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An effcient method is presented to calculate the ground range of a ballistic missile trajectory on a nonrotating Earth. The spherical
Earth model does not provide good approximation of distance between two locations on the surface of Earth. We used oblate
spheroid Earth model because it provides better approximations. The effective ground range of a ballistic missile is an arc-length
of a planner elliptic (or circle) curve which passes through the launch and target points on the surface of Earth model. A general
formulation is presented to calculate the arc-length of an elliptic (or circle) curve which is the intersection of oblate Earth model
and a plane. Explicit formulas are developed to calculate the coordinates of center of the ellipse as well as major and minor axes
which are necessary ingredients for the calculation of effective ground range.

1. Introduction

Wedeveloped amethod to calculate the distance between two
points constrained to lie on the surface of the oblate spheroid.
We assume the definition of distance between launch and
target points (the launch and target points are just two given
arbitrary points) to be the length of the curve resulting from
the intersection of the given oblate spheroid with a plane
which passes through the launch point and the target point.
There are infinite numbers of planes which pass through the
launch and target points, for example, (1) the plane which
passes through the normal at launch point (trajectory plane)
and (2) the planewhich passes through the geometrical center
of the oblate spheroid (geocentric plane). All these planes
can be obtained from a single plane by rotating it about
the line joining the launch and target points. Therefore, we
take a general plane which passes through the two given
points on the oblate spheroid. We see that the trace of the
oblate spheroid in the general plane is an ellipse. We find the
semimajor axis, semiminor axis, and center of the ellipse. We
also find the unit vector along the major axis of the ellipse.
By calculating the position vectors of the launch and target

point with respect to the center of the ellipse, we calculate the
angleswhich these vectorsmakewithmajor axis of the ellipse.
Finally, we find the smaller arc length of the ellipse between
these two angles which is the surface range between the given
two points.

Many researchers have investigated numerical methods
related to ballistic missiles and satellite launch vehicles. In
[1], the authors discussed computation of the different errors
in the ballistic missiles range. Estimation and prediction of
ballistic missiles are discussed in [2]. Some recent research
work about ballistic missiles and satellite launch vehicles can
be found in [3–18]. Escobal [19] and Nguyen and Dixson
[20] have formulated the problem to calculate range of a
ballistic missile over the none-rotating oblate spheroid Earth
model. Both authors define the elliptic curve over the surface
of oblate Earth model by the intersection of a plane which
passes through the launch, target points, and center of the
oblate spheroid. Clearly in this case, the center of the ellipse (if
the cutting plane is parallel to equatorial plane then resulting
intersecting curve is a circle.) is the center of oblate spheroid.
Once they know the center, it is easy to use rotational
transformation matrix to calculate the orientation of major
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and minor axis. But in reality, the trajectory plane of ballistic
missile passes through the normal vector at launch (or target)
point to the surface of Earth model and the target point (or
launch point). It is not necessarily true that trajectory plane
passes through the center of oblate spheroid. It means, we
require a general formulation of the problem to calculate the
elements of general intersecting ellipse. Figure 1 shows two
intersecting ellipses passing through launch and target points.

2. Trace of the Oblate Spheroid in the Plane

General equation of a plane is given by

𝑛
1
𝑥 + 𝑛
2
𝑦 + 𝑛
3
𝑧 = 𝑑, (1)

where ⃗𝑛 = [𝑛
1
, 𝑛
2
, 𝑛
3
] is a vector normal to the plane and 𝑑 is

the distance of the plane from the origin of coordinates. The
equation of the oblate spheroid can be written as

𝑥
2
+ 𝑦
2

𝑎
2

+

𝑧
2

𝑏
2
= 1, (2)

where 𝑎 is the semimajor axis and 𝑏 is the semiminor axis of
the oblate spheroid.The trace of the oblate spheroid (2) in the
plane (1) is calculated as follows. In (1), for 𝑛

3
̸= 0 we have

𝑧 =

𝑑 − 𝑛
1
𝑥 − 𝑛
2
𝑦

𝑛
3

. (3)

