
Research Article
Nonlinear Methodologies for Identifying Seismic
Event and Nuclear Explosion Using Random Forest, Support
Vector Machine, and Naive Bayes Classification

Longjun Dong,1 Xibing Li,1 and Gongnan Xie2

1 School of Resources and Safety Engineering, Central South University, Changsha 410083, China
2 School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710129, China

Correspondence should be addressed to Longjun Dong; rydong001@csu.edu.cn

Received 26 December 2013; Accepted 16 January 2014; Published 26 February 2014

Academic Editor: Carlo Cattani

Copyright © 2014 Longjun Dong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies
including Random Forests (RF), Support Vector Machines (SVM), and Näıve Bayes Classifier (NBC) were applied to discriminant
seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined
“velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated
accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The
result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and
NBC.The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been
demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort
the discriminant indicators according to calculated values of weights.

1. Introduction

The problems of seismic source locations and identifications
are two of the most important and fundamental issues in
earthquake monitoring, microseismic monitoring, analyses
of active tectonics, and assessment of seismic hazards [1–4].

Seismic analysts identify seismic signals from those of
explosions or blasts by visual inspection and by calculating
some characteristics of seismogram. As recorded quarry
blasts or nuclear explosions can mislead scientists interpret-
ing the active tectonics and lead to erroneous results in the
analysis of seismic hazards in the area; an event classification
task is an important step in seismic signal processing. Such
task analyses data in order to find to which class each
recorded event belongs.

Such work supposes a great deal of workload for seismic
analysts. Therefore, an automatic classification tool is neces-
sary to be developed for reducing dramatically this arduous

task, turning classification as reliable, as well as removing
errors associated with tedious evaluations and change of
personnel.

Most discrimination methods are designed for a partic-
ular source region and a particular distance of the recording
station from the epicenter [5]. Some of them heavily depend
on the heterogeneity of the uppermost crust in the sense that
they might be effective only for a given region.

The widely used methods for discriminators include
simulating explosion spectra in order to predict spectral
details indicative of explosions and not of earthquakes
or single-event explosions [6, 7]; examining compressional
and shear-wave ratios (amplitude and spectral) between
all types of explosions and earthquakes, in an attempt to
apply the basic physical conclusion that explosions excite
more compressional waves than earthquakes relative to shear
waves [8–11]; differences in high frequency S-to-P ratios
between all types of explosions and earthquakes [12–14];
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analyzing observed spectra of ripple-fired explosions, instan-
taneous explosions, and earthquakes and contrasting time-
independent modulations, path-independent modulations,
spectral ratios, spectral slopes, and spectral maxima and
minima [15–17]; and examining differences in energy ratios
of various wave in velocity windows [18, 19].

However, most of developed methods above are based on
single index or liner discriminantmethods. And themethods
seem to fail to capture the discontinuities, the nonlinearities,
and the high complexity of wave series.

Random Forests (RFs), Support Vector Machines
(SVMs), and Naive Bayes Classifier (NBC) provide enough
learning capacity and are more likely to capture the complex
nonlinear models, which are widely used in natural and sci-
ence areas, including medicine, agriculture, and geotechnics.

So far, as to our knowledge, the RFs and SVMs were
not used for seismic classification. The performance of RFs,
SVMs, and NBC in this type of application has not been
thoroughly compared.

In present work, RF, SVM, and NBC were applied to
discriminate between earthquakes and nuclear explosions.
And based on the one out cross-validation, ROC curve,
and test accuracy, their discriminating performances were
discussed and compared.

2. Materials and Methods

2.1. Materials. The measurements or parameters consist of
ratios of the “high energies” contained within predetermined
“velocity windows” on the seismograms [18]. The choice of
velocity windows is guided by the assumption that earth-
quake source mechanism is extended both in time and space
and generates a larger fraction of energy in shear waves as
compared to explosion source mechanism.

