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The existence of uncountably many positive solutions and convergence of the Mann iterative schemes for a third order nonlinear
neutral delay difference equation are proved. Six examples are given to illustrate the results presented in this paper.

1. Introduction and Preliminaries

Recently, many researchers studied the oscillation, nonoscil-
lation, and existence of solutions for linear and nonlinear
second and third order difference equations and systems
see, for example, [1-23] and the references cited therein. By
means of the Reccati transformation techniques, Saker [18]
discussed the third order difference equation
Nx, + PuXui =0, Vn2=mny, @)

and presented some sufficient conditions which ensure that
all solutions are to be oscillatory or tend to zero. Utilizing the
Schauder fixed point theorem, Yan and Liu [22] proved the
existence of a bounded nonoscillatory solution for the third
order difference equation

Nx,+ f(n,x,,x,,)=0, Vn=n, (2)
Agarwal [2] established the oscillatory and asymptotic prop-
erties for the third order nonlinear difference equation

A3'xn + an (xn+1) = 0’

Andruch-Sobilo and Migda [4] studied the third order linear
difference equation of neutral type

Vn > 1. (3)

A3 (xn - pnxan) i qnxfn = 0’ Vn 2 nO’ (4)

and obtained sufficient conditions which ensure that all
solutions of the equation are oscillatory. Grace and Hamedani
[6] discussed the difference equation

A (X = Xr) + Q%o sg %, 5 =0, ¥n 20, (5)

and gave some new criteria for the oscillation of all solutions
and all bounded solutions.

Our goal is to discuss solvability and convergence of
the Mann iterative schemes for the following third order
nonlinear neutral delay difference equation:
> Xy, )

n

A (x, + byx, o) + A (n,x, x5, .
(6)
+f (n,xfln,fon,...,xfkn) =c, VYn>ny,
where 7, k, n, € N, {bn}neN,,o’ {cn}neNno C R, h, f e CN, x
Rk’ R)’ {hln}neNy,O > {fln}neNno N, and

nangoh,n:nangoﬁn:+oo, le{l,2,...,k}. (7)
By employing the Banach fixed point theorem and some
new techniques, we establish the existence of uncountably
many positive solutions of (6), conceive a few Mann iter-
ative schemes for approximating these positive solutions,
and prove their convergence and the error estimates. Six
nontrivial examples are included.
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Throughout this paper, we assume that A is the forward
difference operator defined by Ax,, = x,,;, — x,, R =
(-00,+00), R* = [0,+00) N, and N denote the sets of

nonnegative integers and positive integers, respectively,
N,= {n:neNwithn>t}, VteN,

— min 50t i1 <1< Ko eN ] €N

=
|

H, = max{hlzn:le{l,Z,...,k}}, VneN,,
2
F, = max{fln:le{l,z,...,k}}, VneN,,

(8)

and [’ represents the Banach space of all real sequences
on Ny with norm

x| = sup
neNﬁ

| <+oo foreach x = {x,}, €l

A(N,M) = {x: {xn}neNﬁ €l :N< % <M,ne Nﬁ}

forany M > N > 0.
9)

It is easy to see that A(N, M) is a closed and convex subset
of ZEO. By a solution of (6), we mean a sequence {xn}neNﬁ with

a positive integer T' > n,+7+ f3 such that (6) holds for all n >
T.

Lemma 1. Let {p,},n be a nonnegative sequence and T € N.

(M) If lim,, _, o (1/n2) 32, 2, = 0.
then lim,,_wo(l/flz) 2,001 Z?on+i‘r z(t):s P =0.
(ii) Ifhmnﬁoo(l/”l )Zt n+‘rt Py y 0.

then hmn—>00(1/n zl lzu =n+iT zs uZt spt =0.

Proof. Note that

IOO o0 o0
o< ¥ 5

i=1s T t=s

100 (o) (o)
2¥(She 3 e 3 p)

i=1 \t=n+it t=n+1+iT t=n+2+iT

100 (o] [ee] o0
:n—z Z (1+t-n—-it)p, < Z Z

=1t =1t (10)

1 (o) (o) (o)
=—(Z +) it tht+-~-)

t= t=n+21 t=n+31

1 & t-n—-1 1 St-n
<.z 2 (10 Jin= 3 =

1 &,
S—tht—>0 as 1 — 00
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that is,

As in the proof of (10), we infer that
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1
lim —2

n—00

(11)

£M8

O 00 00 OO

05> > Y3a

i=1 u=n+it S=U t=s

Z(l+t—u)pt
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which implies that

Jmg> 3 ¥ 3 e 3

+iT STU t=

“

This completes the proof. O

2. Uncountably Many Positive Solutions and
Mann Iterative Schemes

In this section, using the Banach fixed point theorem
and Mann iterative schemes, we establish the existence of
uncountably many positive solutions of (6), prove conver-
gence of the Mann iterative schemes relative to these positive
solutions, and compute the error estimates between the Mann
iterative schemes and the positive solutions.

Theorem 2. Assume that  there  exist  two
constants M and N with M > N > 0 and four nonnegative

sequences {Pn}neNno’ {Qn}”ENno’ {R"}%Nno and {Wn}neNﬂU
satisfying
If (moup,uy,..w) = f (n 1y, 1y, 1)
<P max{lu—u|:1<1<k},
|h(m,uy,uy, . w) — h(n, 0y, 1y, 1) (14)
< R,max {|luy—u|:1<1<k},
V(muw,m) eN, x (R \{0})", 1<l<k
|f (muyuy, o) Qs |h (nuy, vy, )| < W,
V() eN, x(RT\{0}), 1<l<k

(15)

H, W} =0; (16)

tim 258 S,

i=1 u=n+it S=U

Z Z max {P,F,,Q, ||} = 0; 17)

i=1 u=n+it S=U t=s

b, =-1 eventually. (18)
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Then one has the following.