If 𝑛
3
= 0, then ⃗𝑛 is parallel to the equatorial plane, that is, 𝑛 ⊥

polar axis (0, 0, 1). Substituting this value of 𝑧 in (2)
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(4)
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𝑦 − 𝑎
2
𝑏
2
𝑛
2

3
+ 𝑎
2
𝑑
2
= 0,

(5)

which is the equation of a conic. We know that a general
equation of a conic is

𝑎𝑥
2
+ 𝑏𝑦
2
+ 2𝑔𝑥 + 2𝑓𝑦 + 2ℎ𝑥𝑦 + 𝑐 = 0. (6)

This equation represents an ellipse or a circle if its discrimi-
nant ℎ2 − 𝑎𝑏 < 0. The discriminant of (5) is
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(7)

which is always less than zero. Hence, (5) represents an ellipse
or a circle. Thus, we see that the trace of the oblate spheroid
(given by (2)) in the plane (given by (1)) is an ellipse.

3. Center of the Ellipse

Let ⃗𝑠 = [𝑠
1
, 𝑠
2
, 𝑠
3
] be the position vector of the center of the

ellipse. If 𝑃
1
( ⃗𝑟
1
) is any point on the ellipse, then ⃗𝑟

1
can be

parametrized as

⃗𝑟
1
= ⃗𝑠 + 𝜇𝑒,

⃗𝑟
1
= [𝑠
1
+ 𝜇𝑒
1
+ 𝑠
2
+ 𝜇𝑒
2
, 𝑠
3
+ 𝜇𝑒
3
] ,

(8)

where ⃗𝑒 = [𝑒
1
, 𝑒
2
, 𝑒
3
]. Since point 𝑃

1
also lies on the oblate

spheroid, it must satisfy (2)

(𝑠
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+ 𝜇𝑒
1
)
2

+ (𝑠
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+ 𝜇𝑒
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)
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𝑎
2

+

(𝑠
3
+ 𝜇𝑒
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)
2

𝑏
2

= 1,

𝑏
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+ 𝑠
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+ 𝜇
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𝑠
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+ 𝑒
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2
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+ 𝑎
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(𝑠
2

3
+ 𝜇
2
𝑒
2

3
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3
𝑒
3
) = 𝑎
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𝑏
2
,

(9)
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+ 𝑒
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2
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2
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+ 𝑏
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+ 𝑠
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2
) + 𝑎
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𝑠
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3
− 𝑎
2
𝑏
2
= 0.

(10)

Equation (10) is quadratic in 𝜇. If 𝑃
1
( ⃗𝑟
1
) is any point on the

ellipse, then there must be another point 𝑃
1
(V⃗
1
) on the ellipse

such that

V⃗
1
= ⃗𝑠 − 𝜇𝑒. (11)

Thus, (10) should give us two values of 𝜇, both having the
samemagnitude but opposite in sign. Itmeans that coefficient
of 𝜇 in (10) should be zero:

𝑏
2
(𝑒
1
𝑠
1
+ 𝑒
2
𝑠
2
) = −𝑎

2
𝑒
3
𝑠
3
. (12)

Let 𝑃
2
( ⃗𝑟
2
) be another point on the ellipse such that

⃗𝑟
2
= ⃗𝑠 + 𝜂𝑞 (13)

and 𝑞 is perpendicular to 𝑒. Doing the same steps as done for
(12), we have

𝑏
2
(𝑞
1
𝑠
1
+ 𝑞
2
𝑠
2
) = −𝑎

2
𝑞
3
𝑠
3
. (14)

Dividing (14) by (12), we have

𝑞
1
𝑠
1
+ 𝑞
2
𝑠
2

𝑒
1
𝑠
1
+ 𝑒
2
𝑠
2

=

𝑞
3

𝑒
3

, (15)

which can be written as

𝑠
1
(𝑒
3
𝑞
1
− 𝑞
3
𝑒
1
) = 𝑠
2
(𝑒
2
𝑞
3
− 𝑒
3
𝑞
2
) . (16)

Since 𝑞 and 𝑒 lay in the plane of the ellipse, therefore we can
write

𝑛 = 𝑒 × 𝑞,

𝑛
1
= 𝑒
2
𝑞
3
− 𝑒
3
𝑞
2
,

𝑛
2
= 𝑒
3
𝑞
1
− 𝑞
3
𝑒
1
,

𝑛
3
= 𝑒
1
𝑞
2
− 𝑒
2
𝑞
1
.