The different waves of “velocity windows” are listed as
follows:

(i) 𝑃
1
: first arrival to 4.6 km/s;

(ii) 𝑆
1
: arrival to 4.6 to 2.5 km/s;

(iii) 𝑆
2
: first arrival to 4.9 km/s;

(iv) 𝑆
2
: arrival to 4.9 to 2.0 km/s;

(v) 𝑃
𝑔
: arrival to 6.2 to 4.9 km/s;

(vi) 𝐵: arrival to 4.9 to 3.6 km/s;
(vii) 𝐿

𝑔1
: arrival to 3.6 to 3.2 km/s;

(viii) 𝑅
𝑔1
: arrival to 3.2 to 2.8 km/s; and

(ix) 𝑅: arrival to 2.8 to 2.5 km/s.
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and AD, respectively.
Nine ratios of energies included within certain velocity

windows have been computed for 20 earthquakes and 27
nuclear explosions by Booker and Mitronovas [18]. All
seismograms were recorded by the VELA UNIFORM LRSM
Network on short-period Benioff instruments [18]. Ratio
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Figure 1: Box plot graph showing the distribution of values of
ratios of energies (ER1, ER2, ER3, ER4, ER5, ER6, ER7, ER8, and
ER9 represented Ratio
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and AD were selected as discriminant indicators. 𝑧-score is
used to standardize variables in this work. First, the mean is
subtracted from the value for each case, resulting in amean of
zero. Then, the difference between the individual’s score and
the mean is divided by the standard deviation, which results
in a standard deviation of one. If we start with a variable 𝑥
and generate a variable 𝑥∗, the process is

𝑥
∗
=
(𝑥 − 𝑚)

sd
, (1)

where 𝑚 is the mean of 𝑥 and sd is the standard deviation
of 𝑥. 𝑧-score of each ratio and distance for seismic event and
nuclear earthquake were listed in Tables 1 and 2, respectively.

Box plot graphs of energy ratios and distance were plotted
in Figures 1 and 2, respectively. Each group is represented
as a box whose top and bottom are drawn at the lower and
upper quartiles, with a small square at the median. Thus, the
box contains the middle half of the scores in the distribution.
Vertical lines outside the box extend to the largest and the
smallest observations within 1.5 interquartile ranges.We con-
clude thatRatio

1
,Ratio

2
,Ratio

3
,Ratio

4
,Ratio

5
,Ratio

6
,Ratio

7
,

Ratio
8
, Ratio

9
, Ratio

10
, and AD for earthquake and nuclear

earthquake are obviously different. Such it is reasonable to
select the ten factors as discriminating indicator.

2.2. Methodologies. The first 70% dataset of earthquake and
nuclear earthquake were used to establish discriminating
models and the other 30%dataset were used to test themodel.

2.2.1. Overview of Random Forest. Random Forest (RF),
a metalearner comprising many individual trees, was first
developed by Tin Kam Ho in 1995 and later improved by
Breiman in 2001. It was developed to operate quickly over
large datasets and to be diverse by using random samples to
build each tree in the forest. Each tree depends on the values
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Table 1: Earthquakes dataset.

No. Earthquakes 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7 Ratio8 Ratio9 AD
1 Baja Calif 0.123 0.495 −0.570 −0.145 −0.498 1.023 0.547 1.023

