𝑆. These results are
summarized in the following two Lemmas.

Lemma 7 (see [7]). Let 𝐶 be a nonempty, closed, and convex
subset of𝐻. Let 𝑆 : 𝐶 → 𝐶 be a nonspreading mapping such
that Fix(𝑆) ̸= 0. Then, 𝐼 − 𝑆 is demiclosed at 0.

Lemma 8 (see [7]). Let 𝐶 be a nonempty, closed, and convex
subset of𝐻. Let 𝑆 : 𝐶 → 𝐶 be a nonspreading mapping.Then,

(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦


2

≤ ⟨𝑥 − 𝑦, (𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦⟩

+
1

2
(‖𝑥 − 𝑆𝑥‖

2
+
𝑦 − 𝑆𝑦



2

) ,

(15)

for all 𝑥, 𝑦 ∈ 𝐶.

If 𝑇 is a nonexpansive mapping of𝐶 into itself, Byrne [15]
defined the averaged mapping as follows:

𝑇
𝛿
= (1 − 𝛿) 𝐼 + 𝛿𝑇 = 𝐼 − 𝛿 (𝐼 − 𝑇) , (16)

where 𝛿 ∈ (0, 1).
Moreover, Byrne [15] and successively Moudafi [17]

proved some properties of the averaged mappings; in par-
ticular, they showed that 𝑇

𝛿
is a nonexpansive mapping. In

this paper, inspired by [15, 17], we define the averaged type
mapping 𝑉

𝛿
as in (16) for a nonlinear mapping 𝑉 : 𝐶 → 𝐶;

we notice that Fix(𝑉) = Fix(𝑉
𝛿
). It is easy to verify that if

𝑆 is a nonspreading mapping of 𝐶 into itself and Fix(𝑆) ̸= 0,
the averaged type mapping 𝑆

𝛿
is quasi-nonexpansive and

consequently the set of fixed points of 𝑆
𝛿
is closed and convex.

Actually, it follows from [9] that 𝑆
𝛿
is quasi-firmly type

nonexpansive mapping; that is, it is a firmly type nonexpan-
sive mapping (5) on fixed points of 𝑆. For completeness we
include the easy proof.

Proposition 9. Let 𝐶 be a nonempty closed and convex subset
of𝐻 and let 𝑆 : 𝐶 → 𝐶 be a nonspreading mapping such that
Fix(𝑆) is nonempty. Then the averaged type mapping

𝑆
𝛿
= (1 − 𝛿) 𝐼 + 𝛿𝑆 (17)

is quasi-firmly type nonexpansive mapping with coefficient 𝑘 =

(1 − 𝛿) ∈ (0, 1).

Proof. We obtain

𝑆𝛿𝑥 − 𝑆
𝛿
𝑦


2

=
(1 − 𝛿) (𝑥 − 𝑦) + 𝛿 (𝑆𝑥 − 𝑆𝑦)



2

(by Lemma 4)

= (1 − 𝛿)
𝑥 − 𝑦



2

+ 𝛿
𝑆𝑥 − 𝑆𝑦



2

− 𝛿 (1 − 𝛿)
(𝑥 − 𝑆𝑥) − (𝑦 − 𝑆𝑦)



2

(by (7))

≤ (1 − 𝛿)
𝑥 − 𝑦



2

+ 𝛿 [
𝑥 − 𝑦



2

+ 2 ⟨𝑥 − 𝑆𝑥, 𝑦 − 𝑆𝑦⟩]

− 𝛿 (1 − 𝛿)
(𝑥 − 𝑆𝑥) − (𝑦 − 𝑆𝑦)



2

=
𝑥 − 𝑦



2

+
2

𝛿
⟨𝛿 (𝑥 − 𝑆𝑥) , 𝛿 (𝑦 − 𝑆𝑦)⟩

−
1 − 𝛿

𝛿

𝛿 (𝑥 − 𝑆𝑥) − 𝛿 (𝑦 − 𝑆𝑦)


2

(by (17))

=
𝑥 − 𝑦



2

+
2

𝛿
⟨𝑥 − 𝑆

𝛿
𝑥, 𝑦 − 𝑆

𝛿
𝑦⟩

−
1 − 𝛿

𝛿

(𝑥 − 𝑆
𝛿
𝑥) − (𝑦 − 𝑆

𝛿
𝑦)


2

≤
𝑥 − 𝑦



2

+
2

𝛿
⟨𝑥 − 𝑆

𝛿
𝑥, 𝑦 − 𝑆

𝛿
𝑦⟩

− (1 − 𝛿)
(𝑥 − 𝑆

𝛿
𝑥) − (𝑦 − 𝑆

𝛿
𝑦)


2

.

(18)

Hence, we have

𝑆𝛿𝑥 − 𝑆
𝛿
𝑦


2

≤
𝑥 − 𝑦



2

+
2

𝛿
⟨𝑥 − 𝑆

𝛿
𝑥, 𝑦 − 𝑆

𝛿
𝑦⟩

− (1 − 𝛿)
(𝑥 − 𝑆

𝛿
𝑥) − (𝑦 − 𝑆

𝛿
𝑦)


2

.

(19)
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In particular, choosing in (19) 𝑦 = 𝑝, where 𝑝 ∈ Fix(𝑆) =

Fix(𝑆
𝛿
) we obtain

𝑆𝛿𝑥 − 𝑝


2

≤
𝑥 − 𝑝



2

− (1 − 𝛿)
𝑥 − 𝑆

𝛿
𝑥


2

. (20)

The following lemma is useful in the proof of our main
result.

Lemma 10. Let 𝐶 be a nonempty closed and convex subspace
of 𝐻, 𝑢 ∈ 𝐶 fixed, 𝑇 a nonexpansive mapping from 𝐶 into
itself, and 𝑆 a nonspreadingmapping from𝐶 into itself such that
Fix(𝑇)∩Fix(𝑆) ̸= 0. Consider a bounded sequence (𝑦

𝑛
)
𝑛∈N ⊂ 𝐶.

