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MEMS/GPS integrated navigation systemhas beenwidely used for land-vehicle navigation.This systemexhibits large errors because
of its nonlinear model and uncertain noise statistic characteristics. Based on the principles of the adaptive Kalman filtering (AKF)
and unscented Kalman filtering (AUKF) algorithms, an adaptive unscented Kalman filtering (AUKF) algorithm is proposed. By
using noise statistic estimator, the uncertain noise characteristics could be online estimated to adaptively compensate the time-
varying noise characteristics. Employing the adaptive filtering principle into UKF, the nonlinearity of system can be restrained.
Simulations are conducted for MEMS/GPS integrated navigation system. The results show that the performance of estimation is
improved by the AUKF approach compared with both conventional AKF and UKF.

1. Introduction

Microelectromechanical systems (MEMS) and Global Posi-
tioning System (GPS) integrated navigation system have the
advantages of small size, light weight, and low cost, but,
because of its low accuracy, it can only be applied in low
accuracy navigation fields such as unmanned aircrafts and
land-vehicles [1, 2].There are threemain factors impacting its
performance: (a) the inaccuracy of model parameters, (b) the
uncertainty of measurement and observation noise statistic
properties, and (c) the nonlinearity of model [3, 4].

The classical Kalman filter (KF) provides a recursive solu-
tion for estimation of linear dynamic systems.The optimality
of the KF algorithm is mainly dependent on a priori statistic
of the process and measurement noise and the linear system
model. However, if the priori information is insufficient or
biased, the precision of the estimated states will be degraded,
even leading to divergences [5]. In the case of MEMS/GPS
applications, the estimation system tends to be nonlinear as
well as variational noise properties [6]. Meanwhile, for the
vehicle navigation, there are many sudden motion changes.
To deal with these problems, the implement of AKF appears
to be one of suitable approaches [7].

By utilizing the innovation and residual information, the
AKF could adapt the filter stochastic properties online to
accommodate itself to changes in vehicle dynamics. Thus,
this technique could reduce the reliance of filter on the
prior statistical information and obtain the noise statistic
parameters of the dynamic system. The essence of AKF is to
adapt the filter weights, so as to restrain model errors and
improve the accuracy of filters. It is showed that applyingAKF
to the INS/GPS integrated navigation system could obtain
better estimated performance than by using conventional KF,
especially less than 20% root mean square error in attitude
estimation [8]. However, AKF is unreliable when it is applied
into the nonlinear applications.

UKF, which is another extension of Kalman filter, could
give reliable estimates even if the nonlinearities of system
are quiet severe [9]. The linearization procedure is avoided
by introducing the unscented transformation (UT), which
is a method to approximate the joint distribution of states
and measurements variables. In UT, a number of sigma
points are chosen which could maintain the desired mean
and covariance of states. Theoretically, the performance of
UKF could be close to that of the three-order Taylor series
expansion approximation or better than it [10]. However,
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many kinds of systems such as aircrafts, ships, and spacecrafts
would be intensively disturbed by external environment. As
a result, the statistical properties for system process and
measurement noises cannot be predicted, and UKF cannot
solve these problems effectively.

As a combination of AKF and UKF, the adaptive UKF has
been developed and applied to nonlinear joint estimation of
both time-varying states and parameters [11]. The adaptive
principles have been employed to update the means and
covariances of the process and measurement noises online.
The contributions of model predicted states and measure-
ment information for filtering are balanced. In this paper, a
new AUKF algorithm is proposed for MEMS/GPS integrated
navigation systems in vehicle applications. A noise estimator
for UKF is designed to estimate and update the means and
covariances of noises online. Then, the updated means and
covariances are propagating through the UKF. The proposed
AUKF has the adaptive ability to time-varying noises and
the noise estimates are unbiased. The performance of AUKF
applied in land navigation is evaluated by simulations and
the results show that the integrated system exhibits excellent
robustness and navigation performance.