(a) For any L € (N, M), there exist 6 € (0,1) and T >
ny + T + [ such that, for each x, = {xon}neN‘3 c
A(N, M), the Mann iterative sequence {X,},en, =
{{xmn}neNﬁ }meNo generated by the scheme

Xm+1n
' (1 - ‘xm) Xmn
+a, {nzL
(o) o0 00
+Z Z Z [h (S’ Xmhy > Xy« - > x"’hks)
i=1 u=n+it S=U
(oe)
_tZ (f (t; me“, mem, e xmfk:)
=s
-a)lb
n>T, mz=0,
-] (1 - (Xm) XmT
o, {T°L
(oe) o0 [o'e)
+Z Z Z [h (s, Ky, > Xy - - ,er’hks)
i=1 u=T+it S=U
oo
_tz (f (t’ xmflt’ x’”fzr’ teo xmfkt)
=s
-a)lb
B<n<T, mx0,
19)

converges to a positive solution z = {zn}neNB € A(N, M) of (6)
with lim, | z, = +00 and has the following error estimate:

—(1-6) Y7y o

[~ 2l < e P2l VmeN,  @0)

where {a,,},,cn, is an arbitrary sequence in [0, 1] such that

&, = +00. (21)

Mg

0

3
I

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).

Proof. Firstly, we show that (a) holds. Put L ¢ (N,M). It
follows from (16)~(18) that there exist & € (0,1) and T >
ny + T + B satistying

oo o0 oo

Z Z (RSHS + igﬂ) ; (22)

i=1 u=T+it S=U
1 [oe) (o] [oe) (o)
T2 . Z Z(M+Z(Qt+|ct|))
i=1 u=T+it $= t=s (23)
<min{M - L,L — N};
b,=-1, vn>T. (24)

3
Define a mapping S : AN, M) — [z’ by
San
(1%L
(o) o0 (o)
+z Z Z {h (s, Xpy, > Xpyy > e ,xhks)
i=1 u=n+it S=U
_; [f (t’ xflr’ xfz:’ T xfkr) N Ct]} ’
n>T, S;xp P<n<T,
(25)

for each x = {xn}neNﬁ € A(N, M). In light of (14), (15), (22),
(23), and (25), we obtain that for each x = {xn}neNﬁ,y =
{yn}neNﬁ € A(N’ M)

S1% _ S
I’l2 n2
1& & &
< _2; Z Z [' (s’xhls’xhzs""’xhks)
- h(s’yhh’yhzsi--':)’hks)
(o]
S )
_ f(t’yflt’yfzt"'"yfkt)H
< %Z Z Z [Rsmax{'xhk _yhls' 11<l< k}

o0
+Z Ptmax{'xfn —yfh| :1<l< k}]
t=s

< ||x;2y||§°: i OZO: [Rs max {hlzs 11<i< k}

i=1 u=n+it S=U

+ iPtmax{flf 01 slsk}]
t=s

< I —2y|| Yy N (RSHS + ZPtFt)
T i=1 u=T+it S=U t=s
=0[x-y|.
S;x
-

1 o0 (o] o0
E5YD) Z{h(s,xhls,xhu,...,xhks)

(o]

- Z [f (t’ xflr’xfm"'

t=s

100 [e¢] o
<23 5 S0,

Pipry)

)=l

T
L
S
i
3
Y
3
.
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[ee)

ENID)

i=1 u=T+it =4

A NC]

<min{M - L,L - N},
(26)
which yield that
S (A(N,M)) < A(N,M),

(27)
Spx =Syl <0|x—-y||, Vx, ye A(N,M),
y

which implies that S; is a contraction in A(N,M). The
Banach fixed point theorem and (27) ensure that S; has a
unique fixed point z = {zn}neNﬂ € A(N, M); that is,

2
z,=n1L

(o) (o] (o9
+Z Z Z {h(s’zhls)zhh’...)zhks)

i=1 u=n+it S=4

()

S ez -al}

t=s
Vn>T,

Z, = (n- 7)°’L

(e8] (o8] (e8]
+Z Z Z{h(s’zhls’ths,”.’ths>

i=1 u=n+(i—1)t =4

18

[f (t’ an’ Zfzz’ e kat)

t

S

—ct]}, Vn>T+T1,
(28)

which mean that

Zy = Zp_p = (Zn'r - 12) L
- Z Z {h(s, zhls,zhk,...,zhks)
Uu=n s=u
Sl ez oz -al}
Vn>T+7,
(29)
which yields that
A (Zn - anr)
[ee]
=27L+ z {h (s, Zp, > 2 > "ths)
i [ee]
Sz el
Vn>T+1,
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2
A (Zn - anr)
= (m 21,2, 2,)

+ i [f(b2pp202p,) —a], Vn2T+,
t=n

(30)
which gives that
A3 (Zn - an'r)
= —Ah (n, Zhln’ Zth, ey thn) (31)
- f(t’zfm’zfz"""’szn) +¢, Vn>=T+r1,
which together with (24) implies that z = {zn}neNﬂ is a
positive solution of (6) in A(N, M). Note that
zn
N < - < M, Vn € Nﬁ’ (32)
n

which guarantees that lim,, _, .z, = +0o0. It follows from (19),
(22), (24), (25), and (27) that forany m € Ny and n > T

|xm+1n _ Z_n
n? n?
= F (1 - ‘Xm) Xmn
2
+a,, {n L
[o0) (o) (o]
+ Z Z Z [h (S’ xMhls) xthS’ T xmhks)
i=1 u=n+it =4
(o)
- Z (f (t’ xmflr’ x"’fzz’ e
t=s
Song) = )]} = 2
< (1 o ) lxmn B Zn| |SLxmn - SLan

<(1-ay,) |x, — 2| + Ocx,y, | %, — 2],
<[1-0-0a,]|x, -2, YmeNyun>T,
(33)

which implies that

”xm+1 - Z” S e—(1—9) B "xm - Z" » Vm e Np. (34)
That is, (20) holds. Thus Lemma 1, (20), and (21) guarantee
thatlim,, ,  x,, = z.