Then,

(1) if ‖𝑦
𝑛
− 𝑇𝑦
𝑛
‖ → 0, as 𝑛 → ∞, then

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑦
𝑛
− 𝑝⟩ ≤ 0, (21)

where 𝑝 = 𝑃Fix(𝑇)𝑢 is the unique point in Fix(𝑇) that
satisfies the variational inequality

⟨𝑢 − 𝑝, 𝑥 − 𝑝⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (22)

(2) If ‖𝑦
𝑛
− 𝑆𝑦
𝑛
‖ → 0, as 𝑛 → ∞, then

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑦
𝑛
− 𝑝⟩ ≤ 0, (23)

where 𝑝 = 𝑃Fix(𝑆)𝑢 is the unique point in Fix(𝑆) that
satisfies the variational inequality

⟨𝑢 − 𝑝, 𝑥 − 𝑝⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑆) . (24)

(3) If ‖𝑦
𝑛
− 𝑆𝑦
𝑛
‖ → 0 and ‖𝑦

𝑛
− 𝑇𝑦
𝑛
‖ → 0, as 𝑛 → ∞,

then

lim sup
𝑛→∞

⟨𝑢 − 𝑝
0
, 𝑦
𝑛
− 𝑝
0
⟩ ≤ 0, (25)

where 𝑝
0

= 𝑃Fix(𝑇)∩Fix(𝑆)𝑢 is the unique point in
Fix(𝑇) ∩ Fix(𝑆) that satisfies the variational inequality

⟨𝑢 − 𝑝
0
, 𝑥 − 𝑝

0
⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) ∩ Fix (𝑆) . (26)

Proof. (1) Let 𝑝 satisfy (22). Let (𝑦
𝑛𝑘
)
𝑘∈N be a subsequence of

(𝑦
𝑛
)
𝑛∈N for which

lim sup
𝑛→∞

⟨𝑝 − 𝑢, 𝑦
𝑛
− 𝑝⟩ = lim

𝑘→∞

⟨𝑝 − 𝑢, 𝑦
𝑛𝑘
− 𝑝⟩ . (27)

Select a subsequence (𝑦
𝑛𝑘𝑗
)
𝑗∈N of (𝑦

𝑛𝑘
)
𝑘∈N such that 𝑦

𝑛𝑘𝑗
⇀ V

(this is possible by boundedness of (𝑦
𝑛
)
𝑛∈N). By the hypoth-

esis ‖𝑦
𝑛
− 𝑇𝑦
𝑛
‖ → 0, as 𝑛 → ∞, and by demiclosedness of

𝐼 − 𝑇 at 0 we have V ∈ Fix(𝑇) and

lim sup
𝑛→∞

⟨𝑝 − 𝑢, 𝑦
𝑛
− 𝑝⟩ = lim

𝑗→∞

⟨𝑝 − 𝑢, 𝑦
𝑛𝑘𝑗

− 𝑝⟩

= ⟨𝑝 − 𝑢, V − 𝑝⟩ ,

(28)

so the claim follows by (22).

(2)The proof is the same of (1) since also 𝑆 is demiclosed
in 0.

(3) Select a subsequence (𝑦
𝑛𝑘
)
𝑘∈N of (𝑦

𝑛
)
𝑛∈N such that

lim sup
𝑛→∞

⟨𝑝
0
− 𝑢, 𝑦

𝑛
− 𝑝
0
⟩ = lim
𝑘→∞

⟨𝑝
0
− 𝑢, 𝑦

𝑛𝑘
− 𝑝
0
⟩ , (29)

where 𝑝
0
satisfies (26). Now select a subsequence (𝑦

𝑛𝑘𝑗
)
𝑗∈N of

(𝑦
𝑛𝑘
)
𝑘∈N such that 𝑦

𝑛𝑘𝑗
⇀ 𝑤.Then by demiclosedness of 𝐼−𝑇

and 𝐼 − 𝑆 at 0 and by the hypotheses ‖𝑦
𝑛
− 𝑇𝑦
𝑛
‖ → 0 and

‖𝑦
𝑛
− 𝑆𝑦
𝑛
‖ → 0, as 𝑛 → ∞, we obtain that 𝑤 = 𝑇𝑤 = 𝑆𝑤,

that is, 𝑤 ∈ Fix(𝑇) ∩ Fix(𝑆). So,

lim sup
𝑛→∞

⟨𝑝
0
− 𝑢, 𝑦

𝑛
− 𝑝
0
⟩ = lim
𝑗→∞

⟨𝑝
0
− 𝑢, 𝑦

𝑛𝑘𝑗
− 𝑝
0
⟩

= ⟨𝑝
0
− 𝑢, 𝑤 − 𝑝

0
⟩ ,

(30)

so the claim follows by (26).

A pertinent tool for us is the well-known lemma of Xu
[18].

Lemma 11. Let (𝑎
𝑛
)
𝑛∈N be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝜎
𝑛
+ 𝜃
𝑛
, 𝑛 ≥ 0, (31)

where,

(i) (𝛼
𝑛
)
𝑛∈N ⊂ [0, 1], ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝜎
𝑛
≤ 0;

(iii) 𝜃
𝑛
≥ 0, ∑∞

𝑛=1
𝜃
𝑛
< ∞.

Then,

lim
𝑛→∞

𝑎
𝑛
= 0. (32)

Finally, a crucial tool for our results is the following
lemma proved by Maingé.

Lemma 12 (see [11]). Let (𝛾
𝑛
)
𝑛∈N be a sequence of real numbers

such that there exists a subsequence (𝛾
𝑛𝑗
)
𝑗∈N of (𝛾𝑛)𝑛∈N such that

𝛾
𝑛𝑗

< 𝛾
𝑛𝑗+1

, for all 𝑗 ∈ N. Consider the sequence of integers
(𝜏(𝑛))

𝑛∈N defined by

𝜏 (𝑛) := max {𝑘 ≤ 𝑛 : 𝛾
𝑘
< 𝛾
𝑘+1

} . (33)

Then, (𝜏(𝑛))
𝑛∈N is a nondecreasing sequence for all 𝑛 ≥ 𝑛

0
,

satisfying

(i) lim
𝑛→∞

𝜏(𝑛) = ∞;
(ii) 𝛾
𝜏(𝑛)

< 𝛾
𝜏(𝑛)+1

, ∀𝑛 ≥ 𝑛
0
;

(iii) 𝛾
𝑛
< 𝛾
𝜏(𝑛)+1

, ∀𝑛 ≥ 𝑛
0
.

