
Research Article
Some Properties of Furuta Type Inequalities and Applications

Jiangtao Yuan and Caihong Wang

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454000, China

Correspondence should be addressed to Jiangtao Yuan; jtyuan@hpu.edu.cn

Received 25 January 2014; Accepted 20 March 2014; Published 13 April 2014

Academic Editor: Changsen Yang

Copyright © 2014 J. Yuan and C. Wang.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work is to consider Furuta type inequalities and their applications. Firstly, some Furuta type inequalities under 𝐴 ≥ 𝐵 ≥ 0 are
obtained via Loewner-Heinz inequality; as an application, a proof of Furuta inequality is given without using the invertibility of
operators. Secondly, we show a unified satellite theorem of grand Furuta inequality which is an extension of the results by Fujii et
al. At the end, a kind of Riccati type operator equation is discussed via Furuta type inequalities.

1. Introduction

Throughout this paper, an operator𝑇means a bounded linear
operator on a Hilbert space. 𝑇 ≥ 0 and 𝑇 > 0mean a positive
operator and an invertible positive operator, respectively, (see
[1, page 103]). The classical Loewner-Heinz inequality (L-H)
is stated below (see [2, page 127]).

Theorem 1 (Loewner-Heinz inequality (L-H)). Let𝑝 ∈ [0, 1];
then 𝐴 ≥ 𝐵 ≥ 0 ensures

𝐴
𝑝
≥ 𝐵
𝑝
. (1)

In general, (L-H) is not true for 𝑝 > 1. As a celebrated
development of (L-H), Furuta provided a kind of order
preserving operator inequality [2, page 129], the so-called
Furuta inequality (FI).

Theorem 2 (Furuta inequality (FI), [3]). Let 𝑟 ≥ 0, 𝑝 > 0;
then 𝐴 ≥ 𝐵 ≥ 0 ensures

(𝐵
𝑟/2

𝐴
𝑝
𝐵
𝑟/2

)
(min{1,𝑝}+𝑟)/(𝑝+𝑟)

≥ (𝐵
𝑟/2

𝐵
𝑝
𝐵
𝑟/2

)
(min{1,𝑝}+𝑟)/(𝑝+𝑟)

,

(𝐴
𝑟/2

𝐴
𝑝
𝐴
𝑟/2

)
(min{1,𝑝}+𝑟)/(𝑝+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(min{1,𝑝}+𝑟)/(𝑝+𝑟)

.

(2)

Tanahashi proved that the outer exponent min{1, 𝑝} + 𝑟

above is optimal; see [3] for related topics. In order to establish
the order structure on Aluthge transform of nonnormal
operators, the complete formof Furuta inequalitywas showed
in [4].

Theorem 3 (Complete form [4]). Let 𝑞 > 0, 𝑟 ≥ 0, 𝑝 > 𝑝0 > 0

and 𝑠(𝑞) = min{𝑝, 2𝑝0 + min{𝑞, 𝑟}}. Then 𝐴 ≥ 0 and 𝐵 ≥ 0

such that 𝐴𝑞 ≥ 𝐵
𝑞 ensures

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑠(𝑞)+𝑟)/(𝑝0+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝑠(𝑞)+𝑟)/(𝑝+𝑟)

. (3)

We call the theorem above the complete form of Furuta
inequality because the case 𝑝0 = 𝑞 = 1 of it implies the
essential part (𝑝 > 1) of Furuta inequality by the Loewner-
Heinz inequality for (1+𝑟)/(𝑠(1)+𝑟) ∈ (0, 1]. For convenience,
we call Furuta inequality (Theorem 2) the original form of
Furuta inequality.

It is known that there aremany applications of Furuta type
inequalities; we cite [5–7].

Based on Ito et al. [8] which is a continuation of [9],
the equivalent relations between two operator inequalities are
useful. For 𝐴 ≥ 0, 𝐴0 means the projection 𝑃(ker𝐴)⊥ .

Theorem 4 (see [8]). Let 𝑟 > 0, 0 ≤ 𝑝0 < 𝑝, 𝐴 ≥ 0 and 𝐵 ≥ 0.

(1) If ker(𝐴𝐵𝑝0/2) ⊆ ker𝐵, then, for each 𝑟, 𝑝0, and 𝑝, the
following inequalities are equivalent to each other:

(𝐵
𝑝/2

𝐴
𝑟
𝐵
𝑝/2

)
(𝑝−𝑝0)/(𝑟+𝑝)

≥ (𝐵
𝑝/2

𝐵
𝑟
𝐵
𝑝/2

)
(𝑝−𝑝0)/(𝑟+𝑝)

, (4)

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑝0+𝑟)/(𝑝0+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝑝0+𝑟)/(𝑝+𝑟)

. (5)

In particular, (4) implies (5) without condition
ker(𝐴𝐵𝑝0/2) ⊆ ker𝐵.
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(2) For each 𝑟, 𝑝0, and 𝑝, the following inequalities are
equivalent to each other:

(𝐴
𝑝/2

𝐵
𝑟
𝐴
𝑝/2

)
(𝑝−𝑝0)/(𝑟+𝑝)

≤ (𝐴
𝑝/2

𝐴
𝑟
𝐴
𝑝/2

)
(𝑝−𝑝0)/(𝑟+𝑝)

,

(𝐵
𝑟/2

𝐴
𝑝0𝐵
𝑟/2

)
(𝑝0+𝑟)/(𝑝0+𝑟)

≤ (𝐵
𝑟/2

𝐴
𝑝
𝐵
𝑟/2

)
(𝑝0+𝑟)/(𝑝+𝑟)

.