Next we show that (b) holds. LetL,, L, €
(N,M)and L, #L,. As in the proof of (a), we deduce
similarly that, for each ¢ € {1,2}, there exist constants 9, €

(0,1)and T, > ny + 7 +  and a mapping S, _ satisfying



Abstract and Applied Analysis

(22)~(27), where 0, L, and T are replaced by 6,, L., and T,
respectively, and the mapping S; has a fixed point z2° =
{z;}neNﬁ € A(N, M), which is a positive solution of (6) in
A(N, M) with lim z, = +0o0. It follows that

n— 00
c _ 2
z,=nL,
[oe) (o) (o)
c Cc c
) Z{h(s’zhlszhzs-“’zhks)
i=1 u=n+it S=U

(e

_ Z [f (t,z?lr,z;n,...,z;kt) —ct]} ,

t=s

vn>T,
(35)

which together with (14) and (20) means that forn >
max{T;,T,}

Z, 7z
P
>|L, - L,|

2 2
- h(s, 2y > Zpy o

)
> hks

+ Z 'f (t’ Z}lt’z}zt" ' "z,lfkt) - f(t’ erlt’zjzrzt" ' "zi(kt)l
t=s

- %i i i [Rsmax{|z;ls -z | 1< <k}

+ iPtmax“z}h —szn' 11<l< k}]
t=s
> |L, - L,

G —zzlii i f

i=1 u=

(o)
(RSHS + ZPtFt)

t=s

>|L, - L,|

|2 -2 S
max{Tz,T2 Z Z

i=1y= m:«J.x{T1 Tz}-HT s

MS

o0
(RSHS + ZPtFt)

t=s

> |L, - L,| - max {6,,6,} "z1 - 22" ,
(36)
which yields that

L1~ L]

||Z1 - Zz" T+ max {6,,0,}

> 05 (37)

that is, z' # z*. This completes the proof. O

Theorem 3. Assume that there exist two constants M and N
with M > N > 0 and four nonnegative sequences {P,},cn >
oy

{Qn}neNno, {Rn}neNno, and {Wn}neNno satisfying (14), (15), and
lim =3 Y max {RH,W,} = 0; (38)

lim 1 Z Z Z max {P,F,, Q,, ||} = 0 (39)

b, =1 eventually. (40)

Then one has the following.

[\

(a) For any L € (N, M), there exist 0 € (0,1) and T
ny + T + [3 such that, for each x, = {xOH}neNB
A(N, M), the Mann iterative sequence {x,,},en,
{{x,,m}ner\%}meN0 generated by the scheme

m

Xm+1n

i (1 - (xm) Xmn
+a, {nzL

oo n+2it-1 o0

_Z Z Z[h(s,xmhls,x%s,,,,

i=1 u=n+(2i—-1)t =4

> xmhks )

M3

(f (t’ ‘xm_f“)-xmfm, ey

) = )]}

n>T, m=>0,

-
Il
“

(1 - ‘xm) XmT
n {T°L

oo T+2it-1

[ee]
_Z Z Z [h (S’ xmhls’ xthS) T xmhks)

i=1 u=T+(2i-1)7 S=U

o0

_; (f (t’ xmflta xmth, ey
ORDIIE

B<n<T, m=0,
(41)

converges to a positive solution z = {zn}neNﬁ €
A(N, M) of (6) with lim,,_, z, = +00 and has the
error estimate (20), where {ocm}meN0 is an arbitrary
sequence in [0, 1] satisfying (21).

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).



Proof. Let L € (N, M). It follows from (38)~(40) that there
exist 0 € (0,1) and T > n, + 7 + 3 satistying

0 L5 (it o)

u=T s=u

(42)

555 (w45 @) < mntr -

u=T S=u t=s
(43)
b,=1, V¥n>T. (44)
Define a mapping S, : A(N, M) — I’ by
San
n’L
co nt+2it-1 oo
-y Z{h(s Xp > Xy, o - ..,xhks)
i=1 u=n+(2i-1)7 =4
- _tgs [f(t’xfu’xfzt"”’xfk:)
-¢l}, n>T,
NES B<n<T,
(45)
for each x = {xn}neNﬁ € A(N, M). Using (14), (15), (42), (43),
and (45), we get that for each x = {xn}neNﬁ,y = {yn}neNﬁ €
AN,M)and n>T
San _ SLyn
) )
1 co n+2it-1 oo
< ;Z Z Z |h S Xp > Xpy, > ..,xhks)
i=1 u=n+(2i—1)7 =4
- h(s’yhls’yhh,.'.’yhks)
(o]
+ tZ |f (t’ xfu’ xfzt’ e ’xsz)
(65025025

n+2it-1 oo

M) Z(RH+ZPF)

i=1 u=n+(2i-1)7 =4

<5 3 (B -0t
u=T s=u

t=s
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San
— - L
n
1 n+2it-1 oo
52 3 Yl
n =1 u=n 1)r s=u :

+;[|f(f’xfu’xfzu-wxfkt)'
+lal |}
02 (0 [ NCR])
u=T S=U t=s t=s
<min{M - L,L - N},
(46)

which imply (27). The rest of the proof is similar to the proof
of Theorem 2 and is omitted. This completes the proof. [

Theorem 4. Assume that there exist three constants b, M,
and N with (1 — b)M > N > 0 and four nonnega-
tive sequences {Pn}nEN,,O’ {Qn}ner,{Rn}neN"0 and {Wn}neNnn
satisfying (14), (15), (38), (39) and

0<b,<b<1
Then one has the following.