3. Main Result

In all sections we denote by 𝑇 : 𝐶 → 𝐶 a nonexpansive
mapping, 𝑆 : 𝐶 → 𝐶 a nonspreading mapping, and 𝑇

𝛿
, 𝑆
𝛿
:

𝐶 → 𝐶 the respectively averaged type mappings. Moreover,
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(𝛽
𝑛
)
𝑛∈N ⊂ [0, 1] denotes a real sequence and 𝑈

𝑛
: 𝐶 → 𝐶

denotes the convex combination of 𝑇
𝛿
and 𝑆
𝛿
, that is,

𝑈
𝑛
= 𝛽
𝑛
𝑇
𝛿
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆
𝛿
𝑥
𝑛
, 𝑛 ∈ N. (34)

Further we assume that
(i) Fix(𝑆) ∩ Fix(𝑇) ̸= 0;
(ii) (𝛼

𝑛
)
𝑛∈N ⊂ (0, 1) a real sequence such that

lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
= 0;

(iii) 𝑂(1) is any bounded real sequence.
We start with the following lemma:

Lemma 13. Let 𝑢 ∈ 𝐶 be an anchor and let (𝑥
𝑛
)
𝑛∈N be the

sequence defined by
𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑈
𝑛
𝑥
𝑛
, (35)

where
𝑈
𝑛
= 𝛽
𝑛
𝑇
𝛿
+ (1 − 𝛽

𝑛
) 𝑆
𝛿
. (36)

Then
(1) 𝑈
𝑛
is quasi-nonexpansive for all 𝑛 ∈ N;

(2) (𝑥
𝑛
)
𝑛∈N, (𝑆𝑥

𝑛
)
𝑛∈N, (𝑇𝑥

𝑛
)
𝑛∈N, (𝑆

𝛿
𝑥
𝑛
)
𝑛∈N, (𝑇

𝛿
𝑥
𝑛
)
𝑛∈N,

(𝑈
𝑛
𝑥
𝑛
)
𝑛∈N are bounded sequences.

Proof. (1) Any convex combination of quasi-nonexpansive
mappings is quasi-nonexpansive too. So is every 𝑈

𝑛
, since 𝑇

𝛿

and 𝑆
𝛿
are quasi-nonexpansive.

(2)The boundedness of (𝑥
𝑛
)
𝑛∈N follows the fact that𝑈

𝑛
is

quasi-nonexpansive. In fact, let 𝑞 ∈ Fix(𝑇) ∩ Fix(𝑆). Then
𝑥𝑛+1 − 𝑞



=
𝛼𝑛 (𝑢 − 𝑞) + (1 − 𝛼

𝑛
) (𝑈
𝑛
𝑥
𝑛
− 𝑞)



≤ 𝛼
𝑛

𝑢 − 𝑞
 + (1 − 𝛼

𝑛
)
𝑈𝑛𝑥𝑛 − 𝑞



≤ 𝛼
𝑛

𝑢 − 𝑞
 + (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑞

 .

(37)

Since
𝑥1 − 𝑞

 ≤ max {𝑢 − 𝑞
 ,
𝑥1 − 𝑞

} , (38)
and by induction we assume that

𝑥𝑛 − 𝑞
 ≤ max {𝑢 − 𝑞

 ,
𝑥1 − 𝑞

} , (39)
and then

𝑥𝑛+1 − 𝑞


≤ 𝛼
𝑛

𝑢 − 𝑞


+ (1 − 𝛼
𝑛
)max {𝑢 − 𝑞

 ,
𝑥1 − 𝑞

}

≤ 𝛼
𝑛
max {𝑢 − 𝑞

 ,
𝑥1 − 𝑞

}

+ (1 − 𝛼
𝑛
)max {𝑢 − 𝑞

 ,
𝑥1 − 𝑞

}

= max {𝑢 − 𝑞
 ,
𝑥1 − 𝑞

} .

(40)

Thus (𝑥
𝑛
)
𝑛∈N is bounded. The boundedness of the other

sequences follows by boundedness of (𝑥
𝑛
)
𝑛∈N and by the

quasi-nonexpansivity of involved mappings.

Now, we prove our strong convergence theorem.

Theorem 14. Let𝐻 be aHilbert space and let𝐶 be a nonempty
closed and convex subset of 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a
nonexpansive mapping and let 𝑆 : 𝐶 → 𝐶 be a nonspreading
mapping such that Fix(𝑆) ∩ Fix(𝑇) ̸= 0. Let 𝑇

𝛿
and 𝑆

𝛿
be

the averaged type mappings. Suppose that (𝛼
𝑛
)
𝑛∈N is a real

sequence in (0, 1) satisfying the conditions

(1) lim
𝑛→∞

𝛼
𝑛
= 0,

(2) ∑∞
𝑛=1

𝛼
𝑛
= ∞.

If (𝛽
𝑛
)
𝑛∈N is a sequence in [0, 1], we define a sequence (𝑥

𝑛
)
𝑛∈N

as follows:

𝑥
1
∈ 𝐶

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) [𝛽
𝑛
𝑇
𝛿
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆
𝛿
𝑥
𝑛
] , 𝑛 ∈ N.

(41)

Then, the following hold.

(i) If ∑∞
𝑛=1

(1 − 𝛽
𝑛
) < ∞, then (𝑥

𝑛
)
𝑛∈N strongly converges

to 𝑝 = 𝑃Fix(𝑇)𝑢 which is the unique solution in Fix(𝑇)
of the variational inequality ⟨𝑢 − 𝑝, 𝑥 − 𝑝⟩ ≤ 0, for all
𝑥 ∈ Fix(𝑇).

(ii) If ∑∞
𝑛=1

𝛽
𝑛

< ∞, then (𝑥
𝑛
)
𝑛∈N strongly converges to

𝑝 = 𝑃Fix(𝑆)𝑢 which is the unique solution in Fix(𝑆) of
the variational inequality ⟨𝑢 − 𝑝, 𝑥 − 𝑝⟩ ≤ 0, for all
𝑥 ∈ Fix(𝑆).

(iii) If lim inf
𝑛→∞

𝛽
𝑛
(1 − 𝛽

𝑛
) > 0, then (𝑥

𝑛
)
𝑛∈N strongly

converges to 𝑝
0
= 𝑃Fix(𝑇)∩Fix(𝑆)𝑢 which is the unique

solution in Fix(𝑇)∩Fix(𝑆) of the variational inequality
⟨𝑢 − 𝑝

0
, 𝑥 − 𝑝

0
⟩ ≤ 0, for all 𝑥 ∈ Fix(𝑇) ∩ Fix(𝑆).