(6)

It should be pointed out that (5) ensures (4) is not true
without the condition ker(𝐴𝐵𝑝0/2) ⊆ ker𝐵 [8, Remark 1].
Moreover, the proof of Theorem 4 is independent of (L-H).

In Section 2, some Furuta type inequalities under 𝐴 ≥

𝐵 ≥ 0 are proved via Loewner-Heinz inequality; as applica-
tions, we show alternate proofs of some well-known Furuta
type inequalities (proofs of Theorems 10 and 2).

In 1995, Furuta [10] proved the so-called grand Furuta
inequality which is also an extension of Theorem 2.

Theorem 5 (grand Furuta inequality [10]). Let 𝑝 ≥ 1, −1 ≤

𝑡 < 0, 𝑟 ≥ −𝑡 and 𝑠 ≥ 1. If 𝐴 ≥ 𝐵 ≥ 0 with 𝐴 > 0; then

𝐴
1+𝑡+𝑟

≥ (𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐴
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

. (7)

Fujii et al. proved some satellite theorems of grand Furuta
inequality.

Theorem 6 (see [11]). Let 𝑝 ≥ 1, −1 ≤ 𝑡 < 0, 𝑟 ≥ −𝑡 and 𝑠 ≥ 1.
If 𝐴 ≥ 𝐵 ≥ 0 with 𝐴 > 0; then

(𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐴
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ 𝐴
(𝑟+𝑡)/2

𝐵𝐴
(𝑟+𝑡)/2

.

(8)

Theorem7 (see [12]). Let 𝑝 ≥ 1, −1 ≤ 𝑡 < 0, 𝑟 ≥ −𝑡 and 𝑠 ≥ 1.
If 𝐴 ≥ 𝐵 ≥ 0 with 𝐴 > 0; then

(𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐴
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ 𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(1+𝑡)/(𝑝+𝑡)

𝐴
𝑟/2

.

(9)

Theorems 6 and 7 are extensions of Theorem 5.
In Section 3, we will show a unified satellite theorem

which is an extension of Theorems 6 and 7 via the complete
forms of Furuta inequality with negative powers.

Lastly, it is known that Riccati type operator equations
𝐾 = 𝑇𝐻𝑇 − 𝑇𝐶 − 𝐶

∗
𝑇 relate to control theory closely and

have been studied extensively [13]. Pedersen andTakesaki [14]
developed the special kind of Riccati equation 𝐾 = 𝑇𝐻𝑇

as a useful tool for the noncommutative Radon-Nikodym
theorem.

Yuan and Gao [15] discussed the Riccati type equation:

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(𝑝−𝛿)/(𝛿+𝑟)

𝑇
1/2

𝐻
𝛿/2

. (10)

In Section 4, as a continuation of [15, 16], we will consider
the Riccati type equation:

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(1/𝑤)−1

𝑇
1/2

𝐻
𝛿/2 (11)

via Furuta type inequalities.

2. Furuta Type Inequalities under
the Order 𝐴 ≥ 𝐵 ≥ 0

Reference [17] proved a kind of equivalent relationswhich can
be regarded as a parallel result to Theorem 4.

Theorem8 (see [17]). Let 𝑟 > 0, 0 < 𝑝0 < 𝑝,𝐴 ≥ 0 and𝐵 ≥ 0.
If ker(𝐴𝐵𝑝0/2) ⊆ ker𝐵, then, for each 𝑟, 𝑝0 and 𝑝, the following
inequalities are equivalent to each other:

(𝐵
𝑝0/2𝐴
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

≥ (resp. ≤) (𝐵𝑝0/2𝐵𝑟𝐵𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

,

(12)

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝0+𝑟)

≥ (resp. ≤) (𝐴𝑟/2𝐵𝑝𝐴𝑟/2)
(𝑝+𝑟)/(𝑝+𝑟)

.

(13)

In particular, (12) implies (13)without condition ker(𝐴𝐵𝑝0/2) ⊆
ker𝐵.

The proof of Theorem 8 is different fromTheorem 4 and
independent of (L-H).

In this section, we consider some Furuta type inequalities
under the order 𝐴 ≥ 𝐵 ≥ 0. As applications, alternate
proofs of some Furuta type inequalities are given (proofs of
Theorems 10 and 2). Especially, we prove (FI) without using
the invertibility of operators.

Theorem 9. Let 1 ≥ 𝑟 > 0, 𝐴 ≥ 𝐵 ≥ 0.

(1) For each 𝑝0 > 0 and 𝑝 with 𝑝0 < 𝑝 ≤ 2𝑝0 + 𝑟, the
following inequalities hold and they are equivalent to
each other:

(𝐵
𝑝0/2𝐴
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

≥ (𝐵
𝑝0/2𝐵
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

,

(14)

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝0+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝+𝑟)

. (15)

(2) For each 𝑝0 > 0 and 𝑝 with 𝑝0 < 𝑝 ≤ 2𝑝0 + 𝑟, the
following inequalities hold:

(𝐴
𝑝0/2𝐵
𝑟
𝐴
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

≤ (𝐴
𝑝0/2𝐴
𝑟
𝐴
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

,

(16)

(𝐵
𝑟/2

𝐴
𝑝0𝐵
𝑟/2

)
(𝑝+𝑟)/(𝑝0+𝑟)

≤ (𝐵
𝑟/2

𝐴
𝑝
𝐵
𝑟/2

)
(𝑝+𝑟)/(𝑝+𝑟)

. (17)