2 Baja Calif −0.274 0.130 −0.207 −0.291 −0.824 2.904 1.407 2.031

3 Boxelder Creek 0.515 0.741 0.624 0.471 0.531 −0.652 0.057 0.576

4 Bridgeport −0.371 −0.101 −0.681 −0.994 0.040 −0.686 −0.531 −1.543 −0.833 −0.614

5 Cache Creek −0.803 −1.188 −1.082 −1.038 −0.860 −1.001 −0.750 −0.393 −0.875 2.114

6 Cache Creek AS −0.349 −0.157 −0.866 −0.771 −0.426 −0.578 −0.876 −0.910 −0.356 0.259

7 Colona −0.309 0.011 −0.430 −0.420 0.710 0.416 0.308 −1.453 −1.047 0.108

8 Mont.-Wyo Border −0.446 0.243 −0.873 −0.462 −0.007 −0.661 −0.368 0.825

9 Pierre, S.Dakota −1.354 −1.300 −1.574 −1.284 −1.131 −1.075 −0.719 2.498

10 Red Rock River 0.383 0.628 −0.231 0.120 0.315 −0.720 −0.579 0.945

11 Sierra De Juarez −1.090 −0.992 0.624 −0.931 −1.004 1.102 4.306 1.002

12 Teton County 0.343 0.502 0.541 −0.164 0.044 −0.700 −0.442 −0.001

13 Western Mary land −1.575 −1.546 −0.828 −1.365 −1.228 0.867 −0.459 −0.963

14 Western Vermont −1.672 −1.602 −2.047 −1.438 −1.282 −1.472 −1.048 2.956

15 Western Vermont −1.138 −1.034 −1.323 −0.779 −1.246 −0.896 2.417 1.004 0.238 1.184

16 Western Vermont −1.010 −0.929 −1.538 −0.727 −1.204 −0.932 2.919 2.277 0.719 0.612

17 Western Vermont −0.975 −0.844 −0.779 −1.023 −0.036 −0.751 0.018 −0.810 −0.842 −0.765

18 Western Vermont 0.013 0.046 0.116 −0.416 0.955 0.018 −0.758 −1.298 −0.902 −0.329

19 Western Vermont −1.164 −1.202 −0.823 −0.754 −1.164 −0.925 1.084 1.480 1.614 0.950

20 Western Vermont −0.494 −0.290 0.027 −0.462 −0.312 −0.245 0.567 −0.894 −0.476 1.023

Av
er

ag
e d

ist
an

ce
 (m

)

1,400

1,200

1,000

800

600

400

14

ER10 NR10
Indicators of earthquake and nuclear earthquake

Figure 2: Box plot graph showing the distribution of values of the
distance between hypocenter and sensors (ER10 and NR10 repre-
sented distance between hypocenter and sensors for earthquake and
nuclear earthquake, resp.).

of a randomvector sampled independently andwith the same
distribution for all trees in the forest.The generalization error
of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between
them [20]. Comprehensive review of applications of Random
Forest have been provided by Rodriguez-Galiano et al., [21],
Granitto et al. [22], and by Genuer et al. [23]. Also, a number
of researches have compared the performance of other data
mining technique and Random Forest in different kinds of
problems [23–26].The theory of RF is summarized as follows
[20].

A Random Forest is a classifier consisting of a collection
of tree-structured classifiers {ℎ(𝑥, Θ

𝑘
), 𝑘 = 1, . . .}, where the

{Θ
𝑘
} are independent identically distributed random vectors

and each tree casts a unit vote for the most popular class at
input 𝑥 [18].

Given an ensemble of classifiers ℎ
1
(𝑋), ℎ

2
(𝑋), . . . , ℎ

𝐾
(𝑋)

and with the training set drawn at random from the distri-
bution of the random vector𝑌,𝑋, define the margin function
as

mg (𝑋, 𝑌) = 𝑎V
𝐾
𝐼 (ℎ
𝐾
(𝑋) = 𝑌) −max

𝑗 ̸= 𝑌

𝑎V
𝐾
𝐼 (ℎ
𝐾
(𝑋) = 𝑗) ,

(2)

where 𝐼(⋅) is the indicator function.Themargin measures the
extent to which the average number of votes at 𝑋,𝑌 for the
right class exceeds the average vote for any other class. The
larger the margin, the more confidence in the classification.
The generalization error is given by

𝑃𝐸
∗
= 𝑃
𝑋,𝑌

(mg (𝑋, 𝑌) < 0) , (3)

where the subscripts𝑋,𝑌 indicate that the probability is over
the 𝑋,𝑌 space. In Random Forests, ℎ

𝐾
(𝑋) = ℎ(𝑋, 𝑘). For a

large number of trees, it follows from the Strong Law of Large
Numbers and the tree structure the following.