(17)
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Figure 1: Ellipses pass through the target and launch points.

Using these relations, (16) can be written as

𝑠
1
𝑛
2
= 𝑠
2
𝑛
1
,

𝑠
1

𝑛
1

=

𝑠
2

𝑛
2

= 𝑘,

(18)

𝑠
1
= 𝑛
1
𝑘,

𝑠
2
= 𝑛
2
𝑘.

(19)

Using (19) in (12), we have

𝑏
2
(𝑒
1
𝑛
1
+ 𝑒
2
𝑛
2
) 𝑘 = −𝑎

2
𝑒
3
𝑠
3
. (20)

Since 𝑛 is perpendicular to 𝑒, therefore

𝑛 ⋅ 𝑒 = 0,

𝑛
1
𝑒
1
+ 𝑛
2
𝑒
2
= −𝑛
3
𝑒
3
.

(21)

Using the above equation in (20), we have

𝑠
3
=

𝑏
2

𝑎
2
𝑛
3
𝑘. (22)

Since center of the ellipse ⃗𝑠 = [𝑠
1⃗
, 𝑠
2
, 𝑠
3
] lies in the plane given

by (1), therefore it should satisfy (1); that is,

𝑛
1
𝑠
1
+ 𝑛
2
𝑠
2
+ 𝑛
3
𝑠
3
= 𝑑. (23)

Using (19) and (22), the above equation becomes

𝑛
1
(𝑛
1
𝑘) + 𝑛

2
(𝑛
2
𝑘) + 𝑛

3
(

𝑏
2

𝑎
2
𝑛
3
𝑘) = 𝑑,

𝑘 =

𝑑

𝑛
2

1
+ 𝑛
2

2
+ 𝑛
2

3
(𝑏
2
/𝑎
2
)

,

(24)

since 𝑛 is a unit vector. Therefore

𝑛
2

1
+ 𝑛
2

2
+ 𝑛
2

3
= 1. (25)

Using this equation in the above equation for 𝑘

𝑘 =

𝑑

1 − (1 − 𝑏
2
/𝑎
2
) 𝑛
2

3

, (26)

where𝐸 is the eccentricity of the oblate spheroid. Substituting
the value of 𝑘 in (19) and (26), the center of the ellipse is given
by

⃗𝑠 = [𝑠
1
, 𝑠
2
, 𝑠
3
]

= [

𝑛
1
𝑑

1 − 𝐸
2
𝑛
2

3

,

𝑛
2
𝑑

1 − 𝐸
2
𝑛
2

3

,

(𝑏
2
/𝑎
2
) 𝑛
3
𝑑

1 − 𝐸
2
𝑛
2

3

] .

(27)

Special Case. If the plane given by (1) passes through the
center of the oblate spheroid, then

𝑑 = 0 (28)

and ⃗𝑠 = [0, 0, 0]; that is, the center of the oblate spheroid will
also be the center of the ellipse.

Semimajor Axis of the Ellipse. To find the semimajor axis
of the ellipse, we take an arbitrary point 𝑃( ⃗𝑟) on the ellipse
whose position vector ⃗𝑟 can be parameterized as

⃗𝑟 = ⃗𝑠 + 𝜇𝑒, (29)
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where 𝑒 is the unit vector; this implies that

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
= 1,

⃗𝑟 = [𝑠
1
+ 𝜇𝑒
1
, 𝑠
2
+ 𝜇𝑒
2
, 𝑠
3
+ 𝜇𝑒
3
] .

(30)

Since point 𝑃( ⃗𝑟) also lies on the oblate spheroid, therefore it
must satisfy (2):

[(𝑏
2
(𝑒
2

1
+ 𝑒
2

2
) + 𝑎
2
𝑒
2

3
)] 𝜇
2
+ 2 [(𝑏

2
(𝑒
1
𝑠
1
+ 𝑒
2
𝑠
2
) + 𝑎
2
𝑒
3
𝑠
3
)] 𝜇

+ 𝑏
2
(𝑠
2

1
+ 𝑠
2

2
) + 𝑎
2
𝑠
2

3
− 𝑎
2
𝑏
2
= 0.