(3) If 𝑝 > 1, then

𝐴
1+𝑟

≥ 𝐴
𝑟/2

𝐵𝐴
𝑟/2

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(1+𝑟)/(𝑝+𝑟)

, (18)

𝐵
1+𝑟

≤ 𝐵
𝑟/2

𝐴𝐵
𝑟/2

≤ (𝐵
𝑟/2

𝐴
𝑝
𝐵
𝑟/2

)
(1+𝑟)/(𝑝+𝑟)

. (19)
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Proof. (1) Since 𝑝0 < 𝑝 ≤ 2𝑝0 + 𝑟, 1 ≥ (𝑝 − 𝑝0)/(𝑟 + 𝑝0) > 0

follows. By 𝐴 ≥ 𝐵 ≥ 0 and (L-H) for 1 ≥ 𝑟 > 0 and 1 ≥

(𝑝 − 𝑝0)/(𝑟 + 𝑝0) > 0, we have

𝐴
𝑟
≥ 𝐵
𝑟
, 𝐵

𝑝0/2𝐴
𝑟
𝐵
𝑝0/2 ≥ 𝐵

𝑝0/2𝐵
𝑟
𝐵
𝑝0/2,

(𝐵
𝑝0/2𝐴
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

≥ (𝐵
𝑝0/2𝐵
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

.

(20)

Hence, (14) holds. Since 𝐴 ≥ 𝐵 ≥ 0, ker(𝐴𝐵𝑝0/2) ⊆ ker𝐵
follows. So, the equivalency follows byTheorem 8.

(2) Similar to the proof of (14), we have

𝐴
𝑟
≥ 𝐵
𝑟
, 𝐴

𝑝0/2𝐵
𝑟
𝐴
𝑝0/2 ≤ 𝐴

𝑝0/2𝐴
𝑟
𝐴
𝑝0/2,

(𝐴
𝑝0/2𝐵
𝑟
𝐴
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

≤ (𝐴
𝑝0/2𝐴
𝑟
𝐴
𝑝0/2)
(𝑝−𝑝0)/(𝑟+𝑝0)

.

(21)

Hence, (16) holds. Since (12) implies (13) without kernel
condition, (17) follows by (16).

(3) By (15), there exists the function 𝑑(𝑡) = 𝑡+𝑟 defined on
(0,∞) satisfying [18, Lemma 2.6(1)]. Hence, case 1 = 𝑝0 < 𝑝

of [18, Lemma 2.6(2)] implies

(𝐴
𝑟/2

𝐵𝐴
𝑟/2

)
(min{𝑝,2+𝑟}+𝑟)/(1+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(min{𝑝,2+𝑟}+𝑟)/(𝑝+𝑟)

.

(22)

So (18) holds by 𝐴 ≥ 𝐵 ≥ 0 and (L-H) for (1 + 𝑟)/(min{𝑝, 2 +
𝑟} + 𝑟) ∈ (0, 1). It is easy to prove (19) in a similar way.

As prompt applications, we show alternate proofs of some
Furuta type inequalities.

Theorem 10 (see [19]). Let 𝛼 > 0, 𝛽0 > 0, 𝐴 ≥ 0, 𝐵 ≥ 0. For 𝛿
such that −𝛽0 < 𝛿 ≤ 𝛼, if

(𝐵
𝛽0/2𝐴
𝛼
𝐵
𝛽0/2)
(𝛿+𝛽0)/(𝛼+𝛽0)

≥ (resp. ≤) 𝐵𝛿+𝛽0 , (23)

then

(𝐵
𝛽/2

𝐴
𝛼
𝐵
𝛽/2

)
(𝛿+𝛽)/(𝛼+𝛽)

≥ (resp. ≤) 𝐵𝛿+𝛽, (24)

where 𝛽 ≥ 𝛽0. Moreover, for each 𝛿
󸀠
> −𝛼, the function

𝑓 (𝛽) = (𝐴
𝛼/2

𝐵
𝛽
𝐴
𝛼/2

)
(𝛿
󸀠
+𝛼)/(𝛽+𝛼) (25)

is decreasing (resp., increasing) for 𝛽 ≥ max{𝛽0, 𝛿
󸀠
}.

Proof. It is enough to prove the case ≥ because the case ≤ can
be proved in a similar manner. Denote (23) by 𝐴1 ≥ 𝐵1; that
is,

𝐴1 = (𝐵
𝛽0/2𝐴
𝛼
𝐵
𝛽0/2)
(𝛿+𝛽0)/(𝛼+𝛽0)

, 𝐵1 = 𝐵
𝛿+𝛽0 . (26)

For 1 ≥ 𝑟1 > 0, 𝑝1 ≥ 1, by (19) of Theorem 9, we have

(𝐵
𝑟1/2

1
𝐴
𝑝

1
𝐵
𝑟1/2

1
)
(1+𝑟1)/(𝑝1+𝑟1)

≥ 𝐵
1+𝑟1
1

. (27)

By putting 𝑝1 = (𝛼 + 𝛽0)/(𝛿 + 𝛽0), the inequality above
becomes

(𝐵
(𝛽0+(𝛿+𝛽0)𝑟1)/2𝐴

𝛼
𝐵
(𝛽0+(𝛿+𝛽0)𝑟1)/2)

(𝛿+𝛽0+(𝛿+𝛽0)𝑟1)/(𝛼+𝛽0+(𝛿+𝛽0)𝑟1)

≥ 𝐵
𝛿+𝛽0+(𝛿+𝛽0)𝑟1 .

