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We investigate the stochastic linear complementarity problem affinely affected by the uncertain parameters. Assuming that we have
only limited information about the uncertain parameters, such as the first two moments or the first two moments as well as the
support of the distribution, we formulate the stochastic linear complementarity problem as a distributionally robust optimization
reformation which minimizes the worst case of an expected complementarity measure with nonnegativity constraints and a
distributionally robust joint chance constraint representing that the probability of the linear mapping being nonnegative is not
less than a given probability level. Applying the cone dual theory and S-procedure, we show that the distributionally robust
counterpart of the uncertain complementarity problem can be conservatively approximated by the optimization with bilinear
matrix inequalities. Preliminary numerical results show that a solution of our method is desirable.

1. Introduction

The stochastic complementarity problem (SCP) is to find a
vector 𝑥 ∈ R𝑛 such that

𝑥 ≥ 0, 𝐹 (𝑥, 𝜉) ≥ 0, 𝑥
𝑇

𝐹 (𝑥, 𝜉) = 0, ∀𝜉 ∈ Ξ, (1)

where 𝐹 : R𝑛 × Ξ → R𝑛 is a vector valued function
affected by the uncertain data 𝜉 ∈ Ξ and the uncertainty
set (or support set when viewing 𝜉 as a random vector) Ξ ⊂

R𝑘. If Ξ is a singleton, then the problem (1) becomes the
deterministic complementarity problem, which has beenwell
studied during the past two decades, due to its wide range of
practical applications in engineering and economic science,
control theory, operations research, and game theory [1–4].

In the stochastic programming approach, the uncertain
data are assumed to be random, and the random data 𝜉 are
assumed to obey a known in advance probability distribution
for the simplest case or more generally the expected value
of 𝐹(𝑥, 𝜉) can be evaluated by the corresponding function
of the sample of the random data 𝜉. In this way, people
seek some deterministic and approximate reformulations
of the SCP (1). Among the literature of the SCP, there

are some typical deterministic reformulations, such as, the
expected value method, the expected residual minimization
method, stochastic mathematical program with equilibrium
constraints reformulation, and the CVaRminimization refor-
mulation (see [5–8] for details). Because the sample average
approximation method is utilized to solve the deterministic
reformulations of the SCP, the reformulations of the SCP are
depended on the sample of the randomdata 𝜉which itself has
the property of the randomness or uncertainty. In the robust
optimization approach, uncertain data 𝜉 is assumed to be in
some convex tractable sets which are called the uncertainty.
In order to establish reformulation immunizing against the
data uncertainty, [9] reformulates the SCP as a system of
robust inequalities, namely, 𝜌-approximation, as a relaxation
of the robust counterpart of the SCP.

Contrary to the approaches of the stochastic program-
ming and the classical robust optimization, the distribution-
ally robust optimization (see [10–13] for reference), which
aims to find the best solution of the worst-case of a problem
with uncertain data whose distribution is assumed to be in
a family of probability distributions, captures the decision
makers a moderate risk attitude (through the consideration
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of the partial information about the distribution of the
uncertain data but not the exact ranges of the uncertain
data) and an aversion towards uncertainty (through the
consideration of the worst probability distribution within a
known family of distributions with partial information). It
has been argued thatmost decisionmakers have low tolerance
towards uncertainty in the distribution [14, 15]. It is rational
to take decisions in view of the worst probability distribution
that is deemed possible under the existing information and
to obtain an out-of-sample model. In this paper, viewing
the uncertain data 𝜉 as a random vector and assuming that
only partial information about the distribution of 𝜉 is known,
we use the distributionally robust optimization approach to
reformulate the SCP (1) as the distributionally robust opti-
mization reformulation (DROR):

min sup
P∈P

EP [




𝑥 ∘ 𝐹(𝑥, 𝜉)






2

]

s.t. inf
P∈P

P [𝐹 (𝑥, 𝜉) ≥ 0] ≥ 1 − 𝜖,

𝑥 ≥ 0,

(2)

where 



𝑥 ∘ 𝐹(𝑥, 𝜉)






2 is a measure of the complementarity in
terms of the 2-norm and the risk factor 𝜖 ∈ (0, 1). The
distribution P is assumed to belong to a familyP of possible
distributions. We consider two cases of information about
P, the necessary information given first two moments, that
is, P = {P ∈ M+ : P(𝜉 ∈ Ξ) = 1, EP[𝜉] = 𝜇