2. Unscented Kalman Filtering Algorithm for
Nonzero Mean Noise

In the integrated navigation field, almost all of the systems
are nonlinear.The general nonlinear discrete systemmodel is
given as

𝑥𝑘 = 𝑓𝑘−1 (𝑥𝑘−1) + 𝑤𝑘−1,

𝑧𝑘 = ℎ𝑘 (𝑥𝑘) + V𝑘,
(1)

where 𝑥𝑘 ∈ 𝑅
𝑛 is the state vector, 𝑧𝑘 ∈ 𝑅

𝑚 is the measurement
vector, and 𝑓𝑘(⋅) ∈ 𝑅

𝑛×𝑛 and ℎ𝑘(⋅) ∈ 𝑅
𝑚×𝑛 are the state and

measurement matrices of nonlinear system, respectively. 𝑤𝑘

and V𝑘 are the Gaussian white noise which are unrelated. The
mean and covariance of 𝑤𝑘 and V𝑘 are given as follows:

𝐸 [𝑤𝑘] = 𝑞, cov [𝑤𝑘𝑤
𝑇

𝑗
] = 𝑄𝛿𝑘𝑗;

𝐸 [V𝑘] = 𝑟, cov [V𝑘V
𝑇

𝑗
] = 𝑅𝛿𝑘𝑗,

(2)

where 𝑞 and 𝑟 are nonzero constant variables and 𝛿𝑘𝑗 is a
Kronecker delta function.

The initial state 𝑥0 is uncorrelated with both the process
noise and measurement noise. These initial states exhibit
Gaussian normal distributions. The prior mean and covari-
ance matrices of 𝑥0 are defined by

𝑥0 = 𝐸 (𝑥0) ,

𝑃0 = cov (𝑥0) = 𝐸 (𝑥0 − 𝑥0) (𝑥0 − 𝑥0)
𝑇
.

(3)

Assuming that𝜇𝑘 = 𝑤𝑘−𝑞 and 𝜂𝑘 = V𝑘−𝑟 and substituting
them into (1) yield

𝑥𝑘 = 𝑓𝑘−1 (𝑥𝑘−1) + 𝑞 + 𝜇𝑘−1,

𝑧𝑘 = ℎ𝑘 (𝑥𝑘) + 𝑟 + 𝜂𝑘,

(4)

where the mean and covariance of 𝜇𝑘 and 𝜂𝑘 are given as
follows:

𝐸 [𝜇𝑘] = 0, cov [𝜇𝑘𝜇
𝑇

𝑗
] = 𝑄𝛿𝑘𝑗;

𝐸 [𝜂𝑘] = 0, cov [𝜂𝑘𝜂
𝑇

𝑗
] = 𝑅𝛿𝑘𝑗.

(5)

According to system model of (4), the recursive solution
of UKF algorithm is noted as follows.

(1) Sigma Points Sampling. In order to guarantee positive
semidefinite of state covariance, the modified sigma points
sampling solution based on the scaling method is adopted
[12].

Choose 2𝑛 + 1 sigma points 𝜉𝑖,𝑘/𝑘−1 as follows:

𝜉0,𝑘/𝑘−1 = 𝑥,

𝜉𝑖,𝑘/𝑘−1 = 𝑥 + (𝛼√(𝑛 + 𝜆) 𝑃)
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝜉𝑖,𝑘/𝑘−1 = 𝑥 − (𝛼√(𝑛 + 𝜆) 𝑃)
𝑖−𝐿

, 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(6)

where 𝑃 is the covariance of the state vector 𝑥, 𝛼√(𝑛 + 𝜆)𝑃 is
the matrix square root of 𝑛𝑃, and (𝛼√(𝑛 + 𝜆)𝑃)𝑖 denotes the
𝑖th row items of 𝛼√(𝑛 + 𝜆)𝑃.