(28)

This implies that (24) holds for 𝛽0 ≤ 𝛽 ≤ 𝛽1 = 𝛽0 + (𝛿 +

𝛽0). Denote 𝐴2 = (𝐵
𝛽1/2𝐴
𝛼
𝐵
𝛽1/2)
(𝛿+𝛽1)/(𝛼+𝛽1) and 𝐵2 = 𝐵

𝛿+𝛽1 ;
repeating this process, (24) holds for 𝛽 ≥ 𝛽0.

For each 𝛿
󸀠
> −𝛼, 𝛽1 ≥ max{𝛽0, 𝛿

󸀠
}, by (24) and (L-H),

(𝐵
𝛽1/2𝐴
𝛼
𝐵
𝛽1/2)
(𝛿+𝛽1)/(𝛼+𝛽1)

≥ 𝐵
𝛿+𝛽1 ,

(𝐵
𝛽1/2𝐴
𝛼
𝐵
𝛽1/2)

V/(𝛼+𝛽1)
≥ 𝐵

V
,

(29)

where 0 < V ≤ 𝛿+𝛽0.This togetherwithTheorem 8 and (L-H)
deduce that

(𝐴
𝛼/2

𝐵
𝛽1𝐴
𝛼/2

)
(V+𝛽1+𝛼)/(𝛽1+𝛼)

≥ (𝐴
𝛼/2

𝐵
V+𝛽1𝐴
𝛼/2

)
(V+𝛽1+𝛼)/(V+𝛽1+𝛼)

,

(𝐴
𝛼/2

𝐵
𝛽1𝐴
𝛼/2

)
(𝛿
󸀠
+𝛼)/(𝛽1+𝛼)

≥ (𝐴
𝛼/2

𝐵
𝛽2𝐴
𝛼/2

)
(𝛿
󸀠
+𝛼)/(𝛽2+𝛼)

,

(30)

where 𝛽2 = V + 𝛽1 ∈ (𝛽1, 𝛿 + 𝛽0 + 𝛽1]. So, the monotonicity
of the function 𝑓(𝛽) holds.

It should be pointed out that, if 𝛿 = 0 and 0 < 𝛽 < 𝛽0, the
assertion that (23) ensures (24) is not true [15, Theorem 2.8].

Theorem 11 (see [15]). Given any positive numbers 𝑝, 𝑟, 𝑝1,
and 𝑟1 with 𝑟1 > 𝑟, there exist invertible positive operators 𝐻
and 𝐾 such that

𝐻
𝑟1 ≥ (𝐻

𝑟1/2𝐾
𝑝1𝐻
𝑟1/2)
𝑟1/(𝑝1+𝑟1)

,

𝑎𝐻
𝑟

̸≥ (𝐻
𝑟/2

𝐾
𝑝
𝐻
𝑟/2

)
𝑟/(𝑝+𝑟)

,

(31)

where 𝑎 is an arbitrary positive number.

Alternate Proof of Theorem 2. The case 𝑟 ≥ 0 and 0 < 𝑝 ≤ 1

of Theorem 2 follows by (L-H) directly. Theorem 9(3) means
the case 0 < 𝑟 ≤ 1 and 𝑝 > 1 ofTheorem 2; this together with
Theorem 10 implies the case 𝑟 > 0 and 𝑝 > 1 of Theorem 2.
So, the proof is complete.

The proof above says that the original form of Furuta
inequality (Theorem 2) is a composition of (L-H), Theorems
9 and 10. The proof here is independent of the invertibility of
the operators 𝐴 and 𝐵.

3. A Unified Satellite Theorem of
Grand Furuta Inequalities

Denote := (𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
1/(𝑝+𝑡)

, where 𝑝 + 𝑡 ̸= 0.
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Theorem 12. Let −1 ≤ 𝑡 < 0, 𝑝 ≥ 1, 𝑝 ≥ 1, 𝐶 ≥ 𝐴 ≥ 𝐵 ≥ 0

with 𝐴 > 0.

(1) If 𝑟 ≥ −𝑡, 𝑠 ≥ 1, 1 ≤ 𝑝0 ≤ 𝑝 and 1 ≤ 𝑝0 ≤ 𝑝, then

(𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐴
𝑟/2

)

(𝑝0+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ 𝐴
(𝑟+𝑡)/2

𝐵
𝑝0𝐴
(𝑟+𝑡)/2

≤ 𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(𝑝0+𝑡)/(𝑝+𝑡)

𝐴
𝑟/2

.

(32)

(2) If 𝑟 ≥ −𝑡 and 𝑠 ≥ 1, then

(𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐶
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ 𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(1+𝑡)/(𝑝+𝑡)

𝐶
𝑟/2

.

(33)

The case 𝐶 = 𝐴 of Theorem 12(2) is just Theorem 7. The
special case 𝑝0 = 1 ofTheorem 12(1) implies the result below.

Corollary 13. Let −1 ≤ 𝑡 < 0, 𝑝 ≥ 1, 𝑝 ≥ 1, 𝐴 ≥ 𝐵 ≥ 0 with
𝐴 > 0. If 𝑟 ≥ −𝑡 and 𝑠 ≥ 1, then

(𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐴
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ 𝐴
(𝑟+𝑡)/2

𝐵𝐴
(𝑟+𝑡)/2

≤ 𝐴
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(1+𝑡)/(𝑝+𝑡)

𝐴
𝑟/2

.