0
,

and EP[𝜉𝜉
𝑇

] = Σ
0
+ 𝜇
0
𝜇
𝑇

0
, Σ
0

≻ 0} with M+ being the
cone of nonnegative Borel measures on R𝑘 and Ξ = R𝑘

and the additional information about support set Ξ, which is
assumed as one of the following convex sets: the box set, the
polyhedral set, ∩-ellipsoidal set, or the intersection of these
sets mentioned above:

Ξ
1
= {𝜉 : 𝑙

𝑏
≤ 𝜉 ≤ 𝑢

𝑏
, 𝑙
𝑏
, 𝑢
𝑏
∈ R
𝑘

, 𝑙
𝑏
≤ 𝑢
𝑏
}

Ξ
2
= {𝜉 : 𝐶

𝑝
𝜉 ≤ 𝑑
𝑝
, 𝐶
𝑝
∈ R
(𝑘+1)×𝑘

, 𝑑
𝑝
∈ R
𝑘+1

}

Ξ
3
= {𝜉 :






𝑆
1/2

𝑗
(𝜉 − 𝜇

𝑗

)





2

≤ 1, 𝑆
𝑗
⪰ 0, 𝜇

𝑗

∈ R
𝑘

, 𝑗 = 1, . . . , 𝑙}

Ξ
4
= Ξ
1
⋂Ξ
2
⋂Ξ
3
.

(3)

In rest of the paper, we assume that 𝐹
𝑖
(𝑥, 𝜉) relies affinely on

𝑥; that is,

𝐹
𝑖
(𝑥, 𝜉) =

𝑛

∑

𝑗=1

�̃�
𝑖𝑗
(𝜉)
𝑇

𝑥
𝑗
+ 𝑞
𝑖
(𝜉) , (4)

and that the coefficients �̃�
𝑖𝑗
(𝜉) and 𝑞

𝑖
(𝜉) are affinely affected

by the random parameters 𝜉; that is,

�̃�
𝑖𝑗
(𝜉) = 𝑚

0

𝑖𝑗
+

𝑘

∑

𝑙=1

𝑚
𝑙

𝑖𝑗
𝜉
𝑙

, 𝑞
𝑖
(𝜉) = 𝑞

0

𝑖
+

𝑘

∑

𝑙=1

𝑞
𝑙

𝑖
𝜉
𝑙

, (5)

where𝑚0
𝑖𝑗
, 𝑚
𝑙

𝑖𝑗
, 𝑞
0

𝑖
, 𝑞
𝑙

𝑖
, ∈ R are scalars.

Themotivation of this reformulation comes from the idea
that all reformulations for the SCP endeavor to make a trade-
off between the feasibility and complementarity when both
sides cannot be satisfied simultaneously. We minimize the
worst case of the complementarity measure with imposing
the worst case joint chance constraint, which describes that
the complementarity is satisfied with a given probability not
less than 1 − 𝜖. It is worth mentioning that the DROR (2)
contains two semi-infinite programs in the variable of the
probability measure P. So, the major difficulty to solve (2)
lies in how to transform it into a tractable problem. By
investigating the dual of the inner problem in the objective
and the structure of the feasible set of the worst case joint
chance constraint, we will illustrate that the DROR can
be conservatively approximated as the optimization with
bilinear matrix inequalities (BMIs).

The rest of the paper is organized as follows. In Sections 2
and 3,we study the conservative approximations of theDROR
without andwith the information of the support, respectively.
Numerical results on a simple stochastic complementarity
problem using the DROR are reported in Section 4.

Notation. Denote the covariance matrix 𝐶 = (
Σ0+𝜇0𝜇

𝑇

0
𝜇0

𝜇
𝑇

0
1

),

and rewrite 𝐹
𝑖
(𝑥, 𝜉) = (𝜉

𝑇

1)𝐴
𝑖
(𝑥) (
𝜉

1
), where 𝐴

𝑖
(𝑥) :=

(

0𝑘×𝑘 (1/2)𝑎𝑖(𝑥)

(1/2)𝑎
𝑇

𝑖
(𝑥) 𝑎

0

𝑖
(𝑥)

) is affine in 𝑥 with

𝑎
0

𝑖
(𝑥) =

𝑛

∑

𝑗=1

𝑚
0

𝑖𝑗
𝑥
𝑗
+ 𝑞
0

𝑖
∈ R,

𝑎
𝑖
(𝑥) =

𝑛

∑

𝑗=1

𝑥
𝑗
(𝑚
1

𝑖𝑗
⋅ ⋅ ⋅ 𝑚

𝑘

𝑖𝑗
)

𝑇

+ (𝑞
1

𝑖
⋅ ⋅ ⋅ 𝑞
𝑘

𝑖
)

𝑇

∈ R
𝑘

.