(2) Prediction.Propagating these sigmapoints 𝜉𝑖,𝑘/𝑘−1 through
nonlinear state function 𝑓𝑘(⋅) + 𝑞, we obtain [13]

𝛾𝑖,𝑘/𝑘−1 = 𝑓𝑘−1 (𝜉𝑖,𝑘/𝑘−1) + 𝑞, 𝑖 = 0, 1, . . . , 2𝑛. (7)

Then, computing the predicted state 𝑥𝑘/𝑘−1, the predicted
covariance 𝑃𝑘/𝑘−1 is as follows:

𝑥𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝛾𝑖,𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑘−1 (𝜉𝑖,𝑘/𝑘−1) + 𝑞, (8)

𝑃𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑐

𝑖
(𝛾𝑖,𝑘/𝑘−1 − 𝑥𝑘/𝑘−1) (𝛾𝑖,𝑘/𝑘−1 − 𝑥𝑘/𝑘−1)

𝑇
+ 𝑄,

(9)

where 𝑊
𝑚

𝑖
and 𝑊

𝑐

𝑖
are associated weights:

𝑊
𝑚

0
=

𝜆

(𝑛 + 𝜆)

,

𝑊
𝑐

0
=

𝜆

(𝑛 + 𝜆)

+ (1 − 𝛼
2

+ 𝛽) ,

𝑊
𝑚

𝑖
=

1

2 (𝑛 + 𝜆)

, 𝑖 = 1, 2, . . . , 2𝑛,

𝑊
𝑐

𝑖
=

1

2 (𝑛 + 𝜆)

, 𝑖 = 1, 2, . . . , 2𝑛.

(10)

Parameter 𝜆 is a scaling parameter, which is defined by

𝜆 = 𝛼
2

(𝑛 + 𝜅) − 𝑛. (11)
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The parameters 𝛼, 𝛽, and 𝜅 are the positive constants in the
sampling method.

Then, propagating the sigma points 𝜉𝑖,𝑘/𝑘−1, the measure-
ment function ℎ𝑘(⋅) + 𝑟 yields

𝑥𝑖,𝑘/𝑘−1 = ℎ𝑘 (𝜉𝑖,𝑘/𝑘−1) + 𝑟, 𝑖 = 0, 1, . . . , 2𝑛. (12)

Computing the predicted measurement vector 𝑧̂𝑘/𝑘−1, the
covariance of the measurement 𝑃𝑧𝑘

and the cross-covariance
of the state and measurement 𝑃𝑥𝑘𝑧̃𝑘

are as follows:

𝑧̂𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑥𝑖,𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
ℎ𝑘 (𝜉𝑖,𝑘/𝑘−1) + 𝑟, (13)

𝑃𝑧𝑘
=

𝐿

∑

𝑖=0

𝑊
𝑐

𝑖
(𝑥𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1) (𝑥𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1)

𝑇
+ 𝑅,

𝑃𝑥𝑘𝑧̃𝑘
=

𝐿

∑

𝑖=0

𝑊
𝑐

𝑖
(𝛾𝑖,𝑘/𝑘−1 − 𝑥𝑘/𝑘−1) (𝑥𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1)

𝑇
.

(14)

(3) Updating.Then, computing the filter gain 𝐾𝑘, the updated
state 𝑥𝑘/𝑘 and covariance 𝑃𝑘/𝑘 are as follows:

𝐾𝑘 = 𝑃𝑥𝑘𝑧̃𝑘
(𝑃𝑧𝑘

)

−1

,

𝑥𝑘/𝑘 = 𝑥𝑘/𝑘−1 + 𝐾𝑘 (𝑧𝑘 − 𝑧̂𝑘/𝑘−1) ,

𝑃𝑘/𝑘 = 𝑃𝑘/𝑘−1 − 𝐾𝑘𝑃𝑧𝑘
(𝐾𝑘)
𝑇
.

(15)

3. Noise Statistic Estimator

Aiming at the uncertainty of process and measurement noise
statistic properties, the measurement information are used to
real time estimate and update the means and covariances of
noises. Assume that 𝑤𝑘 and V𝑘 are uncorrelated and obey the
Gaussian distributions. Based on the maximum a posterior
(MAP) principle, a noise statistic estimator is derived.