(34)

It is obvious that the special case 𝑝 = 𝑝 of Corollary 13 is
a unified result ofTheorems 6 and 7; that is, it is an extension
ofTheorems 6 and 7. So, we callTheorem 12 a unified satellite
theorem of grand Furuta inequality (Theorem 5).

In order to give a proof, we prepare some results in
advance.

Lemma 14 (see [18]). Let −1 ≤ 𝑡 < 0, 𝑝 ≥ 1 and 𝑠 ≥ 1. Then
𝐶 ≥ 𝐴 ≥ 𝐵 ≥ 0 with 𝐴 > 0 ensures that the function

𝑓 (𝑠) = (𝐶
−𝑡/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐶
−𝑡/2

)

1/((𝑝+𝑡)𝑠−𝑡)

(35)

is decreasing for 𝑠 ≥ 1. In particular,

𝐶 ≥ (𝐶
−𝑡/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐶
−𝑡/2

)

1/((𝑝+𝑡)𝑠−𝑡)

. (36)

Lemma 15 (see [18]). Let −1 ≤ 𝑡 < 0, 𝑝 ≥ 1, 𝑟 ≥ −𝑡, 1 ≤ 𝑠0 < 𝑠

and 𝛿 = min{(𝑝 + 𝑡)𝑠, 2(𝑝 + 𝑡)𝑠0}. Then 𝐶 ≥ 𝐴 ≥ 𝐵 ≥ 0 with
𝐴 > 0 ensures

(𝐶
𝑟/2

𝐷
(𝑝+𝑡)𝑠0𝐶

𝑟/2
)
(𝛿+𝑟)/((𝑝+𝑡)𝑠0+𝑟)

≥ (𝐶
𝑟/2

𝐷
(𝑝+𝑡)𝑠

𝐶
𝑟/2

)
(𝛿+𝑟)/((𝑝+𝑡)𝑠+𝑟)

.

(37)

Lemma 16. Let 𝑟 < 0, 𝐴 > 0 and 𝐵 ≥ 0. Then the following
assertion (1) implies (2).

(1) There exists an increasing function 𝑑(𝑝) : (−𝑟,∞) →

(0,∞) such that, for each 𝑝0 > −𝑟, if 𝑝0 < 𝑝 ≤ 𝑝0 +

𝑑(𝑝0), then

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝0+𝑟)

≥ (resp. ≤) (𝐴𝑟/2𝐵𝑝𝐴𝑟/2)
(𝑝+𝑟)/(𝑝+𝑟)

.

(38)

(2) The function 𝑑(𝑝) : (−𝑟,∞) → (0,∞) in (1) satisfies
that, for each 𝑝0 > −𝑟, if 𝑝0 < 𝑝, then

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(min{𝑝,𝑝0+𝑑(𝑝0)}+𝑟)/(𝑝0+𝑟)

≥ (resp. ≤) (𝐴𝑟/2𝐵𝑝𝐴𝑟/2)
(min{𝑝,𝑝0+𝑑(𝑝0)}+𝑟)/(𝑝+𝑟)

.

(39)

Lemma 16 is a complement to [18, Lemma 2.6].

Proof. It is sufficient to prove the case ≥ for the case ≤ can be
proved in a similar manner. For each 𝑝0 > 0 and 𝑝0 < 𝑝, if
𝑝 ≤ 𝑝0 + 𝑑(𝑝0), then (2) follows by (1) immediately. Suppose
that 𝑝𝑛 < 𝑝 ≤ 𝑝𝑛+1 = 𝑝𝑛 + 𝑑(𝑝𝑛) for some positive integer 𝑛
and 𝑝1 = 𝑝0 + 𝑑(𝑝0). By (1), for 𝑘 = 0, 1, . . . , 𝑛 − 1, we have

(𝐴
𝑟/2

𝐵
𝑝𝑘𝐴
𝑟/2

)
(𝑝𝑘+1+𝑟)/(𝑝𝑘+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝𝑘+1𝐴
𝑟/2

)
(𝑝𝑘+1+𝑟)/(𝑝𝑘+1+𝑟)

,

(𝐴
𝑟/2

𝐵
𝑝𝑛𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝𝑛+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝑝+𝑟)/(𝑝+𝑟)

.

(40)

Noting that ((𝑝1+𝑟)/(𝑝𝑘+1+𝑟)) ∈ [0, 1] and ((𝑝1+𝑟)/(𝑝+𝑟)) ∈
[0, 1], these together with (L-H) deduce that

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝑝1+𝑟)/(𝑝0+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝1𝐴
𝑟/2

)
(𝑝1+𝑟)/(𝑝1+𝑟)

≥ ⋅ ⋅ ⋅ ≥ (𝐴
𝑟/2

𝐵
𝑝𝑛𝐴
𝑟/2

)
(𝑝1+𝑟)/(𝑝𝑛+𝑟)

≥ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝑝1+𝑟)/(𝑝+𝑟)

.

(41)

Therefore, the function 𝑑 in (1) satisfies (2).

Lemma 17. Let 0 > 𝑟 ≥ −1, 𝑝 > 𝑝0 > −𝑟 and 𝛽 =

min{𝑝, 2𝑝0 + 𝑟}; then 𝐴 ≥ 𝐵 ≥ 0 with 𝐴 > 0 ensures

(𝐴
𝑟/2

𝐵
𝑝0𝐴
𝑟/2

)
(𝛽+𝑟)/(𝑝0+𝑟)

≤ (𝐴
𝑟/2

𝐵
𝑝
𝐴
𝑟/2

)
(𝛽+𝑟)/(𝑝+𝑟)

. (42)

Proof. Firstly, we prove the case 𝑝 ≤ 2𝑝0 + 𝑟 of Lemma 17. By
[10, Lemma 1], (42) is equivalent to

𝐴
𝑟/2

𝐵
𝑝0/2(𝐵

𝑝0/2𝐴
𝑟
𝐵
𝑝0/2)
(𝑝−𝑝0)/(𝑝0+𝑟)

𝐵
𝑝0/2𝐴
𝑟/2

≤ 𝐴
𝑟/2

𝐵
𝑝0/2𝐵
𝑝−𝑝0𝐵
𝑝0/2𝐴
𝑟/2

.