Proof. (i) We rewrite the sequence (𝑥
𝑛+1

)
𝑛∈N as

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇
𝛿
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐸
𝑛
, (42)

where 𝐸
𝑛
= (1 − 𝛼

𝑛
)(𝑆
𝛿
𝑥
𝑛
− 𝑇
𝛿
𝑥
𝑛
) is bounded, that is, ‖𝐸

𝑛
‖ ≤

𝑂(1).
We begin to prove that lim

𝑛→∞
‖𝑥
𝑛
− 𝑇
𝛿
𝑥
𝑛
‖ = 0.

Let 𝑝 ∈ Fix(𝑇) = Fix(𝑇
𝛿
) the unique solution in Fix(𝑇) of

the variational inequality

⟨𝑢 − 𝑝, 𝑥 − 𝑝⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (43)

We have

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛𝑢 + (1 − 𝛼

𝑛
) (1 − 𝛿) 𝑥

𝑛

+ (1 − 𝛼
𝑛
) 𝛿𝑇𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐸
𝑛
− 𝑝



2

=
[(1 − 𝛼

𝑛
) 𝛿 (𝑇𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝]

+ [𝛼
𝑛
(𝑢 − 𝑥

𝑛
) + (1 − 𝛽

𝑛
) 𝐸
𝑛
]


2
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(by Lemma 4)

≤
(1 − 𝛼

𝑛
) 𝛿 (𝑇𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝



2

+ 2 ⟨𝛼
𝑛
(𝑢 − 𝑥

𝑛
) + (1 − 𝛽

𝑛
) 𝐸
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

≤
(1 − 𝛼

𝑛
) 𝛿 (𝑇𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝



2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

𝑛
, 𝑥
𝑛+1

− 𝑝⟩ + 2 (1 − 𝛽
𝑛
) ⟨𝐸
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

≤ (1 − 𝛼
𝑛
)
2

𝛿
2𝑇𝑥𝑛 − 𝑥

𝑛



2

+
𝑥𝑛 − 𝑝



2

− 2 (1 − 𝛼
𝑛
) 𝛿 ⟨𝑥

𝑛
− 𝑝, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+ 2𝛼
𝑛

𝑢 − 𝑥
𝑛



𝑥𝑛+1 − 𝑝
 + 2 (1 − 𝛽

𝑛
)
𝐸𝑛



𝑥𝑛+1 − 𝑝


= (1 − 𝛼
𝑛
)
2

𝛿
2𝑥𝑛 − 𝑇𝑥

𝑛



2

+
𝑥𝑛 − 𝑝



2

((𝐼 − 𝑇) 𝑝 = 0)

− 2 (1 − 𝛼
𝑛
) 𝛿 ⟨𝑥

𝑛
− 𝑝, (𝐼 − 𝑇) 𝑥

𝑛
− (𝐼 − 𝑇) 𝑝⟩

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝑛
) 𝑂 (1)

(by Lemma 6)

≤
𝑥𝑛 − 𝑝



2

+ (1 − 𝛼
𝑛
)
2

𝛿
2𝑥𝑛 − 𝑇𝑥

𝑛



2

− (1 − 𝛼
𝑛
) 𝛿

(𝐼 − 𝑇) 𝑥
𝑛
− (𝐼 − 𝑇) 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝑛
) 𝑂 (1)

=
𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑇𝑥

𝑛



2

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝑛
) 𝑂 (1)

(44)

and hence

0 ≤ (1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑇𝑥

𝑛



2

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝑛
) 𝑂 (1) .

(45)

We turn our attention to themonotony of the sequence (‖𝑥
𝑛
−

𝑝‖)
𝑛∈N.
We consider the following two cases.

Case A. ‖𝑥
𝑛+1

− 𝑝‖ is definitively nonincreasing.

Case B. There exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝


<

𝑥
𝑛𝑘+1

− 𝑝


∀𝑘 ∈ N. (46)

Case A. Since (‖𝑥
𝑛
− 𝑝‖)

𝑛∈N is definitively nonincreasing,
lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖
2 exists. From (45), lim

𝑛→∞
𝛼
𝑛

= 0, and
∑
∞

𝑛=1
(1 − 𝛽

𝑛
) < ∞, we have

0 ≤ lim sup
𝑛→∞

((1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑇𝑥

𝑛



2

)

≤ lim sup
𝑛→∞

(
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝑛
) 𝑂 (1) ) = 0,

(47)

so, we can conclude that
lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥
𝑛

 = 0, (48)

lim
𝑛→∞

𝑥𝑛 − 𝑇
𝛿
𝑥
𝑛

 = lim
𝑛→∞

𝛿
𝑥𝑛 − 𝑇𝑥

𝑛

 = 0. (49)

By Lemma 10, it follows that

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝑛
− 𝑝⟩ ≤ 0. (50)

Finally, we prove that (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝.

We compute that
𝑥𝑛+1 − 𝑝



2

=
𝛼𝑛 (𝑢 − 𝑝) + (1 − 𝛼

𝑛
) (𝑇
𝛿
𝑥
𝑛
− 𝑝) + (1 − 𝛽

𝑛
) 𝐸
𝑛



2

(by Lemma 4)

≤
𝛼𝑛 (𝑢 − 𝑝) + (1 − 𝛼

𝑛
) (𝑇
𝛿
𝑥
𝑛
− 𝑝)



2

+ 2 (1 − 𝛽
𝑛
) ⟨𝐸
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

≤ 𝛼
2

𝑛

𝑢 − 𝑝


2

+ (1 − 𝛼
𝑛
)
2𝑇𝛿𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑇

𝛿
𝑥
𝑛
− 𝑝⟩ + (1 − 𝛽

𝑛
) 𝑂 (1)

(𝑇
𝛿
nonexpansive)

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
2

𝑛
𝑂 (1)

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑇

𝛿
𝑥
𝑛
− 𝑥
𝑛
⟩

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑥

𝑛
− 𝑝⟩ + (1 − 𝛽

𝑛
) 𝑂 (1)

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
2

𝑛
𝑂 (1) + 𝛼

𝑛
𝑂 (1)

𝑇𝛿𝑥𝑛 − 𝑥
𝑛



+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑥

𝑛
− 𝑝⟩ + (1 − 𝛽

𝑛
) 𝑂 (1) .

(51)

If we put 𝜎
𝑛
= 𝛼
𝑛
𝑂(1) + 𝑂(1)‖𝑇

𝛿
𝑥
𝑛
− 𝑥
𝑛
‖ + 2(1 − 𝛼

𝑛
)⟨𝑢 −

𝑝, 𝑥
𝑛
− 𝑝⟩ and 𝜃

𝑛
= (1 − 𝛽

𝑛
)𝑂(1), we have

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
𝜎
𝑛
+ 𝜃
𝑛
. (52)

Hence, from assumption∑∞
𝑛=1

𝛼
𝑛
= ∞ and∑∞

𝑛=1
(1−𝛽
𝑛
) <

∞, from (49) and lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝑛
− 𝑝⟩ ≤ 0 we can

apply Xu’s Lemma 11.