(a) For any L € (bM + N,M), there exist 0 ¢
0,1)and T > ny + T + fsuch that, for any

eventually. (47)

X, = {x(,n}neNﬁ € A(N,M), the Mann iterative

sequence {X,,}pen, = {{x,,m}ne,\lﬁ}mENO generated by

the scheme

Xm+1n
i (1 - m) Xmn
+a, { ’L - b, X s
_Z Z [h (S) xmhls’ xthS’ e xrnhks)
Uu=ns=u
(o)
_tz (f (t’ xmfn’ xmfzr’ T xmfkt)
=s
-a)l}
=4 nxT, mzx0,
(1 - (Xm) XmT
t+a, {TZL - bTme—T
[colaNeel
- Z Z [h (s, X, > Xy« + xmhks)
u=T 5=t
o0
_tz (f (t’ xmf“’ x””fz:’ T xmfkt)
=s
-a)l}
B<n<T, m=0,
(48)
converges to a positive solution z = {Zn}neN,; €

A(N, M) of (6) with lim,,_, .z, = +00 and has the
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error estimate (20), where {ocm}meNo is an arbitrary
sequence in [0, 1] satisfying (21).

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).

Proof. Put L € (bM + N, M). It follows from (38), (39), and
(47) that there exist 0 € (0,1) and T > n, + 7 + 3 satisfying

+%; Z(RH +ZPFt>;
%ii( +OZO:( +e|) ) (49)

t=s
<min{M - L,L - bM — N};

0<b,<b<1l, Vn=T.
Define a mapping S, : A(N, M) — [’ by

San

(2
nL-bx, .

oo o0
> {h(5>xhls>xhze-~-’xhk5)

U=n s=u
= < 00

N Z [f (t’ xflt’xfzz" o

t=s

,xfkt)-ct]},

n>T,
(SLXTs B<n<T,

(50)

for each x = {xn}neNﬁ € A(N, M). In view of (14), (15), and
(49) and (50), we obtain that for each x = {xn}neNﬁ,y =
{yn}neNﬁ € AN M)andn>T

San SLyn
o
< bn n_zyn—‘r
] ® @
n_z Z Hh (S’xhls’xth""’xhkS)
u=ns=u
= B (S i Yo+ Vi)
0
+Z'f(t’xflt’xfzt""’xfkt)
_f(t’yflt’nyt""’yfkt)”
< bn Xp-t = Vn—r (1’1 ;ZT)Z

+—ZZ Rmax 'xhl J’h,' lslsk}

U=ns=u

+ iPtmax”xfu —yflt' 11<l< k}
t=s

7
<blx-y|
S S [Rsmax{hlzszlslsk}
n u=ns=u
[ee]
+ ZPtmax{flf i1 slsk}]
t=s
<loe 5 5 (mi S |11 -0kl
u=T S=U t=s
S1x,
112
<L nlz Z { |h (s,xhls,xhh,...,xhksﬂ
=n s=u
(]
+ S0 (g ol
t=s
<L+%ZZ< Y@ |ct|>>
u=T $=tt t=s
<L+min{M-L,L-bM-N}<M,
Six,
T
>L-bM
1 o0 o0
_ ;;;‘ { |h (s, xhls,xhk,...,xhks)
[ee]
+ Z[|f(t’xfn’xfn""’xfkt)l+|Ct|]}
AL +Z(Qt |ct|)]
u=Ts=u
>L-bM -min{M -L,L-bM - N} >N,
(51)

which imply (27). The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof. O

Theorem 5. Assume that there exist constants b, M, and N
with (1 + b)M > N > 0 and four nonnegative sequences

{P”}"ENno’ {Qn}neNno’ {RH}HENnO’ and {W”}neNno Satisfying (14),
(15), (38), (39), and

-1<b<b, <0 -eventually. (52)

Then one has the following.

(@) For any L € (N,(1 + b)M), there exist0 €
0,1)and T > mny + T + P such that, for
any x, = {xOn}neNﬁ € A(N, M), the Mann iterative
sequence {X,,}pen, = {{xmn}neNﬁ}meNo generated by
(48) converges to a positive solution z = {zn}neN‘g €



A(N, M) of (6) with lim,,_, .z, = +00 and has the
error estimate (20), where {e,,},cn, is an arbitrary
sequence in [0, 1] satisfying (21).

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).

Proof. Put L € (N, (1 + b)M). It follows from (38), (39), and
(52) that there exist 0 € (0,1) and T > n, + 7 + f3 satisfying

6=—b+ ii Oi(RH +§ptpt) (53)

u=T S=U
1 [celaNee] oo
FZ (VVs‘FZ Q lct|)>
u=T s=4 = (54)
<min{(1+b)M - L,L - N};
-1<b<b, <0, Vn=>T. (55)

Define a mapping S; : A(N, M) — ZEO by (50). By virtue of
(15), (50), (53), and (55), we infer that for all x = {xn}neNﬂ,
Y = Wabnen, € AN, M)and n>T

San _ SLyn
n? n?