(31)

The roots of this equation (value of 𝜇) will have the same
magnitude but opposite in sign; therefore, the coefficient of
𝜇 is zero. Thus, the above equation becomes

[𝑏
2
+ (𝑎
2
− 𝑏
2
) 𝑒
2

3
] 𝜇
2
+ 𝑏
2
(𝑠
2

1
+ 𝑠
2

2
) + 𝑎
2
𝑠
2

3
− 𝑎
2
𝑏
2

= 0.

(32)

For particular, 𝑛, 𝜇 will be maximum and value of 𝜇 will be
semimajor axis of an ellipse. To find the maximum value of
𝜇 with respect to 𝑒

3
, we differentiate above equation with

respect to 𝑒
3

2 [𝑏
2
+ (𝑎
2
− 𝑏
2
) 𝑒
2

3
] 𝜇

𝑑𝜇

𝑑𝑒
3

+ 2𝑒
3
(𝑎
2
− 𝑏
2
) 𝜇
2
= 0 (33)

and set

𝑑𝜇

𝑑𝑒
3

= 0,

2𝑒
3
(𝑎
2
− 𝑏
2
) 𝜇
2
= 0,

𝑒
3
= 0.

(34)

Since 𝑛 is perpendicular to 𝑒, therefore

𝑛
1
𝑒
1
+ 𝑛
2
𝑒
2
+ 𝑛
3
𝑒
3
= 0. (35)

Since 𝑒
3
= 0, this implies that

𝑒
1
= 𝑛
2
𝛼,

𝑒
2
= −𝑛
1
𝛼.

(36)

Since

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
= 1, (37)

this implies that

𝛼 =

1

√𝑛
2

1
+ 𝑛
2

2

. (38)

Thus,

𝑒 = [𝑒
1
, 𝑒
2
, 𝑒
3
] =

1

√𝑛
2

1
+ 𝑛
2

2

[𝑛
2
, −𝑛
1
, 0] . (39)

For caculated 𝑒, the maximum value of 𝜇 = 𝑎
1
is

𝑏
2
𝑎
2

1
+ 𝑏
2
(𝑠
2

1
+ 𝑠
2

2
) + 𝑎
2
𝑠
2

3
− 𝑎
2
𝑏
2
= 0,

𝑎
2

1
= 𝑎
2
−

𝑎
2

𝑏
2
𝑠
2

3
= (𝑠
2

1
+ 𝑠
2

2
) .

(40)

Using (27),

𝑎
1
= 𝑎√1 −

𝑑
2

𝑎
2
(1 − 𝐸

2
𝑛
2

3
)

. (41)

This is the semimajor axis and the direction of the major axis
is given by

𝑒 =

1

√𝑛
2

1
+ 𝑛
2

2

[𝑛
2
, −𝑛
1
, 0] . (42)

Semiminor Axis of the Ellipse. Let �̂� be a unit vector along the
minor axis of the ellipse; then

�̂� ⋅ 𝑒 = 0,

�̂� ⋅ 𝑛 = 0.

(43)

Thus, �̂� can be written as

�̂� = 𝑒 × 𝑛,

�̂� = [𝑒
2
𝑛
3
, −𝑒
1
𝑛
3
, 𝑒
1
𝑛
2
, −𝑒
2
𝑛
1
] .

(44)

Using (42) we have

�̂� =

1

√𝑛
2

1
+ 𝑛
2

2

[−𝑛
1
𝑛
3
, −𝑛
2
𝑛
3
, 𝑛
2

1
+ 𝑛
2

2
] . (45)

If 𝑏
1
is the semiminor axis of the ellipse, then point 𝑃( ⃗𝑟) on

the ellipse which is the closest to the center of the ellipse is
given by

⃗𝑟 = ⃗𝑆 + 𝑏
1
�̂�,

⃗𝑟 = [𝑠
1
+ 𝑏
1
𝑢
1
, 𝑠
2
+ 𝑏
1
𝑢
2
+ 𝑠
3
+ 𝑏
1
𝑢
3
] .