(43)

On the other hand, (𝐵𝑝0/2𝐴𝑟𝐵𝑝0/2)
(𝑝−𝑝0)/(𝑝0+𝑟)

≤ 𝐵
𝑝−𝑝0 holds

by Loewner-Heinz inequality for ((𝑝 − 𝑝0)/(𝑝0 + 𝑟)) ∈ (0, 1].
So (42) holds for 𝑝 ≤ 2𝑝0 + 𝑟.

Now, it is proved that (42) holds when −𝑟 < 𝑝0 <

𝑝 ≤ 2𝑝0 + 𝑟. Meanwhile, it is easy to see that the increasing
function 𝑑(𝑡) = 𝑡 + 𝑟 satisfies (1) of Lemma 16, so (42) holds
for −𝑟 < 𝑝0 < 𝑝.
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Proof of Theorem 12. By the case 𝑠0 = 1 of Lemma 15 and (L-
H) for ((𝑝0 + 𝑡 + 𝑟)/(𝛿 + 𝑟)) ∈ [0, 1],

(𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐶
𝑟/2

)

(𝑝0+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ (𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
) 𝐶
𝑟/2

)
(𝑝0+𝑡+𝑟)/((𝑝+𝑡)+𝑟)

.

(44)

(1) For 1 ≤ 𝑝0 ≤ 𝑝, Theorem 3 and (L-H) deduce that

(𝐴
(𝑟+𝑡)/2

𝐵
𝑝
𝐴
(𝑟+𝑡)/2

)
(𝑝0+𝑡+𝑟)/(𝑝+𝑟+𝑡)

≤ 𝐴
(𝑟+𝑡)/2

𝐵
𝑝0𝐴
(𝑟+𝑡)/2

.

(45)

Meanwhile, for −1 ≤ 𝑡 < 0 and 1 ≤ 𝑝0 ≤ 𝑝, Lemma 17
and (L-H) imply

𝐴
𝑡/2
𝐵
𝑝0𝐴
𝑡/2

≤ (𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(𝑝0+𝑡)/(𝑝+𝑡)

. (46)

Hence, (1) follows by the case𝐶 = 𝐴 of (44), (45), and
(46).

(2) By (L-H), (44), 𝑓(1) ≤ 𝐶, Theorem 3 and Lemma 17
ensure

(𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
𝑠

𝐶
𝑟/2

)

(1+𝑡+𝑟)/((𝑝+𝑡)𝑠+𝑟)

≤ (𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
) 𝐶
𝑟/2

)
(1+𝑡+𝑟)/((𝑝+𝑡)+𝑟)

by (44) and (L-H)

= (𝐶
(𝑟+𝑡)/2

(𝐶
−𝑡/2

𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
𝐶
−𝑡/2

)
(1/𝑝)𝑝

×𝐶
(𝑟+𝑡)/2

)

(1+𝑟+𝑡)/(𝑝+𝑟+𝑡)

= (𝐶
(𝑟+𝑡)/2

(𝑓 (1))
𝑝
𝐶
(𝑟+𝑡)/2

)
(1+𝑟+𝑡)/(𝑝+𝑟+𝑡)

≤ (𝐶
(𝑟+𝑡)/2

(𝑓 (1))
1
𝐶
(𝑟+𝑡)/2

)
(1+𝑟+𝑡)/(1+𝑟+𝑡)

by 𝑓 (1) ≤ 𝐶, Theorem 3 and (L-H)

= 𝐶
𝑟/2

𝐶
𝑡/2
(𝑓 (1))

1
𝐶
𝑡/2
𝐶
𝑟/2

≤ 𝐶
𝑟/2

(𝐶
𝑡/2
(𝑓 (1))

𝑝
𝐶
𝑡/2
)
(1+𝑡)/(𝑝+𝑡)

𝐶
𝑟/2

by 𝑓 (1) ≤ 𝐶, Lemma 17 and (L-H)

= 𝐶
𝑟/2

(𝐴
𝑡/2
𝐵
𝑝
𝐴
𝑡/2
)
(1+𝑡)/(𝑝+𝑡)

𝐶
𝑟/2

.

(47)

The 𝑓(𝑠) above is the same as the function 𝑓(𝑠) in Lemma
14.

4. Riccati Type Operator Equations

Yuan and Gao [15] discussed the Riccati type equation:

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(𝑝−𝛿)/(𝛿+𝑟)

𝑇
1/2

𝐻
𝛿/2

. (48)

Theorem 18 (see [15]). Let 𝐻 ≥ 0, 𝐾 ≥ 0 and assume that
ker𝐻 = {0}.

(1) The following statements are equivalent for each 𝑝 > 0,
𝑟 > 0 and 𝑝 ≥ 𝛿 ≥ 0.

(a) 𝑎𝐻𝛿+𝑟 ≥ (𝐻
𝑟/2

𝐾
𝑝
𝐻
𝑟/2

)
(𝛿+𝑟)/(𝑝+𝑟)

for some 𝑎 ≥ 0.
(b) There exists a unique operator𝑇 ≥ 0 that satisfies

‖𝑇‖ ≤ 𝑎 and (48).