Xpn-t = Yn—r

<b |
1 & ®
LD I [ CEETRRE
n? u=n s=u

- h(s’yhls’yhh"”’yhks)

(9]

+ Z 'f (t’ xflz’xfzr""

t=s

’xfkt)

>yfkt)|]

< [—b ) (RSHS + ZHR)] - 4]
= t=s

u=T =t

- f(t’yfu’yfn’”'

<L-bM

i~
Mg

[
1l

{ |h (S)xhls)thS)” ' ’xhks)'

Uu

(9]

+ Z ['f (t’ xflz’xfzr""

t=s

x5+ el
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st 5 5w S ke
u=T =t t=s

<L-bM+min{(1+b)M-L,L- N} <M,
San

n2

100
>L —n—z

u=ns

M3

{ |h (S’ xhls’xhu"' . ’xhks)'

R an (6050 )| + |ct|]}
B %22 [Ws +§(Qt + |Ct|)]

1]
<

>L-min{(1+b)M -L,L- N} >N.
(56)

That is, (27) holds. The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof. O

Theorem 6. Assume that there exist constants b,

M, and N with (1 - 1/b)M > N > 0and four
nonnegative  sequences {Pn}neNno, {Qn}neNno, {Rn}neNno,
and {Wn}neNno satisfying (14), (15), (38), (39), and

b,>b>1 eventually. (57)

Then one has the following.

(a) For any L € ((1/b)M + N, M), there exist 0 €
(0,1) and T > ny + T + P such that, for any x, =
{xOH}nENﬁ € A(N,M), the Mann iterative sequence

{%mtmen, = {{xmn}neNﬁ }men, enerated by the scheme

Xm+1n

'(1 - ‘xm) Xmn

y, X
+«a,, yn°L -

mntt 1

b b

H+T n+t

X Z Z [h (S xmhl ’xmh2

U=n+t S=U

_ES (f (6 %mp, Xmpyo - > Xims,)
- Ct)] ]’ )

(1 - (xm)'me

T2 mT+‘r
Tt

- z z [h (S’ xmhls’ xthS) e

u=T+7 S=U > Xy )

—2 (f (t, me“, x””th’ “e
~a)lf.

B<n<T, m=>0,

> xmfkt)

(58)
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converges to a positive solution z = {zn}neNﬁ €
A(N, M) of (6) with lim,,_, .z, = +00 and has the
error estimate (20), where {e,,},en, is an arbitrary
sequence in [0, 1] satisfying (21).

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).

Proof. Put L € ((1/b)M + N, M). It follows from (38), (39),
and (57) that there exist 0 € (0,1)and T > ny, + 7 +
B satisfying

2 o0 00 x
(A [CR IR 351 (7S Y |

u=Ts=u t=s
2 ¥ (S rkeh)
u=T s=t t=s (60)

<min{M—L,L—%}M—N};

b,>b>1,

n

vn>T. (61)

Define a mapping S, : A(N, M) — [ by

San
2 Xn+t 1
L— _
" b b
xu:ZnH;; {h (s, Xy > Xpyy e ,xhks) (62)
= 0
_; [(f (t’ xflt’ xfz:’ e xfkt)
- q)]} , n=>T,
| SLxrs B<n<T,
for each x = {x,},cn, € AN, M). In view of (14), (15),

and (59)-(62), we obtain that for each x = {xn}neNﬁ, y =
{yn}neN/; € A(N,M) andn>T

SiXn _ Si¥n
n? n?
< 1 Xntr = Yot
- bfl+T nz
1 [oe) o0
+ b2 z Z Hh (s, xhls,xhh,...,xhks)
n+t u=n+t S=u

- h(s’)’hls))’hh>-~-’}’hks)'

(o)

+ Z 'f (t’ xfn’xfzr" : "xfkt)

t=s

- f(t’yflr’yfzr""’yfkt)”

9
L Xnrr = Vnir (n+T)2
B bnﬂ- (”+T)2 n?
1 [eelaNee)
+ bn+-rn2uZnsZu [RS max{|xhls - yhls| :1<l< k}
+ Z Ptmax{'xfh —yfh| :1<I< k}]
t=s
1 TV 1 &3 <
<z [(1 + f) + FMZTSZM(RSHS + Z;PtFt)] I - y|
=0|x- .
Six,
2
1 (o) (o)
<L+ o Z Z {'h (s,xhls,xhh,...,xhks)|
U=n+t1 S=U
(o)
+Z[|f(t’xflt’xfzt""’xfkt)|
+ |Ct|]}
SL*’%Z Z(M+Z(Qt+|ct|)
b1 = & ~
<L+min{M—L,L—%M—N} <M,
San
)
1
>L - EM
1 (o)
_ WM_ZH‘LTSZ‘[{ |h (s,xh1 U ,xhks)
o0
# S0 )| ]
t=s
1 1 [celmNvel o0
>L- EM_ ﬁ;;(mfs + ; (Q + |Ct|)>
>L—%M—min{M—L,L—%M—N} > N,
(63)

which imply (27). The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof. O

Theorem 7. Assume that there exist constants b, M,
and N with (1 + 1/b)M > N > 0 and four nonnegative

sequences {Pn}nENno’ {Qn}nENno’ {Rn}nENno’ and {Wn}neNno
satisfying (14), (15), (38), (39) and

b, <b < -1 eventually. (64)
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Then one has the following.

(a) Forany L € (—(1 + 1/b)M, —N), there exist 0 € (0,1)
and T > ny + 7 + f such that, for any x, = {xOH}neNB €
A(N, M), the Mann iterative sequence {x,,}
{{xmn}ne,\,ﬁ}meN0 generated by the scheme

meN,

Xm+1n

(1 _ocm)xmn
Xpr 1

b b

n+t n+t

+am{—n2L—

[ee] [ee]
NP L CEE AR .

u=n+t S=u

_tgs (f (t’ xmflt’ xmfzt’ e x"”fkt)

-a)lf

n>T, m=>0,
= <

[ee) (o]
- z Z [h (S’ xmhls, xthS) T xmhks)

u=T+t1 S=U

[e.0]

_Z (f (t’ xmflr’ xmfzr’ toe ’xmfkr)

* ~a)]}.