The noise parameters 𝑞, 𝑟 and the noise matrices 𝑄,
𝑅 are unknown and need to be estimated according to
the updated measurements. The MAP estimates of 𝑞, 𝑄,
𝑟, 𝑅 and the state 𝑥𝑘 are denoted as 𝑞, 𝑄, 𝑟, 𝑅̂, and 𝑥𝑗/𝑘,
respectively.The conditional distribution of interest based on
the measurements is expressed as

𝐽 = 𝑝 [𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅 | 𝑍𝑘] . (16)

Because 𝑝[𝑍𝑘] is disrelated to other parameters except
the estimate state, the problem in calculating (16) changes to
calculate the joint conditional probability distribution:

𝐽 = 𝑝 [𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅, 𝑍𝑘]

= 𝑝 [𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅] 𝑝 [𝑍𝑘 | 𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅] 𝑝 [𝑞, 𝑄, 𝑟, 𝑅] ,

(17)

where 𝑝[𝑞, 𝑄, 𝑟, 𝑅] can be treated as a constant which is
provided by the prior statistic information.

The original problem has changed to calculate the condi-
tional probability distributions 𝑝[𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅] and 𝑝[𝑍𝑘 |

𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅].
According to the Gaussian distributions of 𝜇𝑘, the con-

ditional probability distribution 𝑝[𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅] could be
expressed as

𝑝 [𝑋𝑘 | 𝑞, 𝑄, 𝑟, 𝑅]

= 𝑝 [𝑥0]

𝑘

∏

𝑗=1

𝑝 [𝑥𝑗 | 𝑥𝑗−1, 𝑞, 𝑄]

=

1

(2𝜋)
𝑛/2󵄨󵄨

󵄨
󵄨
𝑃0

󵄨
󵄨
󵄨
󵄨

1/2
exp {−

1

2

󵄩
󵄩
󵄩
󵄩
𝑥0 − 𝑥0

󵄩
󵄩
󵄩
󵄩

2

𝑃
−1

0

}

×

{

{

{

𝑘

∏

𝑗=1

1

(2𝜋)
𝑛/2

|𝑄|
1/2

× exp {−

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑗 − 𝑓𝑗−1 (𝑥𝑗−1) − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑄−1
}

}

}

}

= 𝐶1

󵄨
󵄨
󵄨
󵄨
𝑃0

󵄨
󵄨
󵄨
󵄨

−1/2
|𝑄|
−𝑘/2

× exp
{

{

{

−

1

2

󵄩
󵄩
󵄩
󵄩
𝑥0 − 𝑥0

󵄩
󵄩
󵄩
󵄩

2

𝑃
−1

0

+

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑗 − 𝑓𝑗−1 (𝑥𝑗−1) − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑄−1

}

}

}

,

(18)

where 𝑛 is the dimension of system state, 𝐶1 = 1/(2𝜋)
𝑛(𝑘+1)/2

is a constant, and |𝐴| is the determinant of 𝐴 and ‖𝑢‖
2

𝐴
=

𝑢
𝑇
𝐴𝑢.
Moreover, assuming that the measurements 𝑧1, 𝑧2, . . . , 𝑧𝑘

are known and unrelated to each other, the distribution of 𝜂𝑘

is Gaussian, which can be expressed as

𝑝 [𝑍𝑘 | 𝑋𝑘, 𝑞, 𝑄, 𝑟, 𝑅]

=

𝑘

∏

𝑗=1

𝑝 [𝑧𝑗 | 𝑥𝑗, 𝑟, 𝑅]