As the number of trees increases, for almost surely all
sequences Θ

1
, . . . , 𝑃𝐸

∗ converges to

𝑃
𝑋,𝑌

(𝑃
Θ
(ℎ (𝑋,Θ) = 𝑌) −max

𝑗 ̸= 𝑌

𝑃
Θ
(ℎ (𝑋,Θ) = 𝑗) < 0) .

(4)
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Table 2: Nuclear explosion dataset.

No. Nuclear 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
8

𝑋
9

𝑋
10

explosion Ratio1 Ratio2 Ratio3 Ratio4 Ratio5 Ratio6 Ratio7 Ratio8 Ratio9 AD
1 Aardvark 1.027 1.575 2.096 1.015 0.342 0.903 −0.523 −0.334 −0.321 −0.313

2 Agouti −0.067 −0.101 0.984 −0.124 −0.047 −0.054 −0.192 −0.547

3 Armadillo 1.164 1.042 0.761 2.079 0.202 1.315 0.535 1.102 0.324 −0.516

4 Chinchilla II 0.317 0.194 0.197 1.222 0.575 0.338 0.384 −0.562

5 Cimarron 0.335 0.095 −0.009 0.185 −0.579 −0.065 −0.515 0.827 0.093 −0.329

6 Codsaw −0.402 −0.676 −0.830 −0.378 −0.731 −0.372 0.755 −0.152 0.453 −0.859

7 Danny Boy −0.388 −0.480 −0.096 −0.458 −0.736 −0.426 0.120 −0.207 −0.209 −1.202

8 Des Moines 1.133 0.874 0.590 0.954 0.759 −0.074 −0.149 −0.646

9 Dormouse II 0.171 −0.290 0.094 −0.182 −0.278 1.160 −0.252 −0.640

10 Fisher −0.314 −0.417 0.077 −0.136 −0.565 −0.332 −0.782 0.886 0.117 −0.802

11 Gnome 2.178 2.452 1.087 2.319 1.431 2.688 −1.393 −0.914 0.100 −0.656

12 Hardhat 3.293 3.321 2.319 3.245 2.420 3.505 −0.625 −0.740 −0.562 −0.396

13 Haymaker 2.495 0.965 2.235 2.208 1.889 2.276 −0.782 −0.399 −0.583 −0.074

14 Mad −0.675 −0.746 −0.282 −0.527 −0.906 −0.545 0.206 −0.362 −0.934 −0.833

15 Madison 0.361 0.635 1.172 0.414 0.023 0.470 −0.452 −0.319 −0.020 −0.370

16 Marshmallow −0.031 −0.150 0.094 −0.099 −0.530 −0.144 −0.170 −0.015 −0.356 −0.375

17 Mississippi 0.546 0.762 1.052 0.508 −0.178 0.427 −0.225 −0.221 −0.307 −0.084

18 Packrat −0.177 −0.683 −0.657 −0.339 −1.351 −0.361 −0.230 −0.313 −1.041

19 Pampas 1.768 1.898 2.267 1.597 1.900 1.915 −1.119 −0.879 −0.614 0.134

20 Passaic 0.352 0.586 0.659 0.131 −0.257 0.156 0.002 −0.283 −0.227 −0.090

21 Platte −0.181 −0.311 0.008 −0.197 −0.206 −0.211 0.014 −1.171

22 Scaramento −0.221 −0.431 −0.436 0.145 −0.183 −0.202 0.063 −0.023 −0.599

23 Small Boy −0.018 0.264 0.111 0.370 0.231 0.567 0.181 −0.356 −0.765

24 Stillwater −0.622 −0.929 −0.916 −0.420 −0.643 1.170 0.926 −0.931