(6)

Let Π
𝑚
(𝑢) denote the linear mapping of 𝑢 determined by the

support Ξ
𝑚

(𝑚 = 1, 2, 3, 4):

Π
1
(𝑢) := (

0

1

2

(𝑢 − 𝑢)

1

2

(𝑢 − 𝑢)
𝑇

𝑢
𝑇

𝑙
𝑏
− 𝑢
𝑇

𝑢
𝑏

),

Π
2
(𝑢) := (

0

1

2

𝐶
𝑇

𝑝
𝑢

1

2

𝑢
𝑇

𝐶
𝑝

−𝑢
𝑇

𝑑
𝑝

),

Π
3
(𝑢) :=

𝑙

∑

𝑗=1

𝑢
𝑗
(

𝑆
−1

𝑗
𝑆
−1

𝑗
𝜇
𝑗

𝑆
−1

𝑗
𝜇
𝑗
𝑇

𝜇
𝑗
𝑇

𝑆
−1

𝑗
𝜇
𝑗

− 1

) ,

Π
4
(𝑢) :=

3

∑

𝑚=1

Π
𝑚
(𝑢
𝑚

) ,

(7)

with𝑢 = (𝑢, 𝑢) ∈ R2𝑘,𝑢 ∈ R𝑘+1,𝑢 ∈ R𝑙, and𝑢 = (𝑢
1

, 𝑢
2

, 𝑢
3

) ∈

R3𝑘+1+𝑙, respectively.
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2. The Conservative Approximation for the
DROR without the Support Information

In this section, we assume that we have no information about
the support. Noticing that the objective function and the
constraints contain two semi-infinite programs with variable
P, we first reformulate the inner moment problem in its dual
form and then use the fact that min-min operations can
be performed jointly to approximate the DROR (2) as the
optimization with BMIs.

First of all, we investigate these semi-infinite programs for
every fixed decision variable 𝑥 by the cone dual theory and
the S-procedure. We show that DROR can be approximated
conservatively by optimization with BMIs. First, we recall the
S-procedure, which is the generalization of the well-known
S-lemma [16], which plays a crucial role in the proof of the
following the paper.

Lemma 1 (S-procedure). Let 𝐹
𝑖
(𝑥) = 𝑥

𝑇

𝐴
𝑖
𝑥 + 2𝑏

𝑇

𝑖
𝑥 + 𝑐
𝑖
, 𝑖 =

0, 1, . . . , 𝑝 be quadratic functions of 𝑥 ∈ R𝑛. Then

𝐹
𝑖
(𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑝 ⇒ 𝐹

0
(𝑥) ≥ 0 (8)

if there exist 𝜆
𝑖
≥ 0 such that

(

𝐴
0

𝑏
0

𝑏
𝑇

0
𝑐
0

) −

𝑝

∑

𝑖=1

𝜆
𝑖
(

𝐴
𝑖

𝑏
𝑖

𝑏
𝑇

𝑖
𝑐
𝑖

) ⪰ 0. (9)

If 𝑝 = 1, converse also holds as long as ∃𝑥
0
𝑠.𝑡. 𝐹
1
(𝑥
0
) > 0.

Another useful lemma is a result derived by the cone
duality theory (see [17]).

Lemma 2. Let 𝜙(𝑥, 𝜉) be the nonlinear mapping in 𝑥 and 𝜉.
Then for each fixed 𝑥 ∈ R𝑛, supP∈PEP[𝜙(𝑥, 𝜉)] is equivalent
to the following semi-infinite programming:

min 𝐶 ⋅ 𝑌

s.t. (𝜉
𝑇

1) 𝑌 (𝜉
𝑇

1)

𝑇

≥ 𝜙 (𝑥, 𝜉) , ∀𝜉 ∈ Ξ,

𝑌 ∈ S
𝑘+1

,

(10)

where 𝐶 ⋅ 𝑌 represents the trace of the matrix 𝐶𝑌.