=

𝑘

∏

𝑗=1

1

(2𝜋)
𝑚/2

|𝑅|
1/2

exp {−

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑗 − ℎ𝑗 (𝑥𝑗) − 𝑟

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑅−1
}

= 𝐶2|𝑅|
−𝑘/2 exp

{

{

{

−

1

2

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑗 − ℎ𝑗 (𝑥𝑗) − 𝑟

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑅−1

}

}

}

,

(19)

where 𝑚 denotes the dimension of measurements and 𝐶2 =

1/(2𝜋)
𝑚𝑘/2 is a constant.
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Substituting (18) and (19) into (17) yields

𝐽 = 𝐶1𝐶2

󵄨
󵄨
󵄨
󵄨
𝑃0

󵄨
󵄨
󵄨
󵄨

−1/2
|𝑄|
−𝑘/2

|𝑅|
−𝑘/2

𝑝 [𝑞, 𝑄, 𝑟, 𝑅]

= 𝐶|𝑄|
−𝑘/2

|𝑅|
−𝑘/2 exp

{

{

{

−

1

2

[

[

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑗 − 𝑓𝑗−1 (𝑥𝑗−1) − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑄−1

+

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑗 − ℎ𝑗 (𝑥𝑗) − 𝑟

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑅−1
]

]

}

}

}

,

(20)

where

𝐶 = exp {−

1

2

󵄩
󵄩
󵄩
󵄩
𝑥0 − 𝑥0

󵄩
󵄩
󵄩
󵄩

2

𝑃
−1

0

} 𝐶1𝐶2

󵄨
󵄨
󵄨
󵄨
𝑃0

󵄨
󵄨
󵄨
󵄨

−1/2
𝑝 [𝑞, 𝑄, 𝑟, 𝑅] . (21)

Logarithm on both sides of (20) yields

ln 𝐽 = −

𝑘

2

ln |𝑄| −

𝑘

2

ln |𝑅| −

1

2

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥𝑗 − 𝑓𝑗−1 (𝑥𝑗−1) − 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑄−1

−

1

2

𝑘

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧𝑗 − ℎ𝑗 (𝑥𝑗) − 𝑟

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑅−1
+ ln𝐶.

(22)

By the logarithmic nature, 𝐽 and ln 𝐽 share the same
extreme points. The partial derivative of 𝐽 can be calculated
by the following equations:

𝜕 ln 𝐽

𝜕𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑗−1=𝑥𝑗−1/𝑘 , 𝑥𝑗=𝑥𝑗/𝑘

𝑞=𝑞𝑘

= 0,

𝜕 ln 𝐽

𝜕𝑄

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑗−1=𝑥𝑗−1/𝑘 ,𝑥𝑗=𝑥𝑗/𝑘

𝑄=𝑄̂𝑘

= 0,

𝜕 ln 𝐽

𝜕𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑗=𝑥𝑗/𝑘

𝑟=𝑟𝑘

= 0,

𝜕 ln 𝐽

𝜕𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑗=𝑥𝑗/𝑘

𝑅=𝑅̂𝑘

= 0.

(23)

Then, the noise statistic estimator can be derived, which
is defined by

𝑞𝑘 =

1

𝑘

𝑘

∑

𝑗=1

[𝑥𝑗/𝑘 − 𝑓𝑗−1 (𝑥𝑗−1/𝑘)] , (24)

𝑄𝑘 =

1

𝑘

𝑘

∑

𝑗=1

{[𝑥𝑗/𝑘 − 𝑓𝑗−1 (𝑥𝑗−1/𝑘) − 𝑞]

× [𝑥𝑗/𝑘 − 𝑓𝑗−1 (𝑥𝑗−1/𝑘) − 𝑞]

𝑇

} ,

(25)

𝑟𝑘 =

1

𝑘

𝑘

∑

𝑗=1

[𝑧𝑗 − ℎ𝑗 (𝑥𝑗/𝑘)] , (26)

𝑅̂𝑘 =

1

𝑘

𝑘

∑

𝑗=1

{[𝑧𝑗 − ℎ𝑗 (𝑥𝑗/𝑘) − 𝑟] [𝑧𝑗 − ℎ𝑗 (𝑥𝑗/𝑘) − 𝑟]

𝑇

} .