B<n<T, m=0,

(65)

converges to a positive solution z = {zn}neNﬁ €
A(N, M) of (6) with lim, _, .z, = +00 and has the
error estimate (20), where {a,,},cn, is an arbitrary
sequence in [0, 1] satisfying (21).

(b) Equation (6) possesses uncountably many positive solu-
tions in A(N, M).

Proof. Put L € (—(1 + 1/b)M,—-N). It follows from (38),
(39), and (64) that there exist 0 € (0,1) and T > ny + 7 +
B satisfying

0= —% [(1 + %)Z %i OZO:(RSHS +§P@)] . (66)

u=T S=u t=s
1 o0 o0 o0
_WZZ<M+Z(QH’|QI))
u=T S=U t=s (67)
<min{(1+l)M—L L—lM—N}
b ’ b ’
b,>2b>1, Vn=>T. (68)

Abstract and Applied Analysis

Define a mapping S, : A(N, M) — [ by

Six,
2 Xnir 1
L — -
e B
o0 (o)
DD [ CERENRIEA
u=n+t S=U
= oS
_tz [f (t’ xfn’ xfzt’ T xfkt) - Ct]} ’
=s
n>T,
NES B<n<T,

(69)

for each x = {xn}neNﬂ € A(N, M). Making use of (15), (66),
(68), and (69), we conclude that

StXn StYn
n? n?

Xontr = Voo

1 o0 o0
b 2 Z ZHh(s’xhls’xhz:"'"xhks)

eV usnt e s=u

- h(s’yhlgyhh""’yhks)l

o0

| (xpxpyx,)

t=s

N f(t’yflt’yfzt"'"yfkt)H

(n+1)>°
2

1
< ——

b

n+t

Xntr = Vot

(n+1)?*

n

1 (o)

Z ioz [RS max{'xhls —yhls' 11<l< k}

2
bn+‘rn u=n

(o)
+Z Ptmax{'xfu —yflt| :1<i< k}]
t=s

<! (1+3>2+i§§ RH+§PF
= b T Tz stts t:Stt

= ¥
u=T $=u
=0fx-y],
San
nZ
M 1
Sy e
00 00
x Z Z { 'h (S’ xhls’ xhz > i xhks)
U=n+T S=U
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S“%‘JZZZKM+Z«zqu
u=T $=U t=s
<—L—% min{<1+l%>M+L,_L_N} <M
Srx,
o
>-L

+% :Zn: Z{'h(s’xhlsaxh25>...,xhks)

M8

+

1 x| ol

-
Il

S

WS o

18

. o]

u=T =it t=s
>—-L— mm{ 1+ %)M+L,—L—N} >N,

(70)
which yield (27). The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof. O
3. Examples

In this section, we suggest six examples to explain the results
presented in Section 2.

Example 1. Consider the third order nonlinear neutral delay
difference equation

. 2
3 sin“x,_3 1
A (x, - x,_,) + A( n7” ) +

(n°+2n° +1) (1 +xfl2)

2
-2
:u, Vi > 4,
n+mnd+1
(71)

where 7 € Nis fixed. Let n, = 4,k = 1,and 8 = min{4-7, 1},
andlet M and N be two positive constants with M > N and

2
n°—2n
b :_1) = 5 2 >
" R
£ (mw 1
n,u) = ,
(n° +2n° +1) (1 +u?)
.2
hww =" f =t F=n
2M
h, =n-3 (n-3)>° P, = &,
n
1 2 1
Qn: E; R‘rl: ﬁ: Wn: ﬁ)

VY (n,u) € N, x R.
(72)

1

It is easy to see that (14), (15), and (18) are satisfied. Note that

- Z t* max {R,H,, W,}
n

2(t—3)1
7 3 s 2 1]

t N+t
R 2t-3)1+1
t=n+1 ts

IN

as n — 00, (73)

2 &1
3 M

1
= Y £ max{PF,Q,|¢|}

1 & oM 1 |t -2t
_Zztamax{ﬁ’ﬁ %}

t=n+t

:l\)
Mg

-
1}
S
T
~

max{1,2M} < 1
< 2 Z 2 —0

as 1 — 00,
t=n+t

which together with Lemma 1 yield that (16) and (17) hold.
It follows from Theorem 2 that (71) possesses uncountably
many positive solutions in A(N, M). On the other hand, for
any L € (N, M), thereexist 0 € (0,1) and T > ny+7+f3 such
that, for each x, = {xOn}neNp € A(N, M), the Mann iterative
sequence {X,,}pen, = {{x,,m}ne,\,ﬁ}meNo generated by (19)
converges to a positive solution z = {zn}neNﬁ € A(N, M) of

(71) with lim,, _, .,z,, = +00 and has the error estimate (20),
where {a,,},,, is an arbitrary sequence in [0, 1] satisfying
(21).