25 Stoat −0.014 −0.627 −0.334 −0.199 −0.408 1.944 3.308 −1.311

26 Witchita −0.468 −0.571 −0.300 −0.443 −0.441 −0.279 −0.330 −0.583

27 York 0.083 0.137 −0.026 −0.018 −0.086 −0.074 0.083 0.129

Themargin function for a Random Forest is

mr (𝑋, 𝑌) = 𝑃
Θ
(ℎ (𝑋,Θ) = 𝑌) −max

𝑗 ̸= 𝑌

𝑃
Θ
(ℎ
𝐾
(𝑋,Θ) = 𝑗) ,

(5)

and the strength of the set of classifiers {(ℎ(𝑋,Θ)} is

𝑠 = 𝐸
𝑋,𝑌

mr (𝑋, 𝑌) . (6)

Assume that 𝑠 ≥ 0, Chebychev’s inequality gives

𝑃𝐸
∗
≤
var (mr)
𝑠2

. (7)

Amore revealing expression for the variance of mr is derived
in the following. Let

𝑗 (𝑋, 𝑌) = argmax
𝑗 ̸= 𝑌

𝑃
Θ
(ℎ (𝑋,Θ) = 𝑗) (8)

so
mr (𝑋, 𝑌) = 𝑃

Θ
(ℎ (𝑋,Θ) = 𝑌) − 𝑃

Θ
(ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌))

= 𝐸
Θ
[ (𝐼 (𝑋,Θ) = 𝑌)

−𝐼 (ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌))] .

(9)

The raw margin function is

rmg (Θ,𝑋, 𝑌) = 𝐼 (ℎ (𝑋,Θ) = 𝑌) − 𝐼 (ℎ (𝑋,Θ) = 𝑗 (𝑋, 𝑌)) .
(10)

Thus, mr(𝑋, 𝑌) is the expectation of rmg(Θ,𝑋, 𝑌) with
respect to Θ. For any function 𝑓 the identity

[𝐸
Θ
𝑓 (Θ)]

2

= 𝐸
Θ,Θ
󸀠𝑓 (Θ)𝑓 (Θ

󸀠
) (11)

holds where Θ,Θ󸀠 are independent with the same distribu-
tion, implying that

mr(𝑋, 𝑌)2 = 𝐸
Θ,Θ
󸀠rmg (Θ,𝑋, 𝑌) rmg (Θ󸀠, 𝑋, 𝑌) . (12)

Using (12) gives

var (mr) = 𝐸
Θ,Θ
󸀠 ( cov

𝑋,𝑌
rmg (Θ,𝑋, 𝑌) rmg (Θ󸀠, 𝑋, 𝑌))

= 𝐸
Θ,Θ
󸀠 (𝜌 (Θ,Θ

󸀠
) sd (Θ) sd (Θ󸀠)) ,

(13)
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where 𝜌(Θ,Θ󸀠) is the correlation between rmg(Θ,𝑋, 𝑌) and
rmg(Θ󸀠, 𝑋, 𝑌) holding Θ,Θ󸀠 fixed and sd(Θ) is the standard
deviation of rmg(Θ,𝑋, 𝑌) holding Θ fixed. Then,

var (mr) = 𝜌(𝐸
Θ
sd (Θ))2

≤ 𝜌𝐸
Θ
V (Θ) ,

(14)

where 𝜌 is the mean value of the correlation; that is,

𝜌 =

𝐸
Θ,Θ
󸀠 (𝜌 (Θ,Θ

󸀠
) sd (Θ) sd (Θ󸀠))

𝐸
Θ,Θ
󸀠 (sd (Θ) sd (Θ󸀠))

. (15)

Write

𝐸
Θ
var (Θ) ≤ 𝐸

Θ
(𝐸
𝑋,𝑌

rmg (Θ,𝑋, 𝑌))2 − 𝑆2 ≤ 1 − 𝑆2. (16)

In this work, A RF model of discriminating between
natural earthquake and nuclear earthquake is established
with optimal 5000 NT trees and 8 variables in rode. In the
developed RF model, the calculated weighted values of the
Ratio
1
, Ratio

2
, Ratio

3
, Ratio

4
, Ratio

5
, Ratio

6
, Ratio

7
, Ratio

8
,

Ratio
9
, and AD are 1.2713, 0.1034, 0.0759, 0.3093, 0.3432,

0.1782, 0.2536, 0.0943, 0.2463, and 0.1512, respectively.