(27)

In (24) to (27), the smoothed estimates𝑥𝑗−1/𝑘 and𝑥𝑗/𝑘 can
be replaced by the filtered estimate 𝑥𝑗/𝑗 or the predicted state
𝑥𝑗/𝑗−1 as approximating solutions.

4. Noise Statistic Estimator for UKF

From the consideration for the nonlinear purposes, the noise
statistic estimator derived above should be modified. In the
linear applications, the term of 𝑓𝑗−1(𝑥𝑗−1) can be obtained by
propagating each estimate 𝑥𝑗−1 through system model and
ℎ𝑗(𝑥𝑗) by propagating 𝑥𝑗 through measurement equation.
However, for the nonlinear field, the scaled sigma points are
inserted instead of the estimate. The predicted term for UKF
could be expressed as a combination of all sigma points:

𝑓𝑗−1 (𝑥𝑗−1)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥𝑗−1←𝑥𝑗−1/𝑗−1

=

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑗−1 (𝜉𝑖,𝑗−1/𝑗−1) , (28)

where 𝑓𝑗−1(𝑥𝑗−1) is approximated by UT with a precision
close to that using three-order Taylor series expansion
method [14].

Similarly, ℎ𝑗(𝑥𝑗) can be calculated by

ℎ𝑗 (𝑥𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥𝑗←𝑥𝑗/𝑗−1

=

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
ℎ𝑗 (𝜉𝑖,𝑗/𝑗−1) . (29)

Submitting (28) into (24) to (27) yields the noise statistic
estimator for UKF:

𝑞𝑘 =

1

𝑘

𝑘

∑

𝑗=1

[𝑥𝑗/𝑗 −

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑗−1 (𝜉𝑖,𝑗−1/𝑗−1)] , (30)

𝑄𝑘 =

1

𝑘

𝑘

∑

𝑗=1

{[𝑥𝑗/𝑗 − 𝑥𝑗/𝑗−1] [𝑥𝑗/𝑗 − 𝑥𝑗/𝑗−1]

𝑇

} , (31)

𝑟𝑘 =

1

𝑘

𝑘

∑

𝑗=1

[𝑧𝑗 −

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
ℎ𝑗 (𝜉𝑖,𝑗/𝑗−1)] , (32)

𝑅̂𝑘 =

1

𝑘

𝑘

∑

𝑗=1

{[𝑧𝑗 − 𝑧̂𝑗/𝑗−1] [𝑧𝑗 − 𝑧̂𝑗/𝑗−1]

𝑇

} . (33)

The unbiased properties of the noise estimates for UKF
are proved in the appendix.
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Figure 1: The track of land vehicle.
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Figure 2: The architecture of MEMS/GPS integrated system with AUKF.

5. Recursive Equations of Adaptive Unscented
Kalman Filtering Algorithm

Based on the UKF and its noise statistic estimator, the
prediction and update steps of AUKF algorithm are as
follows.

(1) Prediction. Propagating the sigma points 𝜉𝑖,𝑘/𝑘−1 through
nonlinear state function 𝑓𝑘(⋅) yields

𝛾𝑖,𝑘/𝑘−1 = 𝑓𝑘−1 (𝜉𝑖,𝑘/𝑘−1) , 𝑖 = 0, 1, . . . , 2𝑛. (34)

Then, according to (30) and (31), estimate the process
noise 𝑞𝑘 and covariance 𝑄𝑘, respectively.

With updated process noise parameters, compute the
predicted state 𝑥𝑘/𝑘−1 and the predicted covariance 𝑃𝑘/𝑘−1 as

𝑥𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝛾𝑖,𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑘−1 (𝜀𝑖,𝑘−1/𝑘−1) + 𝑞𝑘−1,

𝑃𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
(𝛾𝑖,𝑘−1/𝑘−1 − 𝑥𝑘/𝑘−1)

× (𝛾𝑖,𝑘−1/𝑘−1 − 𝑥𝑘/𝑘−1)
𝑇

+ 𝑄𝑘−1.