Case B. There exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝


<

𝑥
𝑛𝑘+1

− 𝑝


∀𝑘 ∈ N. (53)
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Then by Maingé Lemma 12 there exists a sequence of
integers (𝜏(𝑛))

𝑛∈N that satisfies

(a) (𝜏(𝑛))
𝑛∈N is nondecreasing;

(b) lim
𝑛→∞

𝜏(𝑛) = ∞;
(c) ‖𝑥

𝜏(𝑛)
− 𝑝‖ < ‖𝑥

𝜏(𝑛)+1
− 𝑝‖;

(d) ‖𝑥
𝑛
− 𝑝‖ < ‖𝑥

𝜏(𝑛)+1
− 𝑝‖.

Consequently,

0 ≤ lim inf
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

)

≤ lim sup
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

)

≤ lim sup
𝑛→∞

(
𝑥𝑛+1 − 𝑝

 −
𝑥𝑛 − 𝑝

)

(by (42))

= lim sup
𝑛→∞

(
𝛼𝑛 (𝑢 − 𝑇

𝛿
𝑥
𝑛
) + 𝑇
𝛿
𝑥
𝑛
− 𝑝 + (1 − 𝛽

𝑛
) 𝐸
𝑛



−
𝑥𝑛 − 𝑝

)

(𝑇
𝛿
nonexpansive)

≤ lim sup
𝑛→∞

(𝛼
𝑛
𝑂 (1) +

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
) 𝑂 (1) −

𝑥𝑛 − 𝑝
)

= 0,

(54)

so

lim
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

) = 0. (55)

By (45), we have

0 ≤ (1 − 𝛼
𝜏(𝑛)

) 𝛿 [1 − 𝛿 (1 − 𝛼
𝜏(𝑛)

)]
𝑥𝜏(𝑛) − 𝑇𝑥

𝜏(𝑛)



2

≤
𝑥𝜏(𝑛) − 𝑝



2

−
𝑥𝜏(𝑛)+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + (1 − 𝛽

𝜏(𝑛)
) 𝑂 (1) ,

(56)

and from (55), lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
(1 − 𝛽

𝑛
) < ∞ we get

lim
𝑛→∞

𝑥𝜏(𝑛) − 𝑇𝑥
𝜏(𝑛)

 = 0. (57)

By Lemma 10 and (57) we have

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝜏(𝑛)

− 𝑝⟩ ≤ 0. (58)

Finally, we show that (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝.

As in Case A, we can obtain

lim
𝑛→∞

𝑥𝜏(𝑛) − 𝑝
 = 0; (59)

then, from property (𝑑) ofMaingé Lemma 12 and (55) we can
conclude

lim
𝑛→∞

𝑥𝑛 − 𝑝
 = 0. (60)

Proof. (ii) Now, we rewrite the sequence (𝑥
𝑛+1

)
𝑛∈N as

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑆
𝛿
𝑥
𝑛
+ 𝛽
𝑛
𝐸
𝑛
, (61)

where 𝐸
𝑛
= (1 − 𝛼

𝑛
)(𝑇
𝛿
𝑥
𝑛
− 𝑆
𝛿
𝑥
𝑛
) is bounded, that is, ‖𝐸

𝑛
‖ ≤

𝑂(1).
We begin to prove that lim

𝑛→∞
‖𝑥
𝑛
− 𝑆
𝛿
𝑥
𝑛
‖ = 0.

Let 𝑝 ∈ Fix(𝑆) = Fix(𝑆
𝛿
) the unique solution in Fix(𝑆) of

the variational inequality ⟨𝑢−𝑝, 𝑥−𝑝⟩ ≤ 0, for all 𝑥 ∈ Fix(𝑆).
We have

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛𝑢 + (1 − 𝛼

𝑛
) (1 − 𝛿) 𝑥

𝑛

+ (1 − 𝛼
𝑛
) 𝛿𝑆𝑥
𝑛
+ 𝛽
𝑛
𝐸
𝑛
− 𝑝



2

=
[(1 − 𝛼

𝑛
) 𝛿 (𝑆𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝]

+ [𝛼
𝑛
(𝑢 − 𝑥

𝑛
) + 𝛽
𝑛
𝐸
𝑛
]


2

(by Lemma 4)

≤
(1 − 𝛼

𝑛
) 𝛿 (𝑆𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝



2

+ 2 ⟨𝛼
𝑛
(𝑢 − 𝑥

𝑛
) + 𝛽
𝑛
𝐸
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

≤
(1 − 𝛼

𝑛
) 𝛿 (𝑆𝑥

𝑛
− 𝑥
𝑛
) + 𝑥
𝑛
− 𝑝



2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

𝑛
, 𝑥
𝑛+1

− 𝑝⟩ + 2𝛽
𝑛
⟨𝐸
𝑛
, 𝑥
𝑛
− 𝑝⟩

≤ (1 − 𝛼
𝑛
)
2

𝛿
2𝑆𝑥𝑛 − 𝑥

𝑛



2

+
𝑥𝑛 − 𝑝



2

− 2 (1 − 𝛼
𝑛
) 𝛿 ⟨𝑥

𝑛
− 𝑝, 𝑥

𝑛
− 𝑆𝑥
𝑛
⟩

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1)

= (1 − 𝛼
𝑛
)
2

𝛿
2𝑥𝑛 − 𝑆𝑥

𝑛



2

+
𝑥𝑛 − 𝑝



2

((𝐼 − 𝑆) 𝑝 = 0)

− 2 (1 − 𝛼
𝑛
) 𝛿 ⟨𝑥

𝑛
− 𝑝, (𝐼 − 𝑆) 𝑥

𝑛
− (𝐼 − 𝑆) 𝑝⟩

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1)

(by Lemma 8)

≤
𝑥𝑛 − 𝑝



2

+ (1 − 𝛼
𝑛
)
2

𝛿
2𝑥𝑛 − 𝑆𝑥

𝑛



2

− 2 (1 − 𝛼
𝑛
) 𝛿 [

(𝐼 − 𝑆) 𝑥
𝑛
− (𝐼 − 𝑆) 𝑝



2

−
1

2
(
𝑥𝑛 − 𝑆𝑥

𝑛



2

+
𝑝 − 𝑆𝑝



2

)]

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1)

≤
𝑥𝑛 − 𝑝



2

+ (1 − 𝛼
𝑛
)
2

𝛿
2𝑥𝑛 − 𝑆𝑥

𝑛



2

− (1 − 𝛼
𝑛
) 𝛿

𝑥𝑛 − 𝑆𝑥
𝑛



2

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1)
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=
𝑥𝑛 − 𝑝



2

− (1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑆𝑥

𝑛



2

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1)

(62)

and hence

0 ≤ (1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑆𝑥

𝑛



2

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1) .