2.2.2. SVM Algorithm. The original SVM algorithm was
invented by Vladimir N. Vapnik and the current standard
incarnation (softmargin)was proposed byCortes andVapnik
in 1995 [27].

SVMmodels were originally defined for the classification
of linearly separable classes of objects. For any original
separable set of two-class objects SVM are able to find the
optimal hyperplanes that separates themproviding the bigger
margin area between the two hyperplanes. Furthermore they
can also be used to separate classes that cannot be separated
with a linear classifier.

The feature space in which every object is projected is
a high dimensional space in which the two classes can be
separated with the linear classifier. The effectiveness of SVM
depends on the selection of kernel, the kernel’s parameters,
and soft margin parameter 𝐶.

In the present work we used the Radial Basis Function
(RBF) as Kernel functions for the SVMmodels because of its
efficiency in providing very high performance classification
results. The optimal RBF parameters 𝐶 and gamma were
found to be 9 and 0.6, respectively, reassuring that the model
does not over fit.

2.2.3. Naive Bayes Classier. The Naive Bayes Classier pro-
duces a very efficient probability estimation based on a
simply structure, requiring a small amount of training data
to estimate the parameters necessary for the classification. Its
construction relies on two main assumptions: independency
of features and absence of hidden or latent attributes.

An advantage ofNaive Bayes is that it only requires a small
amount of training data to estimate the parameters (means
and variances of the variables) necessary for classification.
Because independent variables are assumed, only the vari-
ances of the variables for each class need to be determined
and not the entire covariance matrix.

The aim of the NBC, as with other classifiers, is to assign
an object 𝐼 to one of a discrete set of categories𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚

based on its observable attributes 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
. The NBC

calculates the probability that 𝐼 belongs to each category, con-
ditioning on the observed attributes; 𝐼 is typically assigned
to the category with the greatest probability. This classifier is
naive in the sense that it makes the strong assumption that
the attributes are mutually conditionally independent; that is,
the conditional probability that 𝐼 belongs to a particular class
given the value of some attribute is independent of the values
of all other attributes. Despite this unrealistic assumption,
empirical studies demonstrate that this assumption does
not need to significantly compromise the accuracy of the
prediction, and NBCs are used in a variety of applications,
including document classification [28], medical diagnosis
[29, 30], systems performance management [31], probability
classification of rockburst [32], and other fields. Domingos
and Pazzani [33] prove optimality of the NBC under certain
conditions evenwhen the conditional independence assump-
tion is violated.

In this paper, the prior probability of natural earthquake
and nuclear earthquake is calculated according to the size
of data. The prior probabilities of earthquake and nuclear
earthquake are 0.424 and 0.576, respectively.

The discriminate functions for the earthquake and
nuclear are
𝑌
1
= 0.45𝑋

1
+ 2.72𝑋

2
− 1.28𝑋

3
− 4.6𝑋

4
+ 1.61𝑋

5
+ 0.34𝑋

6

+ 0.03𝑋
7
− 0.17𝑋

8
+ 0.68𝑋

9
+ 1.65𝑋

10
− 1.92,

𝑌
2
= − 0.87𝑋

1
− 2.28𝑋

2
+ 1.44𝑋

3
+ 4.34𝑋

4
− 2.69𝑋

5

+ 0.31𝑋
6
− 2.04𝑋

7
+ 0.11𝑋

8
+ 0.68𝑋

9
− 0.76𝑋

10

− 1.73.