Remark 3. We mention that the problem supP∈PEP[𝜙(𝑥, 𝜉)]

is a moment problem and the strong duality condition holds
due to Σ

0
≻ 0 in Lemma 2. See Lemma 1 in [12] and also

Lemma A.1 in [13] for similar results.

2.1. The Equivalent Expression of the Worst Case of the
Objective. Now we study the inner problem

sup
P∈P

EP [




𝑥 ∘ 𝐹(𝑥, 𝜉)






2

] (11)

in the objective of the DROR without the support informa-
tion.

Lemma 4. Suppose that 𝐹
𝑖
(𝑥, 𝜉) is affine in 𝑥 and is affinely

affected by 𝜉 which is supported on Ξ = R𝑘. Then, for each

fixed 𝑥 ∈ R𝑛, the problem (11) is equivalent to an optimization
with a linear matrix inequality:

inf 𝐶 ⋅ 𝑌
V

s.t. (

𝑌
V

𝑎
1
(𝑥) ⋅ ⋅ ⋅ 𝑎

𝑛
(𝑥)

𝑎
𝑇

1
(𝑥) 1

.

.

. d
𝑎
𝑇

𝑛
(𝑥) 1

) ⪰ 0,

𝑌
V
∈ S
𝑘+1

,

(12)

where 𝑎
𝑖
(𝑥) := (𝑥

𝑖
𝑎
𝑇

𝑖
(𝑥) 𝑥

𝑖
𝑎
0

𝑖
(𝑥))

𝑇

(𝑖 = 1, . . . , 𝑛) is quadratic
in 𝑥.

Proof. Due to Σ
0

≻ 0 and Lemma 2, the problem (11) is
equivalent to its dual problem:

inf
𝑌
V

𝐶 ⋅ 𝑌
V

s.t. (𝜉
𝑇

1) 𝑌
V
(𝜉
𝑇

1)

𝑇

≥




𝑥 ∘ 𝐹(𝑥, 𝜉)






2

, ∀𝜉 ∈ Ξ,

𝑌
V
∈ S
𝑘+1

.

(13)

Notice that 𝐹
𝑖
(𝑥, 𝜉) = 𝑎

𝑇

𝑖
(𝑥)𝜉 + 𝑎

0

𝑖
(𝑥); then, the semi-infinite

inequality constraint above can be equivalently written as

(𝜉
𝑇

1)𝑌
V
(𝜉
𝑇

1)

𝑇

≥

𝑛

∑

𝑖=1

[𝑥
𝑖
(𝑎
𝑇

𝑖
(𝑥)𝜉 + 𝑎

0

𝑖
(𝑥))]

2

, ∀𝜉 ∈ Ξ,

(14)

which can be also written as

𝑌
V
−

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥) 𝑎
𝑇

𝑖
(𝑥) ⪰ 0. (15)

Then using the Schur Complement lemma, we can show that
it is equivalent to the constraint in the problem (12), which
completes the proof.

2.2. The Conservative Approximation of the Distributionally
Robust Joint Chance Constraint. Denote X𝑐 = {𝑥 ∈ R𝑛:
infP∈PP[𝐹(𝑥, 𝜉) ≥ 0] ≥ 1− 𝜖} as the feasible set of the chance
constraint in (2). Now we describe the structure of X𝑐 by a
conservative approximation when we have no information
about the support Ξ. Since the chance constraint in (2) is a
distributionally robust joint chance constraint, it is difficult
to describe the structure of its feasible set X𝑐 exactly. We
establish a conservative approximation in terms of a system
of BMIs for the distributionally robust joint chance constraint
when 𝐹

𝑖
(𝑥, 𝜉) is affinely depended on 𝜉. To this end, we

introduce a setX𝑐
0
:

X
𝑐

0
= {𝑥 ∈ R

𝑛

: inf
P∈P

P [𝐹 (𝑥, 𝜉) > 0] ≥ 1 − 𝜖} . (16)

Employing Lemmas 1 and 2, we show that the structure ofX𝑐
0

can be equivalently described by a system of BMIs, as stated
as Lemma 5.
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Lemma 5. Suppose that 𝐹
𝑖
(𝑥, 𝜉) is affine in 𝑥 and is affinely

affected by 𝜉 which is supported on Ξ = R𝑘, and suppose that
there exists some 𝜉with𝐹

𝑖
(𝑥, 𝜉) < 0 (𝑖 = 1, . . . , 𝑛) for each fixed

𝑥. Then X𝑐
0
⊆ X𝑐 and X𝑐

0
can be equivalently expressed as a

system of BMIs:

X
𝑐

0
= {𝑥 ∈ R

𝑛

: ∃𝑌
𝑐

∈ S
𝑘+1

, 𝑧 ∈ R
𝑛

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐶 ⋅ 𝑌
𝑐

≤ 𝜖, 𝑧 > 0, 𝑌
𝑐

⪰ 0,

𝑌
𝑐

+ 𝑧
𝑖
𝐴
𝑖
(𝑥) − 𝐶

0
⪰ 0, 𝑖 = 1, . . . , 𝑛} ,

(17)

with the constant matrix 𝐶
0
= (
0𝑘×𝑘 0𝑘×1

01×𝑘 1
).

Proof. Since

inf
P∈P

P [𝐹 (𝑥, 𝜉) ≥ 0] ≥ 1 − 𝜖 ⇐⇒ sup
P∈P

P [𝐹 (𝑥, 𝜉) < 0] ≤ 𝜖,

(18)

it is clear that X𝑐
0

⊆ X𝑐. So it suffices to show that X𝑐
0

can be expressed as (17) equivalently. 𝑥 ∈ X𝑐
0
implies

that supP∈PP[min
1≤𝑖≤𝑛

𝐹
𝑖
(𝑥, 𝜉) ≤ 0] ≤ 𝜖, which can be

reexpressed as

sup
PP∈P

E [1
{min1≤𝑖≤𝑛𝐹𝑖(𝑥,𝜉)≤0}] ≤ 𝜖. (19)

Then using Lemma 2, we can show that 𝑥 ∈ X𝑐
0
means that 𝑥

satisfies

𝜖 ≥ inf 𝐶 ⋅ 𝑌
𝑐

s.t. (𝜉
𝑇

1)𝑌
𝑐

(

𝜉

1
) ≥ 1

{min𝑖𝐹𝑖(𝑥,𝜉)≤0}, ∀𝜉 ∈ Ξ,

𝑌
𝑐

∈ S
𝑘+1

.

(20)

Note that the semi-infinite constraint above is equivalent to

(𝜉
𝑇

1)𝑌
𝑐

(

𝜉

1
) ≥ 0, ∀𝜉 ∈ Ξ, (21)

(𝜉
𝑇

1)𝑌
𝑐

(

𝜉

1
) ≥ 1, ∀𝜉 ∈ {𝜉 : min

𝑖

𝐹
𝑖
(𝑥, 𝜉) ≤ 0}⋂Ξ.

(22)

The constraint (22) can be expressed as

{(𝜉
𝑇

1)𝑌
𝑐

(

𝜉

1
) ≥ 1, ∀𝜉 ∈ {𝜉 : 𝐹

𝑖
(𝑥, 𝜉) ≤ 0}⋂Ξ} ,

∀𝑖 = 1, . . . , 𝑛.

(23)

Since Ξ = R𝑘, the above implications can be reexpressed as
the following implications:

{(𝜉
𝑇

1)𝐴
𝑖
(𝑥) (

𝜉

1
) ≤ 0 ⇒ (𝜉

𝑇

1) 𝑌
𝑐

(

𝜉

1
) ≥ 1} ,

∀𝑖 = 1, . . . , 𝑛.

(24)

Notice that 𝐴
𝑖
(𝑥) is affine in 𝑥 and 𝑌

𝑐

⪰ 0 by (21); then, by
Lemma 1 and the assumptions of this lemma, we have that the
implications above are equivalent to

∃𝑧 ∈ R
𝑛

, such that 𝑧
𝑖
≥ 0, 𝑌

𝑐

+ 𝑧
𝑖
𝐴
𝑖
(𝑥) − 𝐶

0
⪰ 0,

𝑖 = 1, . . . , 𝑛.

(25)

So, we have

X
𝑐

0
= {𝑥 ∈ R

𝑘

: ∃𝑌
𝑐

∈ S
𝑘+1

, 𝑧 ∈ R
𝑛 such that

𝐶 ⋅ 𝑌
𝑐

≤ 𝜖, 𝑧 ≥ 0, 𝑌
𝑐

⪰ 0,

𝑌
𝑐

+ 𝑧
𝑖
𝐴
𝑖
(𝑥) − 𝐶

0
⪰ 0, 𝑖 = 1, . . . , 𝑛} .