(35)

(2) Updating. Propagating the sigma points 𝜉𝑖,𝑘/𝑘−1 through
nonlinear state function ℎ𝑘(⋅) yields

𝑥𝑖,𝑘/𝑘−1 = ℎ𝑘 (𝜉𝑖,𝑘/𝑘−1) , 𝑖 = 0, 1, . . . , 2𝑛. (36)

According to (32) and (33), estimate the measurement
noise 𝑟𝑘 and its covariance 𝑅̂𝑘, respectively.

With real-time measurement noise parameters, compute
the predicted measurement 𝑧̂𝑘/𝑘−1 and the covariance 𝑃𝑧𝑘

as

𝑧̂𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑥𝑖,𝑘/𝑘−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
ℎ𝑘 (𝜀𝑖,𝑘/𝑘−1) + 𝑟𝑘,

(37)

𝑃𝑧𝑘
=

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
(𝜒𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1) (𝜒𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1)

𝑇
+ 𝑅̂𝑘.

(38)

Estimate the cross-covariance 𝑃𝑥𝑘𝑧̃𝑘
as

𝑃𝑥𝑘𝑧̃𝑘
=

𝐿

∑

𝑖=0

𝑊
𝑐

𝑖
(𝛾𝑖,𝑘/𝑘−1 − 𝑥𝑘/𝑘−1) (𝜒𝑖,𝑘/𝑘−1 − 𝑧̂𝑘/𝑘−1)

𝑇
.

(39)
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Figure 3: Comparison of position errors.
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Figure 4: Comparison of velocity errors.

Then compute the filter gain𝐾𝑘, the estimated state vector
𝑥𝑘/𝑘, and its covariance 𝑃𝑘/𝑘:

𝐾𝑘 = 𝑃𝑥𝑘𝑧̃𝑘
(𝑃𝑧𝑘

)

−1

,

𝑥𝑘/𝑘 = 𝑥𝑘/𝑘−1 + 𝐾𝑘 (𝑧𝑘 − 𝑧̂𝑘/𝑘−1) ,

𝑃𝑘/𝑘 = 𝑃𝑘/𝑘−1 − 𝐾𝑘𝑃𝑧𝑘
(𝐾𝑘)
𝑇
.

(40)

6. MEMS/GPS Integrated Navigation for
Land-Vehicle Using AUKF

Because of the highly nonlinear characteristic ofMEMS/GPS,
the conventional AKF based on small angle approximations is
limited. Meanwhile, due to the time-varying noise stochastic
properties for land-vehicle, the standard UKF in Section 1
cannot be directly applied to integrated navigation. On the
other side, the modified AUKF based on a statistic estimator

in Section 4 appears appropriate for the MEMS/GPS inte-
grated navigation. Simulations are conducted to compare the
performances of AKF, UKF, and AUKF.

In the simulation, the parameters of sensor errors are
shown in Table 1. The initial position of vehicle is east
longitude 126∘ and north latitude 45∘.

Figure 1 shows the trajectory of land-vehicle motion. The
solid line in this figure illustrates the real simulated trajectory.

The architecture of MEMS/GPS integrated navigation
with AUKF is shown in Figure 2.

As shown in Figures 3, 4, and 5, with the comparisons
with AKF and UKF, the AUKF with noise estimator could
obviously improve the accuracy of the velocity solutions. In
addition, as shown in Figure 3, because the noise statistic
estimators are designed in AKF and AUKF, the position
errors of the two filters exhibit similar characteristics at most
of the time in this simulation, and the performance of AUKF
is slightly better. However, which is also seen in Figure 3, there
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Figure 5: Comparison of attitude errors.

Table 1: Parameters of sensor errors.