(46)

Since this point also lies on the oblate spheroid, therefore

(𝑠
1
+ 𝑏
1
𝑢
1
)
2

+ (𝑠
2
+ 𝑏
1
𝑢
2
)
2

𝑎
2

+

(𝑠
3
+ 𝑏
1
𝑢
3
)
2

𝑏
2

= 1,

[(𝑏
2
(𝑢
2

1
+ 𝑢
2

2
) + 𝑎
2
𝑢
2

3
)] 𝑏
2

1

+ 2 [(𝑏
2
(𝑢
1
𝑠
1
+ 𝑢
2
𝑠
2
) + 𝑎
2
𝑢
3
𝑠
3
)] 𝑏
1

+ 𝑏
2
(𝑠
2

1
+ 𝑠
2

2
) + 𝑎
2
𝑠
2

3
− 𝑎
2
𝑏
2
= 0.

(47)

This equation is quadratic in 𝑏
1
. Thus, the above equation

should give us two values of 𝑏
1
, both having the same
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magnitude but opposite in sign. It means that coefficient of
𝑏
1
in this equation should be zero. The above equation then

becomes

[(𝑏
2
(𝑢
2

1
+ 𝑢
2

2
) + 𝑎
2
𝑢
2

3
)] 𝑏
2

1
+ 𝑏
2
(𝑠
2

1
+ 𝑠
2

2
) + 𝑎
2
𝑠
2

3
− 𝑎
2
𝑏
2
= 0,

𝑏
1
= 𝑏

√1 − 𝑑
2
/𝑎
2
− 𝐸
2
𝑛
2

3

1 − 𝐸
2
𝑛
2

3

,

(48)

which is the semiminor axis of the ellipse. When the
semimajor axis, semiminor axis, and center of the ellipse
passing through the launch and target points are known, we
can calculate the distance between launch and target points
(which will be equal to the arc length between these two
points of the ellipse) in the following manner. The equation
of the ellipse having semimajor axis 𝑎

1
and semiminor axis 𝑏

1

is given by

𝑥
2

𝑎
2

1

+

𝑦
2

𝑏
2

1

= 1. (49)

The unit vectors along the major and minor axis are 𝑒 and
�̂�, respectively, and the centre of the ellipse with respect to
Earth center Earth fixed frame (ECEF) is ⃗𝑠 = [𝑠

1
, 𝑠
2
, 𝑠
3
]. Let

⃗𝑟
1
(𝑥
1
, 𝑦
1
, 𝑧
1
) be the position vector of launch point and let

⃗𝑟
2
(𝑥
2
, 𝑦
2
, 𝑧
2
) be the position vector of target point. Here 𝜙

1
is

the geodetic latitude, 𝜆
1
is the longitude of the launch point,

𝜙
2
is the geodetic latitude, and 𝜆

2
is the longitude of the target

point; then the Cartesian coordinates of the launch and target
points in ECEF frame are

𝑥
𝑖
= 𝑎 cos 𝑢

𝑖
cos 𝜆
𝑖
,

𝑦
𝑖
= 𝑎 cos 𝑢

𝑖
sin 𝜆
𝑖
,

𝑧
𝑖
= 𝑏 sin 𝑢

𝑖

for 𝑖 = 1, 2,

(50)

where 𝑢
1
and 𝑢
2
are reduced latitudes of the launch and target

points, respectively, given by

tan 𝑢
𝑖
=

𝑏

𝑎

tan𝜙
𝑖
, for 𝑖 = 1, 2. (51)

Also the position vectors ⃗𝑟
1
(𝑥
1
, 𝑦
1
, 𝑧
1
) and ⃗𝑟

2
(𝑥
2
, 𝑦
2
, 𝑧
2
) can

be written as

⃗𝑟
𝑖
= ⃗𝑠 + 𝑎

𝑖
cos 𝜃
𝑖
𝑒 + 𝑏
𝑖
sin 𝜃
𝑖
�̂�, for 𝑖 = 1, 2, (52)

where 𝜃
1
, 𝜃
2
are the reduced latitudes of launch and target

points, respectively, with respect to ellipse:

⃗𝑟
1
− ⃗𝑠 = 𝑎

1
cos 𝜃
1
𝑒 + 𝑏
1
sin 𝜃
1
�̂�, (53)

�̂� ⋅ ( ⃗𝑟
1
− ⃗𝑠) = 𝑏

1
sin 𝜃
1
, (54)

𝑒 ⋅ ( ⃗𝑟
1
− ⃗𝑠) = 𝑎

1
cos 𝜃
1
. (55)

Dividing (54) by (55), we have

𝑏
1

𝑎
1

tan 𝜃
1
=

�̂� ⋅ ( ⃗𝑟
1
− ⃗𝑠)

𝑒 ⋅ ( ⃗𝑟
1
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,

tan 𝜃
1
=

𝑎
1
�̂� ⋅ ( ⃗𝑟
1
− ⃗𝑠)

𝑏
1
𝑒 ⋅ ( ⃗𝑟
1
− ⃗𝑠)

,

𝜃
1
= arctan

𝑎
1
�̂� ⋅ ( ⃗𝑟
1
− ⃗𝑠)

𝑏
1
𝑒 ⋅ ( ⃗𝑟
1
− ⃗𝑠)

.

(56)

Similarly

tan 𝜃
2
=

𝑎
1
�̂� ⋅ ( ⃗𝑟
2
− ⃗𝑠)

𝑏
1
𝑒 ⋅ ( ⃗𝑟
2
− ⃗𝑠)

,

𝜃
2
= arctan

𝑎
1
�̂� ⋅ ( ⃗𝑟
2
− ⃗𝑠)

𝑏
1
𝑒 ⋅ ( ⃗𝑟
2
− ⃗𝑠)

.

(57)

To calculate arc length of the ellipse given by (49) between 𝜃
1

and 𝜃
2
, any point 𝑟(𝑥, 𝑦) on the ellipse can be written as

𝑥 = 𝑎
1
cos 𝜃,

𝑦 = 𝑏
1
sin 𝜃,

𝑑𝑥 = −𝑎
1
sin 𝜃𝑑𝜃,

𝑑𝑦 = 𝑏
1
cos 𝜃𝑑𝜃.

(58)

The arc length between 𝜃
1
and 𝜃
2
on the ellipse is given by

𝑆 = ∫

𝜃
2

𝜃
1

√𝑎
2

1
sin2𝜃 + 𝑏

2

1
cos2𝜃𝑑𝜃, (59)

which is the required distance between launch point and
target point. There are two possible distances between 𝜃

1
and

𝜃
2
depending on the direction. In order to take the shorter

distance, we replace the greater angle by 2𝜋 − 𝜃
𝑖
(𝑖 = 1 or 2)

if the difference between 𝜃
1
and 𝜃
2
is greater than 𝜋.

4. Numerical Simulations

In numerical experimentation, we conducted several tests
to calculate the effective ground range between launch and
target points using oblate Earth model. There are infinite
number of ellipses that can pass through target and launch
points. So we need an additional information to fix the
position of an ellipse. In articles [1, 2], the authors assumed
that ellipse passes through the center of Earth but in reality
the trajectory plane either contains the normal at the launch
or target. If ellipse plane contains the normal at launch
or target, there is no compulsion to contain the center of
Earth. We will address the calculation of effective ground
range for both the above-described conditions; namely, an
ellipse passes through the center of Earth or from the normal
at launch or target. In order to perform the ground range
calculations, we fix the geocentric longitude and latitude
of a launch site A (−100∘, 30∘) and change the location
of target site. The effective ground ranges between launch
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Table 1: Comparison of ground ranges using oblate spheroid Earth model from a launch city A (−100∘, 30∘).