(26)

To complete the proof, it is sufficient to show that 𝑧 = 0 is
impossible in (26). Otherwise, if there exists some 𝑧

𝑖
= 0 in

(25), by taking trace operator to the both sides of the BMIs
abovemultiplied by𝐶, we obtain𝐶⋅𝑌

𝑐

≥ 1, which contradicts
𝐶 ⋅ 𝑌
𝑐

≤ 𝜖.

2.3. The Conservative Approximation for the DROR. Accord-
ing to Lemma 4, the DROR (2) can be expressed equivalently
as

min 𝐶 ⋅ 𝑌
V

s.t. (

𝑌
V

𝑎
1
(𝑥) ⋅ ⋅ ⋅ 𝑎

𝑛
(𝑥)

𝑎
𝑇

1
(𝑥) 1

.

.

. d
𝑎
𝑇

𝑛
(𝑥) 1

) ⪰ 0,

𝑥 ≥ 0, 𝑥 ∈ X
𝑐

, 𝑌
V
∈ S
𝑘+1

.

(27)

Notice that the set X𝑐
0
is inside the feasible set X𝑐 as stated

in Lemma 5. So by replacingX𝑐 byX𝑐
0
in the problem above,

we can obtain a problem with an optimal value not less than
that of (2).Thus, putting Lemmas 4 and 5 together, we obtain
conservative approximation of the DROR (2) in terms of the
optimization with BMIs, as stated inTheorem 6.

Theorem 6. Suppose that 𝐹
𝑖
(𝑥, 𝜉) is affine in 𝑥 and is also

affine with respect to 𝜉 which is supported on Ξ = R𝑘, and
suppose that there exists some 𝜉 with 𝐹

𝑖
(𝑥, 𝜉) < 0 (𝑖 = 1, . . . , 𝑛)

for each fixed 𝑥. Then the DROR (2) can be conservatively
expressed as

min 𝐶 ⋅ 𝑌
V

s.t. 𝑥 ≥ 0, 𝑧 > 0, 𝐶 ⋅ 𝑌
𝑐

≤ 𝜖, 𝑌
𝑐

⪰ 0,

𝑌
𝑐

+ 𝑧
𝑖
𝐴
𝑖
(𝑥) − 𝐶

0
⪰ 0, 𝑖 = 1, . . . , 𝑛,

(

𝑌
V

𝑎
1
(𝑥) ⋅ ⋅ ⋅ 𝑎

𝑛
(𝑥)

𝑎
𝑇

1
(𝑥) 1

.

.

. d
𝑎
𝑇

𝑛
(𝑥) 1

) ⪰ 0,

𝑥 ∈ R
𝑛

, 𝑧 ∈ R
𝑛

, 𝑌
𝑐

∈ S
𝑘+1

, 𝑌
V
∈ S
𝑘+1

.

(28)
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3. The Conservative Approximation for the
DROR with the Support Information

When the information about the support Ξ is also known,
we use the similar argument of the proof in Theorem 6 to
establish a more conservative approximation. It is worth
mentioning that there is a slight difference between the proof
inTheorem 6 and that inTheorem 7.The proof ofTheorem 6
uses the equivalent form of the S-procedure, but the proof of
Theorem 7 uses the implication form of the S-procedure, due
to their different assumptions on the support.

Theorem 7. Suppose that 𝐹
𝑖
(𝑥, 𝜉) is affine in 𝑥 and is also

affine with respect to uncertain data 𝜉 which is supported on
Ξ = Ξ

𝑚
(𝑚 = 1, 2, 3, 4), respectively. Then the DROR (2) can be

conservatively expressed as

min 𝐶 ⋅ 𝑌
V

s.t. 𝑥 ≥ 0, 𝑧 > 0, 𝑢
𝑐0

≥ 0, 𝑢
V
≥ 0, 𝑢

𝑐𝑖
≥ 0,

𝑖 = 1, . . . , 𝑛,

𝐶 ⋅ 𝑌
𝑐

≤ 𝜖, 𝑌
𝑐

+ Π
𝑚
(𝑢
𝑐0
) ⪰ 0,

𝑌
𝑐

+ z
𝑖
𝐻
𝑖
(𝑥) + Π

𝑚
(𝑢
𝑐𝑖
) − 𝐶
0
⪰ 0, 𝑖 = 1, . . . , 𝑛,

(

𝑌
V
− Π
𝑚
(𝑢

V
) ℎ
1
(𝑥) ⋅ ⋅ ⋅ ℎ

𝑛
(𝑥)

ℎ
𝑇

1
(𝑥) 1

.