Sensor Characteristic Value
MEMS Gyro Drift 5∘/h
MEMS Gyro Measuring white noise 0.5∘/h
MEMS accelerometer Bias 2mg
MEMS accelerometer Measuring white noise 50𝜇g
GPS (position) Measuring white noise 6m
GPS (velocity) Measuring white noise 0.01m/s

are so notable vibrations for UKF in which stable estimate
errors of positions could not be provided, which are mainly
caused by the quickly changed system noises.

Figure 4 shows that the AUKF always has smaller velocity
errors than AKF and UKF. And Figure 5 shows that at most
of the time the AUKF scheme has a better performance
on attitudes errors. The AKF and UKF solutions have large
vibration errors in both Figures 4 and 5. That is because the
velocity errors are related to the attitude errors, especially to
the pitch and roll errors of AKF and UKF. Because of the
strong nonlinear properties of system, it is difficult that AKF
cannot be effectively operated for navigation. Meanwhile,
for UKF solutions, the curves of speed errors are extremely
similar to those of horizontal attitude errors.

The simulation results indicate that if the AUKF scheme
is considered the filtering solution, there are only small
variations impacting on the performance of MEMS/GPS
integrated navigation system, and this system has an excellent
robustness. However, long processing timewould cause slight
divergence of the attitude errors, sequentially the velocity and
position errors.

7. Conclusions

This study has developed an AUKF approach to improve
the navigation performance ofMEMS/GPS integrated system
for land-vehicle applications. By treating this problem within
conventional UKF framework, the noise estimator is adopted
and could effectively estimate the process and measurement
noise characteristics online. The results indicate that the
proposed AUKF algorithm could efficiently improve the
navigation performance of land-vehicle integrated navigation
system. By comparing with AKF and UKF methods, the
AUKF solution has a more stable and superior performance.

Appendix

The process noise andmeasurement noise statistic properties
are computed by estimator in (30) to (33). Their unbiased
properties are proved as follows.

According to (8), the predicted state at time step 𝑗 is given
as

𝑥𝑗/𝑗−1 =

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑗−1 (𝜉𝑖,𝑗−1/𝑗−1) + 𝑞. (A.1)

Hence the mean of the process noise can be expressed as

𝐸 [𝑞𝑘] =

1

𝑘

𝑘

∑

𝑗=1

[𝑥𝑗/𝑗 −

𝐿

∑

𝑖=0

𝑊
𝑚

𝑖
𝑓𝑗−1 (𝜉𝑖,𝑗−1/𝑗−1)]

=

1

𝑘

𝑘

∑

𝑗=1

[𝑥𝑗/𝑗 − 𝑥𝑗/𝑗−1 + 𝑞] .

(A.2)
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From (15), we have

𝑥𝑗/𝑗 = 𝑥𝑗/𝑗−1 + 𝐾𝑗 (𝑧𝑗 − 𝑧̂𝑗/𝑗−1) . (A.3)

Substituting (A.3) into (A.2) yields

𝐸 [𝑞𝑘] =

1

𝑘

𝑘

∑

𝑗=1

[𝑥𝑗/𝑗 − 𝑥𝑗/𝑗−1 + 𝑞]

=

1

𝑘

𝑘

∑

𝑗=1

[𝐾𝑗 (𝑧𝑗 − 𝑧̂𝑗/𝑗−1) + 𝑞] .

(A.4)

When the posteriori mean and covariance are known, the
output residual vector of UKF is zero-mean Gaussian white
noise and we see

𝐸 [𝑧𝑗 − 𝑧̂𝑗/𝑗−1] = 0. (A.5)

From (A.4) and (A.5), the mean of the process noise is

𝐸 [𝑞𝑘] =

1

𝑘

𝑘

∑

𝑗=1

𝐸 [(𝑧𝑗 − 𝑧̂𝑗/𝑗−1) + 𝑞] = 𝑞. (A.6)

Thus, the estimate of the process noise noted by (24) is
unbiased.

Similarly, the estimate of the measurement noise is

𝐸 [𝑟𝑘] = 𝑟. (A.7)

The unbiased properties for the estimates of noises are
proved.
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