Example 2. Consider the third order nonlinear neutral delay
difference equation

A (x, +x,,) + A (

sin®x3,5,,
n3(n6+2)<1 +x2 s 3)

(1" (%, + X(ue1)(142)) (74)
(n®+n° +1) (1 + X2,

2
aa T x(n+1)(n+2))

2
n —lnn

:#, VI/IZS,
n+n +1

where 7 € Nis fixed. Let n; = 5,k = 2,and 8 = 5— 7, and let
M and N be two positive constants with M > N and

2
n° —Inn
b =1, c, =

" "oy n+ 1]

(-1)"n® (u +v)
(nP+n5+1) (1 +u2 +v2)

f(nuv) =
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. 2
sin“v )
5> = - _1)
ey T A

fon=m+1)(n+2),

h(n,u,v) =

=(n+1°n+2)°  hy, =21 -3,
h,, =3n +1,

N 4 10
Ho=(n+1), B=Q=5 R=W=5
V(nu,v) €N, x R

(75)
It is clear that (14), (15), and (40) are fulfilled. Note that
5 Z Z max {R.H,, W,}
n u=ns=u
1 & X 0(35 + l) 10
== max y—
=933 -
60 =1 1601
< — —<—)—=—0 asn— 00,
) ; ;453 2 ;52
(76)
which means that
Jim n—z Z max {R,H,, W,} = 0. (77)

Uu=n s=u

Observe that

oo o0 00

1
_ZZ Z max {P,F,,Q,, |¢[}
N 4=n s=u 1=s

:iiiima" At+17°@t+2)° 4 £ -Int
n? £10 B

1962 Zt—u+1

IN
3~| =
(o)
M8
Mg
M8
m -

U=n s=uU t=g U=nt=y
196 « 1 196 1
S — —<—) -~ —0 asn— oo,

2 1;1 Zl; FER ;tz

(78)

which yields that
[ee)
HHOOn Z Z Z max {P Ft’ Qt’ |Ctl (79)

U=NS=U {=g

Thus Theorem 3 guarantees that (74) possesses uncount-
ably positive solutions in A(N, M). On the other hand, for
any L € (N,M), there exist0 € (0,1)and T > 7 +
1y + f such that the Mann iterative sequence {x,,},en,
{{x,,m}ne,\lﬁ}meN0 generated by (41) converges to a positive
solution z = {zn}neNB € A(N, M) of (74) with lim,, , .z, =
+00 and has the error estimate (20), where {,,},,,cn, 1s an
arbitrary sequence in [0, 1] satisfying (21).

Abstract and Applied Analysis

Example 3. Consider the third order nonlinear neutral delay
difference equation

1+3Ilnn
(s e, )
" 24+4lnn "
(—1)"sin( LR 3')
+ A

-\n+3

1’12 + (_l)n(n+1)/2 (80)
(112 + 6110 + 7) el
S 1
n®(1+x2,) (W +2n*-1)(1+x2,,)
3(-1 n 2
= (—);1, Vn>7,
9n'0n’n
where 7 € N is fixed. Letny = 7,k = 2,b = 3/4, and

B = min{7 — 7,4}, and let M and N be two positive constants
with M > 4N and

_1+3Inn B 3(-1)"n?
" 2+4lnn’ © 9nl0n’y’
(-1)" 1

fnu,v) =

n(1+u?) (0 +2n*—1)(1+12)

(-1)"sin (e_"zl"') 2 4 (<q)tmr2

h(n) u, V) = 15 _ \/ﬁ+3 (1112 +67’llo + 7) e|V|’
81
fin=n-3, fon=n+4 (&
= (n+4), hy, = 51" = 3,
2
h2n _ 27’13 + 1’ Hn — (27’13 + 1) >
Pn=Qn:E’ anwnzm)

V(nu,v) €N, x R

It is not difficult to verify that (14), (15), and (47) are fulfilled.
Note that

n Uu=ns=u
1 2@ 2(2°+1)° 5
= ﬁz Z max 10 > 10 (82)
Uu=ns=u
BIJ 1 1831
< — —<—=>)—=—0 asn— oo,
n uzz,,szu st nzszznﬁ
which implies that
1 o0 o0
nleréOEZ Z ax {RH,W,} =0 (83)
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Observe that

o0 o0 o0

) Z Z Zmax P,F,Q,, lct|

U=N S=U t=5

132 3(t 4)3
-3 Y S XS

U=ns=u t=

3(-1)'
9t10]n3¢

i

3

(84)

IN
LS
D18
18
[\|/18

RIE&I1 12&
SZZZFS_ZZ?Z_)O as n — 00,
which means that

o0 00 OO

Jim 5> 3 max [BE.Qulall <0 89)
That is, (38) and (39) hold. Consequently Theorem 4 implies
that (80) possesses uncountably many positive solutions
in A(N, M). On the other hand, for any L € ((3/4)M +
N, M), there exist0 € (0,1)andT = n, + 7 +
B such that the Mann iterative sequence {x,},cn, =
e nENﬁ}meNO generated by (41) converges to a positive
solution z = {Zn}neN/; € A(N, M) of (80) with lim, _,
+00 and has the error estimate (20), where {a,,},,,cn, is an
arbitrary sequence in [0, 1] satistying (21).

z, =

Example 4. Consider the third order nonlinear neutral delay
difference equation

1-51n 27 +n—1
A? - A
("" iy 6n3x"-f) * ((n8 T3+ 2) (1 +x§n_7))
s sin (nzxsnz,z)
(Vn+14)7

()" +50 +4An -2
T+t 42+ md+7

Vn=>9,
(86)

where 7 € Nis fixed. Let n, = 9,k = 1,b = -5/6, and
B =9-1,andlet M and N be two positive constants with
M > 6N and

B 1-504° .- (-1)"n® +5n* +4n -2
"2+ 6nd T2+ M3+ 7
Fonw sin(nzu)
nmu) = —————,
(Vn + 14)%
2t +n-1
h(n,u) = )
) = v 3+ 2) (L) (&)
2
fin=3n"-2,  E,=(3n"-2), h,=3n-7,
3 1
=(3n_7)2’ Pannz_g’ Rn=Wn=_5’
n n

V(nu) eN, xR

13

Obviously, (14), (15), and (52) are satisfied. Note that
1 o0 &0
=22

13X (Bs—=7)* 1
=FZZmaX{—5,—5 (88)

max {R.H, W}

IN
3N| N
18
gk
@] =

IN
3N| O
M8
@] =

!

lim — " %" max {RH, W} = 0. (89)

N

JIRSRSRS
_Z Z Zmax {P.F, Qs e}
neu=n t=s

(1) +5t> +4t -2
P38 +2694+13 47

IN
RSN
18
Mg
18
Tl =

IN
RSN
18
M8
=

I
!