(63)

Again, we turn our attention to themonotony of the sequence
(‖𝑥
𝑛
− 𝑝‖)
𝑛∈N. We consider the following two cases.

Case A. ‖𝑥
𝑛+1

− 𝑝‖ is definitively nonincreasing.

Case B. There exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝


<

𝑥
𝑛𝑘+1

− 𝑝


∀𝑘 ∈ N. (64)

Case A. Since (‖𝑥
𝑛
− 𝑝‖)

𝑛∈N is definitively nonincreasing,
lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖
2 exists. From (45), lim

𝑛→∞
𝛼
𝑛

= 0, and
∑
∞

𝑛=1
𝛽
𝑛
< ∞, we have

0 ≤ lim sup
𝑛→∞

((1 − 𝛼
𝑛
) 𝛿 [1 − 𝛿 (1 − 𝛼

𝑛
)]
𝑥𝑛 − 𝑆𝑥

𝑛



2

)

≤ lim sup
𝑛→∞

(
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝑛
𝑂 (1) ) = 0,

(65)

and hence

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0, (66)

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛

 = lim
𝑛→∞

𝛿
𝑥𝑛 − 𝑆𝑥

𝑛

 = 0. (67)

By Lemma 10, it follows that

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝑛
− 𝑝⟩ ≤ 0. (68)

Finally, we prove that (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝.

We compute that

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛 (𝑢 − 𝑝) + (1 − 𝛼

𝑛
) (𝑆
𝛿
𝑥
𝑛
− 𝑝) + 𝛽

𝑛
𝐸
𝑛



2

(by Lemma 4)

≤
𝛼𝑛 (𝑢 − 𝑝) + (1 − 𝛼

𝑛
) (𝑆
𝛿
𝑥
𝑛
− 𝑝)



2

+ 2𝛽
𝑛
⟨𝐸
𝑛
, 𝑥
𝑛+1

− 𝑝⟩

≤ 𝛼
2

𝑛

𝑢 − 𝑝


2

+ (1 − 𝛼
𝑛
)
2𝑆𝛿𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑆

𝛿
𝑥
𝑛
− 𝑝⟩ + 𝛽

𝑛
𝑂 (1)

(𝑆
𝛿
quasi-nonexpansive)

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
2

𝑛
𝑂 (1)

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑆

𝛿
𝑥
𝑛
− 𝑥
𝑛
⟩

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑥

𝑛
− 𝑝⟩ + 𝛽

𝑛
𝑂 (1)

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
2

𝑛
𝑂 (1) + 𝛼

𝑛
𝑂 (1)

𝑆𝛿𝑥𝑛 − 𝑥
𝑛



+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑢 − 𝑝, 𝑥

𝑛
− 𝑝⟩ + 𝛽

𝑛
𝑂 (1) .

(69)

If we put 𝜎
𝑛
= 𝛼
𝑛
𝑂(1) + 𝑂(1)‖𝑆

𝛿
𝑥
𝑛
− 𝑥
𝑛
‖ + 2(1 − 𝛼

𝑛
)⟨𝑢 −

𝑝, 𝑥
𝑛
− 𝑝⟩ and 𝜃

𝑛
= 𝛽
𝑛
𝑂(1), we have

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
𝜎
𝑛
+ 𝜃
𝑛
. (70)

So, from assumption ∑
∞

𝑛=1
𝛼
𝑛
= ∞ and ∑

∞

𝑛=1
𝛽
𝑛
< ∞, from

(67) and lim sup
𝑛→∞

⟨𝑝 − 𝑢, 𝑥
𝑛
− 𝑝⟩ ≥ 0 we can apply Xu’s

Lemma 11.

Case B. There exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝


<

𝑥
𝑛𝑘+1

− 𝑝


∀𝑘 ∈ N. (71)

Then by Maingé Lemma there exists a sequence of
integers (𝜏(𝑛))

𝑛∈N that satisfies

(a) (𝜏(𝑛))
𝑛∈N is nondecreasing;

(b) lim
𝑛→∞

𝜏(𝑛) = ∞;
(c) ‖𝑥

𝜏(𝑛)
− 𝑝‖ < ‖𝑥

𝜏(𝑛)+1
− 𝑝‖;

(d) ‖𝑥
𝑛
− 𝑝‖ < ‖𝑥

𝜏(𝑛)+1
− 𝑝‖.

Consequently,

0 ≤ lim inf
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

)

≤ lim sup
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

)

≤ lim sup
𝑛→∞

(
𝑥𝑛+1 − 𝑝

 −
𝑥𝑛 − 𝑝

)

(by (61))

= lim sup
𝑛→∞

(
𝛼𝑛 (𝑢 − 𝑆

𝛿
𝑥
𝑛
) + 𝑆
𝛿
𝑥
𝑛
− 𝑝 + 𝛽

𝑛
𝐸
𝑛

 −
𝑥𝑛 − 𝑝

)

(𝑆
𝛿
quasi-nonexpansive)

≤ lim sup
𝑛→∞

(𝛼
𝑛
𝑂 (1) +

𝑥𝑛 − 𝑝
 + 𝛽
𝑛
𝑂 (1) −

𝑥𝑛 − 𝑝
) = 0,

(72)
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so

lim
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

 −
𝑥𝜏(𝑛) − 𝑝

) = 0. (73)

By (63), we obtain

0 ≤ (1 − 𝛼
𝜏(𝑛)

) 𝛿 [1 − 𝛿 (1 − 𝛼
𝜏(𝑛)

)]
𝑥𝜏(𝑛) − 𝑆𝑥

𝜏(𝑛)



2

≤
𝑥𝜏(𝑛) − 𝑝



2

−
𝑥𝜏(𝑛)+1 − 𝑝



2

+ 𝛼
𝑛
𝑂 (1) + 𝛽

𝜏(𝑛)
𝑂 (1) ,

(74)

and from (73), lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛽
𝑛
< ∞ we get

lim
𝑛→∞

𝑥𝜏(𝑛) − 𝑆𝑥
𝜏(𝑛)

 = 0. (75)

By Lemma 10 and (75) we get

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝜏(𝑛)−𝑝

⟩ ≤ 0. (76)

Finally, we show that (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝.