.

. d
ℎ
𝑇

𝑛
(𝑥) 1

) ⪰ 0,

𝑥, 𝑧 ∈ R
𝑛

, 𝑢
𝑐0
, 𝑢

V
, 𝑢
𝑐𝑖
∈ R
𝐽𝑚
, 𝑌
𝑐

, 𝑌
V
∈ S
𝑘+1

,

𝑖 = 1, . . . , 𝑛,

(29)

where 𝐽
1
= 2𝑘, 𝐽

2
= 𝑘+1, 𝐽

3
= 𝑙, and 𝐽

4
= 3𝑘+1+𝑙, respectively.

The proof for each Ξ
𝑚
, 𝑚 = 1, 2, 3, 4 is similar to that of

Lemmas 4 and 5, and we omit it here.

4. Numerical Experiments

In this section, we give preliminary numerical results with an
example of a linear complementarity problem with a random
parameter from [8] for the proposed method.

Example 1. Suppose that we have no information about the
support Ξ and

𝐹 (𝑥, 𝜉) := (

𝑥
1
− 𝜉𝑥
2
+ 3 − 2𝜉

−𝜉𝑥
1
+ 2𝑥
2
+ 𝜉𝑥
3
− 2 − 𝜉

𝜉𝑥
2
+ 3𝑥
3
− 3 − 𝜉

) , (30)

where 𝜉 is the randomparameter withmean 𝜇 and covariance
𝜎
2.This is a stochastic linear complementarity problemwhich

has a unique solution 𝑥
∗

= (0, 1, 1)
𝑇 when 𝜉 ∈ [0, 1].

We solve the problem by DROR employing the PENLAB
solver (see [18]) for nonlinear semidefinite programs with

different settings of 𝜇 and 𝜎
2: case 1 for 𝜇 = 0.5 and 𝜎

2=
1/12 and case 2 for 𝜇 = 0 and 𝜎

2

= 1. We run the codes
for each case with 𝜖 = 0.1, 0.2, 0.3 (denoted by DROR

0.1
,

DROR
0.2
, and DROR

0.3
), respectively. To compare the prop-

erty of the DROR with the classical reformulation for the
stochastic complementarity problem, we also run the ERM
method employing theMatLab solver Fminconwith different
samples which follow these specific distributions, respec-
tively: (𝑎) 𝜉 ∼ 𝑈(0, 1), (𝑏) 𝜉 ∼ 𝑁(0.5, 1/12), (𝑐) 𝜉 ∼

𝑈(−√3,√3), (𝑑) 𝜉 ∼ 𝑁(0, 1) (denoted by ERM
𝑎
, ERM

𝑏
,

ERM
𝑐
, and ERM

𝑑
), respectively. The initial value for each

run (ERM
𝑎
, ERM

𝑏
, ERM

𝑐
, ERM

𝑑
, and DROR

0.1
, DROR

0.2
,

and DROR
0.3

for both cases) is set to be rand of appropriate
dimensions and we evaluate these solutions for uniform
samples and normal samples with given moments according
to each case, respectively, using the indices compl, feas, and
pr. The index compl measures the complementarity and the
indices feas and pr measure the nonnegativity, which are
defined as compl(𝑥) = (1/𝑁)∑

𝑁

𝑙=1
𝑥
𝑇

(𝐹(𝑥, 𝜉
𝑙

))
+
, feas(𝑥) =

(1/𝑁)∑
𝑁

𝑙=1






(−𝐹(𝑥, 𝜉

𝑙

))
+






, and pr(𝑥) = ∏

𝑛

𝑖=1
P{𝜉 : 𝐹

𝑖
(𝑥, 𝜉) ≥

0}. We list the comparison results in Table 1.
From Table 1, we see that both the DROR and the ERM

methods can obtain an approximate solution when the SCP
has a common solution for all 𝜉, as shown in case 1. When the
SCP has no common solution for all 𝜉, the DROR can obtain
a solution to guarantee 𝐹(𝑥, 𝜉) ≥ 0 with a higher probability
and also with a lower feas, but the ERM method prefers a
solution with a lower compl, as shown in case 2. Moreover,
the quality of the solution by the DROR is independent of
the specific distribution but relies on the first two moments
only. However, the quality of the solution by the ERMmethod
relies on the specific distribution seriously, as shown by the
data with ERM

𝑎
and ERM

𝑏
.
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