(90)

which gives that

1 oo o0 0
lim — Z Z Zmax {PF,,Q,lg|} = 0. (91)
L { lyeri sy

That is, (38) and (39) hold. Thus Theorem 5 shows that
(86) possesses uncountably many positive solutions
in A(N, M). On the other hand, for any L € (N, (1/6)M),
there exist 0 € (0,1) and T > 1, + 7 + 8 such that the Mann
iterative sequence {x,,},,en, = {{xmn}neNﬂ}meNo generated
by (48) converges to a positive solution z = {zn}ngNﬁ €
A(N, M) of (86) with lim,,_, z, = +oco and has the error
estimate (20), where {e,,},,en, is an arbitrary sequence
n [0,1] satisfying (21).
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Example 5. Consider the third order nonlinear neutral delay
difference equation

1
A (xn + (g + nsin ;)xn_1>

(_l)n(n+1)/2
A
( (n+4)%m+5)° (1 +cos (n2x5,,,)) )
nsin (nx,_,)
2+ (m+5)*

(92)

(-1)" ' cos® (n2 + 1)
- n'® +1lnn » Vn23,

where 7 € N is fixed. Letny, = 3,k = 1,b = m/2, and
B =min{3 -7, 1}, and let M and N be two positive constants
with (1 -2/7)M > N and

b 1 (-1)"'cos? (112 + 1)
= — +nsin —, c, =
" n " n® +1nn
nsin (nu)
(n’ u) = —)
f 2+ (m+5)"*°

(_1)n(n+1)/2

h(n,u) = ,
10 (n+4)°*(n+5)° (1 + cos (n?u))
fin=n-2,  F,=(n-2)7
h, =2n+1, H,=(2n+1)%,
1 2
Pn:Qn:F, Rn:anﬁ’ V(n,u)eNnoxR.
(93)
Clearly, (14), (15), and (61) are satisfied. Note that
1 [ lNve]
LSS max (w11, )
1 O 22s+1)* 2

IN
Yl =
18
Mg
@ =
IN

| =
M8
a\l‘—‘
()

which means that

. 1
lim —
n— 00 p2

oo o0
Z Z max {R.H,, W,} =0,

u=ns=u
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(-1)"cos® (tz + 1)
t1o +1Int

;

IN
3~
L
NSE

U=n s=u t=g n U=nt=u

- 1o 1 0

< ; tﬁ — as n — 090,
t=n

(95)

which implies that

[Ce e

o1 <
nlLrIgO; z Z max {P,F,,Q,, ||} = 0. (96)

U=N S=U {=g

That is, (38) and (39) hold. Consequently Theorem 6 implies
that (92) possesses uncountably many positive solutions
in A(N, M). On the other hand, for any L € ((2/m)M +
N, M), there exist® € (0,1)andT > n, + 7 +
B such that the Mann iterative sequence {x,},cn, =
{{x,ml}ne,\,ﬁ}meNo generated by (58) converges to a positive
solution z = {zn}neNﬁ € A(N, M) of (92) with lim,, _, ..z, =
+00 and has the error estimate (20), where {a,,},,cn, is an
arbitrary sequence in [0, 1] satistying (21).

Example 6. Consider the third order nonlinear neutral delay
difference equation

A3 (x 2n° +9n° — 1
.

cos ((-1)"e")
—x,_
n+3n?+2 "7

(n+ 7)6 1+ |xn_2|

(2
sin (n xn_l)

n’ +3n° +2n* +1

B )"t v an? +n-1

nl +6m3 +7n+2

Vn > 6,

(97)
where 7 € Nis fixed. Letny = 6,k = 1,b = -2,and § =
min{6 — 7,3}, and let M and N be two positive constants
with (1/2)M > N and
20’ +9n -1

n+3m2+2°

) =

B )"t 4t -1

nl +6m3+7n+2
sin (nzu)

W +3m+2nt +1°

n

f (7’1, I/t) =
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cos ((=1)"e")

O
fn=n-1,  F,=@-1),
hy,=n-2, =(n-2),
P-Q- . mem- L

V(nu) eN, xR.
(98)

Obviously, (14), (15), and (64) are satisfied. Note that
1 o0 &0
1 QX (s—2)% 1

{R.H,, Wi}

IN
Nl’_'
D18
D18
.p"—'

IN
Nl'_'
D18
wl'_'

(e

(100)

D' 4t 41 (101)
613 +7t+2

IN
:N|,_.
Mg
Mg
Mg
.
Nl'_‘
M8
M8
R =

A
|
g
|
|
:
l
8

which implies that

1 (o]
dm,z )

That is, (38) and (39) hold. Consequently Theorem 7 implies
that (97) possesses uncountably many positive solutions
in A(N, M). On the other hand, for any L € (-M/2,-N),
there exist @ € (0,1)and T > my, + T + f such that
the Mann iterative sequence {x,,},,en, = {{Xum neNﬁ}meNU

(o)
Zmax PF,Qu|q|} =0

t=s

[\/]8

(102)

ns

1l
=

generated by (65) converges to a positive solution z =
{zn}neNB € A(N,M) of (97) with lim,,_, ..z, = +oo and
has the error estimate (20), where {,,},,cn, 18 an arbitrary
sequence in[0, 1] satisfying (21).
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