(Longitude, latitude) Range-ND method (km) Range-MF method (km) Difference (m)
(60∘, −30∘) 18104.8887315221 18105.1601439396 271.41241749996
(30∘, −30∘) 15252.3679549724 15252.4368861646 68.9311921942135
(75∘, −30∘) 19547.4843247251 19548.6946517136 1210.32698854469
(95∘, −30∘) 19066.0969508061 19066.7002432942 603.292488183797
(10∘, 25∘) 10370.6552426009 10370.6407400275 14.5025733963848
(0∘, 0∘) 10976.4405907028 10976.433648927 6.94177578952804
(−100∘, −30∘) 6677.23509886027 6677.23509886027 9.09494701772928𝑒 − 10

Table 2: Comparison of lengths of major axis using oblate spheroid
Earth model from a launch city A (−100∘, 30∘).

(Longitude,
latitude)

Major axis length
ND method (km)

Major axis length
MF method (km)

Difference
(m)

(60∘, −30∘) 6378.14 6378.11 27.03
(30∘, −30∘) 6378.14 6378.11 25.84
(75∘, −30∘) 6378.14 6378.11 27.08
(95∘, −30∘) 6378.14 6378.11 27.11
(10∘, 25∘) 6378.14 6378.12 19.67
(0∘, 0∘) 6378.14 6378.11 26.93
(−100∘,
−30∘) 6378.14 6378.14 0

and targets are calculated by using two methods NDmethod
[2] and proposed MF method. In ND method, the elliptic
plane passes through launch point, target point, and center
of Earth and for MF method elliptic plane is defined by
using the launch point, target point, and normal at the launch
site which is normal to oblate spheroid Earth model. Table 1
shows the ranges difference in meters because the generated
ellipses for both cases are different. One can expect the
change range in couple of kilometers. We do emphasis the
fact that the defining ellipse should contain the local normal
at launch site or target site. The assumption that the elliptical
plane should pass through the center of Earth provides good
results but true condition generates slightly different values of
effective ground range. Tables 2, 3, and 4 depict majors axis,
minor axis, and center of ellipses for both methods. Clearly
in our case, the intersecting ellipse has center different than
oblate spheroid Earth model center which is (0, 0, 0).

5. Conclusion

We have constructed explicitly the elements of intersecting
ellipse, namely, the center, major, minor axis lengths, and
their directions. The proposed method also provides the
straight forward mechanism to plot the trace of intersecting
ellipse on the oblate spheroid Earth model. The methods
proposed in [19, 20] are the subcases of our developedmethod
because ellipse always has to pass through launch and target
sites and the third information one can define according to
requirement which helps to define the normal to elliptical
plane. The trajectory of ballistic missile lies in plane which
contains the local normal to oblate spheroid Earth model

Table 3: Comparison of lengths of minor axis using oblate spheroid
Earth model from a launch city A (−100∘, 30∘).

(Longitude,
latitude)

Minor axis length
ND method (km)

Minor axis length
MF method (km)

Difference
(m)

(60∘, −30∘) 6372.65 6372.61 32.97
(30∘, −30∘) 6371.94 6371.92 26.73
(75∘, −30∘) 6372.76 6372.64 122.35
(95∘, −30∘) 6372.7 6372.66 37.71
(10∘, 25∘) 6368.4 6368.3 96.41
(0∘, 0∘) 6372.65 6372.56 90.3
(−100∘,
−30∘) 6356.75 6356.75 0

Table 4: Center of elliptical arc.

(Longitude,
latitude)

𝑥-Coordinate
(km)

𝑦-Coordinate
(km)

𝑧-Coordinate
(km)

(60∘, −30∘) −2.88 −8.97 −15.95
(30∘, −30∘) −5.49 −8.09 −15.24
(75∘, −30∘) −0.61 −9.38 −15.98
(95∘, −30∘) −0.89 −9.35 −16
(10∘, 25∘) 7.01 −8.13 −11.61
(0∘, 0∘) 0.05 −9.45 −15.89
(−100∘,
−30∘) 0 0 0

either at launch site or target site. The trajectory plane which
passes through the center of Earth, generally, does not contain
normal at launch site or target site. We have shown that our
numerical simulations provide the effective ground ranges
in the case of normal trajectory plane which are different
in couple of kilometers from Earth center passing trajectory
plane.
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