(17)

If 𝑌
1
> 𝑌
2
, the record is an earthquake, otherwise a nuclear

event.

2.2.4. Classification Performance. ROC is a graphical plot
which illustrates the performance of a binary classifier system
as its discrimination threshold is varied [34]. It is created by
plotting the fraction of true positives out of the positives (TPR
= true positive rate) versus the fraction of false positives out of
the negatives (FPR = false positive rate), at various threshold
settings.

ROC analysis provides tools to select possibly optimal
models and to discard suboptimal ones independently from
(and prior to specifying) the cost context or the class distri-
bution. ROC analysis is related in a direct and natural way to
cost/benefit analysis of diagnostic decision making.

In this study, seismic event and nuclear explosion were
considered as a two-class prediction problem (binary classifi-
cation), in which the outcomes were labeled either as positive
(𝑝, events) or negative (𝑛, blasts). There are four possible
outcomes from a binary classifier. If the outcome from a
prediction is 𝑝󸀠 and the actual value is also 𝑝, then it is called
a true positive (TP); however, if the actual value is 𝑛 then it
is said to be a false positive (FP). Conversely, a true negative
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Table 3: Contingency matrix for two class prediction problem.

Actual value Total
𝑃 𝑁

Prediction
outcome
𝑝
󸀠 True Positive (TP) False Positive (FP) 𝑃

𝑛
󸀠 False Negative (FN) True Negative (TN) 𝑁

Total 𝑃 𝑁

(TN) has occurred when both the prediction outcome and
the actual value is 𝑛 and false negative (FN) is when the
prediction outcome is 𝑛󸀠, while the actual value is 𝑝.

An experiment from 𝑃 positive and 𝑁 negative was
defined, for instance. The four outcomes can be formulated
in a 2 × 2 contingency table or confusionmatrix, as follows in
Table 3.

The specificity or true negative rate (TNR) is defined as
the percentage of seismic record which is correctly identified
as being blast:

TNR = TN
TN + FP

. (18)

The quantity 1-specificity is the false positive rate (FPR)
and is the percentage of seismic records that are incorrectly
identified as being blasts. The sensitivity or true positive rate
(TPR) is defined as the percentage of seismic records which
is correctly identified as being events:

TPR = TP
TP + FN

. (19)

The accuracy (ACC) can be expressed as

ACC =
TP + TN

TP + FN + FP + FN
. (20)

3. Results and Discussions

The back-test classification for training samples is calculated
using established models. The back-test accuracies of RF,
SVM, andNBC are 100%, 100%, and 96.97% for training sam-
ples, respectively. The one out cross-validation method was
used to validate the methods. Results show that accuracies of
RF, SVM(RBF), SVM(liner), andNBCare 100%, 96.97%, and
84.88%, respectively.

The ROC curve is also used to verify and compare
the discriminating performance of established models. The
established RF model, SVM model, and NBC model were
applied to both the training and test samples.The ROC curve
is shown in Figure 3. The area under the curve is listed in
Table 4. The classification results of test samples using all
developed models are presented in Table 5.

In Figure 3, the closer a result from a contingency table is
to the upper left corner, the better it predicts, but the distance
from the random guess line in either direction or area under
curve is the best indicator of how much predictive power a
method has.
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Figure 3: ROC of established RF, SVM (RBF), SVM (liner), and
NBC models.

As shown in Figure 3 and Table 4, the result of RFmethod
clearly shows the best predictive power with amaximum area
of 0.975 among RF, SVM, and NBC.The result of SVM (area:
0.963) is better than that of NBC (area: 0.956).

According to Table 5, we can get the discriminant accu-
racy of RF, SVM, and NBC for test samples; their accuracy
are 92.86%, 85.71%, and 92.86%, respectively. From back
test results, one out cross-validation, ROC, and test results,
we get the conclusion that RF discriminant model has the
best accuracy and discriminant ability. Also, according to
weighted values of RF, the most important factors are Ratio

1
,

followed by Ratio
5
, Ratio

4
, Ratio

7
, Ratio

9
, Ratio

6
, AD, Ratio

2
,

Ratio
8
, and Ratio

3
.