As in Case A, we obtain

lim
𝑛→∞

𝑥𝜏(𝑛) − 𝑝
 = 0, (77)

and then from property (𝑑) of Maingé Lemma and (73) we
can conclude that

lim
𝑛→∞

𝑥𝑛 − 𝑝
 = 0. (78)

Proof. (iii) We recall that the sequence (𝑥
𝑛+1

)
𝑛∈N is defined as

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑈
𝑛
𝑥
𝑛
, (79)

where 𝑈
𝑛
= 𝛽
𝑛
𝑇
𝛿
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑆
𝛿
𝑥
𝑛
.

We first show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑈
𝑛
𝑥
𝑛
‖ = 0.

Let 𝑝
0
∈ Fix(𝑇) ∩ Fix(𝑆) be the unique solution of the

variational inequality ⟨𝑢−𝑝
0
, 𝑥−𝑝

0
⟩ ≤ 0, for all 𝑥 ∈ Fix(𝑇)∩

Fix(𝑆). We compute that
𝑈𝑛𝑥𝑛 − 𝑝

0



2

=
𝛽𝑛 (𝑇𝛿𝑥𝑛 − 𝑝

0
) + (1 − 𝛽

𝑛
) (𝑆
𝛿
𝑥
𝑛
− 𝑝
0
)


2

(by Lemma 4)

= 𝛽
𝑛

𝑇𝛿𝑥𝑛 − 𝑝
0



2

+ (1 − 𝛽
𝑛
)
𝑆𝛿𝑥𝑛 − 𝑝

0



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆

𝛿
𝑥
𝑛



2

(𝑇
𝛿
nonexpansive and by (20))

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
0



2

+ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝

0



2

− (1 − 𝛽
𝑛
) (1 − 𝛿)

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆

𝛿
𝑥
𝑛



2

=
𝑥𝑛 − 𝑝

0



2

− (1 − 𝛽
𝑛
) (1 − 𝛿)

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆

𝛿
𝑥
𝑛



2

.

(80)

So, we get
𝑈𝑛𝑥𝑛 − 𝑝

0



2

≤
𝑥𝑛 − 𝑝

0



2

− (1 − 𝛽
𝑛
) (1 − 𝛿)

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆 − 𝛿𝑥

𝑛



2

.

(81)

We have
𝑥𝑛+1 − 𝑝

0



2

=
𝑈𝑛𝑥𝑛 − 𝑝

0
+ 𝛼
𝑛
(𝑢 − 𝑈

𝑛
𝑥
𝑛
)


2

≤
𝑈𝑛𝑥𝑛 − 𝑝

0



2

+ 𝛼
𝑛
(𝛼
𝑛

𝑢 − 𝑈
𝑛
𝑥
𝑛



2

+ 2
𝑈𝑛𝑥𝑛 − 𝑝

0



𝑢 − 𝑈
𝑛
𝑥
𝑛

)

≤
𝑈𝑛𝑥𝑛 − 𝑝

0



2

+ 𝛼
𝑛
𝑂 (1)

(by (81))

≤
𝑥𝑛 − 𝑝

0



2

− (1 − 𝛽
𝑛
) (1 − 𝛿)

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆

𝛿
𝑥
𝑛



2

+ 𝛼
𝑛
𝑂 (1) .

(82)

From (82), we derive

(1 − 𝛽
𝑛
) (1 − 𝛿)

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛



2

≤
𝑥𝑛 − 𝑝

0



2

−
𝑥𝑛+1 − 𝑝

0



2

+ 𝛼
𝑛
𝑂 (1) ,

(83)

𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑇𝛿𝑥𝑛 − 𝑆

𝛿
𝑥
𝑛



2

≤
𝑥𝑛 − 𝑝

0



2

−
𝑥𝑛+1 − 𝑝

0



2

+ 𝛼
𝑛
𝑂 (1) .

(84)

Now, also we consider two cases.

Case A. ‖𝑥
𝑛+1

− 𝑝
0
‖ is definitively nonincreasing.

Case B. There exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝
0


<

𝑥
𝑛𝑘+1

− 𝑝
0


∀𝑘 ∈ N. (85)

Case A. Since (‖𝑥
𝑛
− 𝑝
0
‖)
𝑛∈N is definitively nonincreasing,

lim
𝑛→∞

‖𝑥
𝑛
− 𝑝
0
‖
2 exists. From (83) and lim

𝑛→∞
𝛼
𝑛
= 0 and

since lim inf
𝑛→∞

𝛽
𝑛
(1 − 𝛽

𝑛
) > 0 we conclude that

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝛿
𝑥
𝑛

 = lim
𝑛→∞

𝛿
𝑥𝑛 − 𝑆𝑥

𝑛

 = 0. (86)

Furthermore, from (84) we have

lim
𝑛→∞

𝑆𝛿𝑥𝑛 − 𝑇
𝛿
𝑥
𝑛

 = lim
𝑛→∞

𝛿
𝑆𝑥𝑛 − 𝑇𝑥

𝑛

 = 0; (87)

since
𝑥𝑛 − 𝑇𝑥

𝑛

 ≤
𝑥𝑛 − 𝑆𝑥

𝑛

 +
𝑆𝑥𝑛 − 𝑇𝑥

𝑛

 , (88)

by (86) and (87) we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑇
𝛿
𝑥
𝑛

 = lim
𝑛→∞

𝛿
𝑥𝑛 − 𝑇𝑥

𝑛

 = 0. (89)
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Then, since

𝑈𝑛𝑥𝑛 − 𝑥
𝑛

 ≤ 𝛽
𝑛

𝑇𝛿𝑥𝑛 − 𝑥
𝑛

 + (1 − 𝛽
𝑛
)
𝑆𝛿𝑥𝑛 − 𝑥

𝑛

 ,

(90)

by (86) and (89) we get

lim
𝑛→∞

𝑥𝑛 − 𝑈
𝑛
𝑥
𝑛

 = 0. (91)

By Lemma 10, we have

lim sup
𝑛→∞

⟨𝑢 − 𝑝
0
, 𝑥
𝑛
− 𝑝
0
⟩ ≤ 0. (92)

Finally, (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝

0
.