If in additional𝐻 is invertible, (1) holds for𝑝 ≥ 𝛿 > −𝑟.
(2) If there exists 𝑇 ≥ 0 satisfying (48) for fixed 𝑝 > 0,

𝑟 > 0 and 𝑝 ≥ 𝛿 ≥ 0, then, for 𝑝1 ≥ 𝑝 and 𝑟1 ≥ 𝑟, there
exists 𝑇1 ≥ 0 satisfying

𝐾
𝑝1 = 𝐻

𝛿/2
𝑇
1/2

1
(𝑇
1/2

1
𝐻
𝛿+𝑟1𝑇
1/2

1
)
(𝑝1−𝛿)/(𝛿+𝑟1)

𝑇
1/2

1
𝐻
𝛿/2

. (49)

One of the applications of Riccati equation (48) is to
show that the inclusion relations among class 𝐴(𝑝, 𝑟) oper-
ators are strict [15, Theorem 3.1]. Recently, there are some
developments on operator equations including the following
equation (see [16, 20]):

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(1/𝑤)−1

𝑇
1/2

𝐻
𝛿/2

. (50)

Obviously, the special case 𝑤 = (𝛿 + 𝑟)/(𝑝 + 𝑟) of (50) is
just (48).

Theorem 19 (see [16]). Let 𝐻 ≥ 0, 𝐾 ≥ 0 and assume that
ker𝐻 = {0}. The following statements are equivalent for each
𝑝 > 0, 𝑟 > 0, 𝛿 ≥ 0 and 0 < 𝑤 ≤ 1.

(1) 𝑎𝐻𝛿+𝑟 ≥ (𝐻
𝑟/2

𝐾
𝑝
𝐻
𝑟/2

)
𝑤

for some 𝑎 ≥ 0.
(2) There exists a unique operator 𝑇 ≥ 0 which satisfies

‖𝑇‖ ≤ 𝑎 and (50).

If in additional 𝐻 is invertible, the condition 𝛿 ≥ 0 can be
replacedwith 𝛿 ∈ RwhereRmeans the set of all real numbers,
and if 𝐻 and 𝐾 are both invertible, the conditions 𝛿 ≥ 0 and
0 < 𝑤 ≤ 1 can be replaced with 𝛿 ∈ R and 𝑤 ̸= 0.

The case 𝑤 = (𝛿 + 𝑟)/(𝑝 + 𝑟) of Theorem 19 is a
generalization of Theorem 18(1). In this section, we give a
generalization of Theorem 18(2).

Lemma 20. Let 𝛼 > 0, 𝛽0 > 0, 𝛼󸀠 > 0, 𝛽󸀠
0
> 0, 𝐴 ≥ 0, 𝐵 ≥ 0.

For 𝛿 and 𝛿
󸀠 such that 𝛿 ∈ (−𝛽0,∞) and 𝛿

󸀠
∈ (−𝛽

󸀠

0
, 𝛼
󸀠
], if

(𝐵
𝛽0/2𝐴
𝛼
𝐵
𝛽0/2)
(𝛿
󸀠
+𝛽
󸀠

0
)/(𝛼
󸀠
+𝛽
󸀠

0
)

≥ (𝑟𝑒𝑠𝑝. ≤) 𝐵
𝛿+𝛽0 , (51)

then, for 𝛽 ≥ 𝛽0,

(𝐵
𝛽/2

𝐴
𝛼
𝐵
𝛽/2

)
(𝛿
󸀠
+𝛽
󸀠
)/(𝛼
󸀠
+𝛽
󸀠
)

≥ (𝑟𝑒𝑠𝑝. ≤) 𝐵
𝛿+𝛽

, (52)

where 𝛽󸀠 = ((𝛽(𝛿
󸀠
+ 𝛽
󸀠

0
) + 𝛽
󸀠

0
𝛿 − 𝛽0𝛿

󸀠
)/(𝛿 + 𝛽0))(≥ 𝛽

󸀠

0
).

The case 𝛼 = 𝛼
󸀠, 𝛽0 = 𝛽

󸀠

0
and 𝛿 = 𝛿

󸀠 of Lemma 20 implies
Theorem 10. The case 𝛼 = 𝛼

󸀠, 𝛽0 = 𝛽
󸀠

0
and 𝛿 = 𝛿

󸀠
= 0 of

Lemma 20 implies Yanagida’s result [21, Proposition 4].
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Proof. It is enough to prove the case ≥ because the case ≤ can
be proved in a similar manner. Denote (51) by 𝐴1 ≥ 𝐵1; that
is,

𝐴1 = (𝐵
𝛽0/2𝐴
𝛼
𝐵
𝛽0/2)
(𝛿
󸀠
+𝛽
󸀠

0
)/(𝛼
󸀠
+𝛽
󸀠

0
)

, 𝐵1 = 𝐵
𝛿+𝛽0 . (53)

For 𝑟1 > 0, 𝑝1 ≥ 1, by (FI) (Theorem 2), we have

(𝐵
𝑟1/2

1
𝐴
𝑝1
1
𝐵
𝑟1/2

1
)
(1+𝑟1)/(𝑝1+𝑟1)

≥ 𝐵
1+𝑟1
1

. (54)

By putting𝑝1 = ((𝛼
󸀠
+𝛽
󸀠

0
)/(𝛿
󸀠
+𝛽
󸀠

0
))(≥ 1), the inequality above

becomes

(𝐵
(𝛽0+(𝛿+𝛽0)𝑟1)/2𝐴

𝛼

×𝐵
(𝛽0+(𝛿+𝛽0)𝑟1)/2)

(𝛿
󸀠
+𝛽
󸀠

0
+(𝛿
󸀠
+𝛽
󸀠

0
)𝑟1)/(𝛼

󸀠
+𝛽
󸀠

0
+(𝛿
󸀠
+𝛽
󸀠

0
)𝑟1)

≥ 𝐵
𝛿+𝛽0+(𝛿+𝛽0)𝑟1 .