4. Conclusions

RF, SVM, and NBC were applied to seismic event identifica-
tion. A thorough investigation of the discrimination capabil-
ities of the techniques were undertaken using seismograms
from 20 earthquakes and 27 nuclear explosions. Ratios 𝑃

1
/𝑆
1
,

𝑃
2
/𝑆
2
, 𝑃
𝑔
/𝐵, 𝑃
𝑔
/𝐿
𝑔1
, 𝑃
𝑔
/(𝑅
𝑔1
+ 𝑅), 𝑃

𝑔
/(𝐿
𝑔1
+ 𝑅
𝑔1
), 𝑅/𝑅

𝑔1
,

𝑅
𝑔1
/𝐿
𝑔1
, and 𝑅

𝑔2
/𝐿
𝑔2

within certain velocity windows, as
well as average distance, were selected as discriminant indi-
cators.

The classification performance of RF, SVM, and NBC
was analyzed and compared based on back test of training
samples, one out cross-validation, and ROC curve.The result
of RF method clearly shows the best predictive power with
a maximum ROC area of 0.975 among RF, SVM, and NBC.
The result of SVM (area: 0.963) is better than that of NBC
(area: 0.956). Test results show the discriminant accuracies
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Table 4: Area under the curve.

Test result variable(s) Area Std. errora Asymptotic Sig.b Asymptotic 95% confidence interval
Lower bound Upper bound

NBC 0.956 0.035 0.000 0.887 1.026
SVM 0.963 0.030 0.000 0.904 1.022
RF 0.975 0.029 0.000 0.919 1.031
aUnder the nonparametric assumption.
bNull hypothesis: true area = 0.5.

Table 5: Discriminant results of test samples.

No. Event Measured results NBC SVM result RF
Prob (N) Prob (NE) Result Prob (N) Prob (NE) Result

1 NE20 2 0.1646 0.8354 2 2 0.2354 0.7646 2
2 NE21 2 0.0276 0.9724 2 2 0.018 0.982 2
3 NE22 2 0.0041 0.9959 2 2 0.1572 0.8428 2
4 NE23 2 0.0144 0.9856 2 2 0.0178 0.9822 2
5 NE24 2 0.2324 0.7676 2 2 0.3342 0.6658 2
6 NE25 2 0.4416 0.5584 2 2 0.0744 0.9256 2
7 NE26 2 0.2447 0.7553 2 1

∗ 0.1576 0.8424 2
8 NE27 2 0.7336 0.2664 1

∗
1
∗ 0.4752 0.5248 2

9 E15 1 0.998 0.002 1 1 0.8934 0.1066 1
10 E16 1 0.9991 0.0009 1 1 0.8214 0.1786 1
11 E17 1 0.8956 0.1044 1 1 0.7562 0.2438 1
12 E18 1 0.9807 0.0193 1 1 0.4076 0.5924 2

∗

13 E19 1 0.9277 0.0723 1 1 0.8904 0.1096 1
14 E20 1 0.9725 0.0275 1 1 0.9216 0.0784 1
Note: result with “∗” is incorrect.

of RF, SVM, and NBC are 92.86%, 85.71% and 92.86%,
respectively.

From back-test results, one out cross-validation, ROC
curve, and test results, we get the conclusion that RF discrim-
inant model has the best accuracy and discriminant ability.
Not only can RF discriminant method be applied to seismic
identification with high accuracy, but also it can give the
weighted sorts of discriminant indicators. In this study, the
most important factors are Ratio

1
, followed by Ratio

5
, Ratio

4
,

Ratio
7
, Ratio

9
, Ratio

6
, AD, Ratio

2
, Ratio

8
, and Ratio

3
.
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