We compute that

𝑥𝑛+1 − 𝑝
0



2

≤
(1 − 𝛼

𝑛
) (𝑈
𝑛
𝑥
𝑛
− 𝑝
0
) + 𝛼
𝑛
(𝑢 − 𝑝

0
)


= (1 − 𝛼
𝑛
)
2𝑈𝑛𝑥𝑛 − 𝑝

0



2

+ 𝛼
2

𝑛

𝑢 − 𝑝
0



2

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑈
𝑛
𝑥
𝑛
− 𝑝
0
, 𝑢 − 𝑝

0
⟩

(𝑈
𝑛
quasi-nonexpansive)

≤ (1 − 𝛼
𝑛
)
2𝑥𝑛 − 𝑝

0



2

+ 𝛼
2

𝑛
𝑂 (1)

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑈
𝑛
𝑥
𝑛
− 𝑥
𝑛
, 𝑢 − 𝑝

0
⟩

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑥
𝑛
− 𝑝
0
, 𝑢 − 𝑝

0
⟩

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

0



2

+ 𝛼
2

𝑛
𝑂 (1) + 𝛼

𝑛
𝑂 (1)

𝑈𝑛𝑥𝑛 − 𝑥
𝑛



+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑥
𝑛
− 𝑝
0
, 𝑢 − 𝑝

0
⟩ .

(93)

If we set 𝜎
𝑛
= 𝛼
𝑛
𝑂(1) + 𝑂(1)‖𝑈

𝑛
𝑥
𝑛
− 𝑥
𝑛
‖ + 2(1 − 𝛼

𝑛
)⟨𝑥
𝑛
−

𝑝
0
, 𝑢 − 𝑝

0
⟩, we have

𝑥𝑛+1 − 𝑝
0



2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

0



2

+ 𝛼
𝑛
𝜎
𝑛
. (94)

From∑
∞

𝑛=1
𝛼
𝑛
= ∞, (91), and lim sup

𝑛→∞
⟨𝑢−𝑝

0
, 𝑥
𝑛
−𝑝
0
⟩ ≤

0 we conclude that (𝑥
𝑛
)
𝑛∈N strongly converges to 𝑝

0
.

Case B. (‖𝑥
𝑛
− 𝑝
0
‖)
𝑛∈N is not definitively nonincreasing. This

means that there exists a subsequence (𝑥
𝑛𝑘
)
𝑘∈N such that


𝑥
𝑛𝑘
− 𝑝
0


<

𝑥
𝑛𝑘+1

− 𝑝
0


∀𝑘 ∈ N. (95)

Then byMaingé Lemma 12 there exists a sequence of integers
(𝜏(𝑛))

𝑛∈N that satisfies some properties defined previously.

Consequently,

0 ≤ lim inf
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

0

 −
𝑥𝜏(𝑛) − 𝑝

0

)

≤ lim sup
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

0

 −
𝑥𝜏(𝑛) − 𝑝

0

)

≤ lim sup
𝑛→∞

(
𝑥𝑛+1 − 𝑝

0

 −
𝑥𝑛 − 𝑝

0

)

(by (79))

= lim sup
𝑛→∞

(
𝛼𝑛 (𝑢 − 𝑝

0
) + (1 − 𝛼

𝑛
) (𝑈
𝑛
𝑥
𝑛
− 𝑝
0
)


−
𝑥𝑛 − 𝑝

0

)

(𝑈
𝑛
quasi-nonexpansive)

≤ lim sup
𝑛→∞

(𝛼
𝑛
𝑂 (1) +

𝑥𝑛 − 𝑝
0

 −
𝑥𝑛 − 𝑝

0

) = 0,

(96)

and hence
lim
𝑛→∞

(
𝑥𝜏(𝑛)+1 − 𝑝

0

 −
𝑥𝜏(𝑛) − 𝑝

0

) = 0. (97)

By (83) we get

(1 − 𝛽
𝜏(𝑛)

) (1 − 𝛿)
𝑥𝜏(𝑛) − 𝑆

𝛿
𝑥
𝜏(𝑛)



2

≤
𝑥𝜏(𝑛) − 𝑝

0



2

−
𝑥𝑛+1 − 𝑝

0



2

+ 𝛼
𝜏(𝑛)

𝑂 (1) ,

(98)

and by(84) we have

𝛽
𝜏(𝑛)

(1 − 𝛽
𝜏(𝑛)

)
𝑇𝛿𝑥𝜏(𝑛) − 𝑆

𝛿
𝑥
𝜏(𝑛)



2

≤
𝑥𝜏(𝑛) − 𝑝

0



2

−
𝑥𝑛+1 − 𝑝

0



2

+ 𝛼
𝜏(𝑛)

𝑂 (1) .

(99)

As in Case A, we get
(a) lim

𝑛→∞
‖𝑥
𝜏(𝑛)

− 𝑆𝑥
𝜏(𝑛)

‖ = 0,
(b) lim

𝑛→∞
‖𝑥
𝜏(𝑛)

− 𝑇𝑥
𝜏(𝑛)

‖ = 0,
(c) lim

𝑛→∞
‖𝑥
𝜏(𝑛)

− 𝑈
𝜏(𝑛)

𝑥
𝜏(𝑛)

‖ = 0.
By Lemma 10, (a) and (b) we have

lim sup
𝑛→∞

⟨𝑢 − 𝑝
0
, 𝑥
𝜏(𝑛)

− 𝑝
0
⟩ ≤ 0. (100)

Finally, we prove that (𝑥
𝑛
)
𝑛∈N converges strongly to 𝑝

0
.

As in Case A, using (c), the assumption∑∞
𝑛=1

𝛼
𝑛
= ∞, and

(100) we can apply Xu’s Lemma 11 and conclude that

lim
𝑛→∞

𝑥𝜏(𝑛) − 𝑝
 = 0, (101)

and then from property (𝑑) of Maingé Lemma and (97) we
can derive that

lim
𝑛→∞

𝑥𝑛 − 𝑝
0

 = 0. (102)

Remark 15. We remark that in order to prove that
𝑥𝑛 − 𝑇𝑥

𝑛

 → 0,
𝑥𝑛 − 𝑆𝑥

𝑛

 → 0,

𝑥𝑛 − 𝑈
𝑛
𝑥
𝑛

 → 0,

(103)

we do not follow the line of the proof of Song and Chai in [4]
because their techniques seem questionable.
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Remark 16. The main result of this paper gives a positive
answer to the question of Kurokawa and Takahashi; see
Remark page 1567 in [19].
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