(55)

Denote 𝛽 = 𝛽0 + (𝛿 + 𝛽0)𝑟1 and 𝛽
󸀠
= 𝛽
󸀠

0
+ (𝛿
󸀠
+ 𝛽
󸀠

0
)𝑟1; then

𝛽 ≥ 𝛽0 and 𝛽
󸀠
= ((𝛽(𝛿

󸀠
+ 𝛽
󸀠

0
) + 𝛽
󸀠

0
𝛿 − 𝛽0𝛿

󸀠
)/(𝛿 + 𝛽0)) ≥ 𝛽

󸀠

0
, so

that (52) holds by the inequality above.

Theorem 21. Let𝐻 ≥ 0, 𝐾 ≥ 0 and assume that ker𝐻 = {0}.
For each 𝑝 > 0, 𝑟 > 0 and 𝛿 ≥ 0, if there exists 𝑇 ≥ 0 satisfying
the equation

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(𝑝
󸀠
−𝛿
󸀠
)/(𝛿
󸀠
+𝑟
󸀠
)

𝑇
1/2

𝐻
𝛿/2

, (56)

where 𝑝󸀠 > 0, 𝑟󸀠 > 0 and −𝑟
󸀠
< 𝛿
󸀠
≤ 𝑝
󸀠. Then, for 𝑟1 ≥ 𝑟 and

𝑟
󸀠

1
= ((𝑟1(𝛿

󸀠
+𝑟
󸀠
) + 𝑟
󸀠
𝛿−𝑟𝛿

󸀠
)/(𝛿+ 𝑟))(≥ 𝑟

󸀠
), there exists 𝑇1 ≥ 0

satisfying

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

1
(𝑇
1/2

1
𝐻
𝛿+𝑟1𝑇
1/2

1
)
(𝑝
󸀠
−𝛿
󸀠
)/(𝛿
󸀠
+𝑟
󸀠

1
)

𝑇
1/2

1
𝐻
𝛿/2

. (57)

If 𝐻 is invertible, the condition 𝛿 ≥ 0 can be replaced with
𝛿 > −𝑟.

Proof. By the assumption, (1) of Theorem 19 holds for some
𝑎 > 0; that is,

(𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝛿+𝑟

≥ ((𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝑟/2

×𝐾
𝑝
(𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝑟/2

)

𝑤

.

(58)

So, the following holds by Lemma 20:

(𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝛿+𝑟1

≥ ((𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝑟1/2

×𝐾
𝑝
(𝑎
1/(𝛿+𝑟(1−𝑤))

𝐻)
𝑟1/2

)

(𝛿
󸀠
+𝑟
󸀠

1
)/(𝑝
󸀠
+𝑟
󸀠

1
)

,

(59)

where 𝑟󸀠
1
= ((𝑟1(𝛿

󸀠
+ 𝑟
󸀠
) + 𝑟
󸀠
𝛿 − 𝑟𝛿

󸀠
)/(𝛿 + 𝑟))(≥ 𝑟

󸀠
); that is,

𝑎
(𝛿+𝑟1(1−𝑤1))/(𝛿+𝑟(1−𝑤))𝐻

𝛿+𝑟1 ≥ (𝐻
𝑟1/2𝐾
𝑝
𝐻
𝑟1/2)
𝑤1
, (60)

where𝑤1 = ((𝛿
󸀠
+𝑟
󸀠

1
)/(𝑝
󸀠
+𝑟
󸀠

1
)) ∈ (0, 1]. Hence, (57) is solvable

byTheorem 19.

The result below is the case 𝑟 = 𝑟
󸀠 and 𝛿 = 𝛿

󸀠 of Theorem
21.

Corollary 22. Let𝐻 ≥ 0,𝐾 ≥ 0 and assume that ker𝐻 = {0}.
For each 𝑝 > 0, 𝑟 > 0 and 𝛿 ≥ 0, if there exists 𝑇 ≥ 0 satisfying
the equation

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

(𝑇
1/2

𝐻
𝛿+𝑟

𝑇
1/2

)
(𝑝
󸀠
−𝛿)/(𝛿+𝑟)

𝑇
1/2

𝐻
𝛿/2

, (61)

where 𝑝󸀠 > 0 and 𝑝
󸀠
≥ 𝛿. Then, for 𝑟1 ≥ 𝑟, there exists 𝑇1 ≥ 0

satisfying

𝐾
𝑝
= 𝐻
𝛿/2

𝑇
1/2

1
(𝑇
1/2

1
𝐻
𝛿+𝑟1𝑇
1/2

1
)
(𝑝
󸀠
−𝛿)/(𝛿+𝑟1)

𝑇
1/2

1
𝐻
𝛿/2

. (62)

If 𝐻 is invertible, the condition 𝛿 ≥ 0 can be replaced with
𝛿 > −𝑟.

It is obvious that Corollary 22 is a generalization of the
case 𝑝1 = 𝑝 of Theorem 18(2).
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