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We introduce two iterative algorithms by the hybrid extragradient method with regularization for finding a common element of the
set of solutions of the minimization problem for a convex and continuously Fréchet differentiable functional, the set of solutions
of finite generalized mixed equilibrium problems, the set of solutions of finite variational inequalities for inverse strong monotone
mappings and the set of fixed points of an asymptotically 𝜅-strict pseudocontractive mapping in the intermediate sense in a real
Hilbert space. We prove some strong and weak convergence theorems for the proposed iterative algorithms under mild conditions.

1. Introduction

Throughout this paper, we assume that 𝐻 is a real Hilbert
space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖; let 𝐶 be a
nonempty closed convex subset of𝐻 and let 𝑃

𝐶
be the metric

projection of𝐻 onto 𝐶. Let 𝑆 : 𝐶 → 𝐶 be a self-mapping on
𝐶. We denote by Fix(𝑆) the set of fixed points of 𝑆 and by R
the set of all real numbers.

Let 𝜑 : 𝐶 → R be a real-valued function, let 𝐴 :

𝐶 → 𝐻 be a nonlinear mapping, and let 𝐹 : 𝐶 × 𝐶 → R
be a bifunction. In 2008, Peng and Yao [1] introduced the
following generalizedmixed equilibriumproblem (GMEP) of
finding 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (1)

We denote the set of solutions of GMEP (1) by
GMEP(𝐹, 𝜑, 𝐴). The GMEP (1) is very general in the sense
that it includes, as special cases, optimization problems,
variational inequalities, minimax problems, and Nash
equilibrium problems in noncooperative games. The GMEP
is further considered and studied in [2–5].

Let 𝑓 : 𝐶 → R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing 𝑓 over the constraint set 𝐶

min
𝑥∈𝐶

𝑓 (𝑥) (2)

(assuming the existence of minimizers). We denote by Γ

the set of minimizers of CMP (2). The gradient-projection
algorithm (GPA) generates a sequence {𝑥𝑛}determined by the
gradient ∇𝑓 and the metric projection 𝑃𝐶 as follows:

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆∇𝑓 (𝑥

𝑛
)) , ∀𝑛 ≥ 0, (3)

or more generally,

𝑥
𝑛+1

:= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑥
𝑛
)) , ∀𝑛 ≥ 0, (3)

󸀠

where, in both (3) and (3)
󸀠, the initial guess 𝑥

0
is taken from

𝐶 arbitrarily and the parameters 𝜆 or 𝜆
𝑛
are positive real

numbers.The convergence of algorithms (3) and (3)󸀠 depends
on the behavior of the gradient ∇𝑓.

Since the Lipschitz continuity of the gradient ∇𝑓 implies
that it is actually (1/𝐿)-inverse strongly monotone (ism) [6],
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its complement can be an averaged mapping (i.e., it can be
expressed as a proper convex combination of the identity
mapping and a nonexpansive mapping). Consequently, the
GPA can be rewritten as the composite of a projection and an
averaged mapping, which is again an averaged mapping.This
shows that averaged mappings play an important role in the
GPA. Recently, Xu [7] used averaged mappings to study the
convergence analysis of the GPA, which is hence an operator-
oriented approach.

Assume that the CMP (2) is consistent and the gradient
∇𝑓 is 𝐿-Lipschitz continuous with 𝐿 > 0. Let𝑄 : 𝐶 → 𝐶 be a
𝜌-contractionwith 𝜌 ∈ [0, 1). Xu [7] introduced the following
hybrid GPA:

𝑥
𝑛+1

= 𝜃
𝑛
𝑄𝑥
𝑛
+ (1 − 𝜃

𝑛
) 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑥
𝑛
)) , ∀𝑛 ≥ 0,

(4)

where {𝜃
𝑛} ⊂ [0, 1] and 0 < lim inf𝑛→∞𝜆𝑛 ≤

lim sup
𝑛→∞

𝜆𝑛 < 2/𝐿. It was proven that under appropriate
conditions the sequence {𝑥𝑛} converges in norm to a mini-
mizer of CMP (2); see [7, Theorem 5.2].

It is worth emphasizing that the regularization, in par-
ticular the traditional Tikhonov regularization, is usually
used to solve ill-posed optimization problems. Consider the
regularized minimization problem

min
𝑥∈𝐶

𝑓
𝛼 (
𝑥) := 𝑓 (𝑥) +

𝛼

2

‖𝑥‖
2
, (5)

where 𝛼 > 0 is the regularization parameter and again 𝑓 is
convex with 𝐿-Lipschitz continuous gradient ∇𝑓. In [7], Xu
introduced another hybrid GPA with regularization

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑥
𝑛

= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
(∇𝑓 + 𝛼

𝑛
𝐼)) 𝑥
𝑛
, ∀𝑛 ≥ 0,

(6)

where (i) 0 < 𝜆
𝑛
≤ 𝛼
𝑛
/(𝐿 + 𝛼

𝑛
)
2 for all 𝑛 ≥ 0; (ii) 𝛼

𝑛
→ 0

(and 𝜆𝑛 → 0) as 𝑛 → ∞; (iii) ∑∞
𝑛=0

𝛼𝑛𝜆𝑛 = ∞; and (iv)
(|𝜆𝑛 − 𝜆𝑛−1| + |𝛼𝑛𝜆𝑛 − 𝛼𝑛−1𝜆𝑛−1|)/(𝛼

2

𝑛
𝜆
2

𝑛
) → 0 as 𝑛 → ∞.

It was proven that {𝑥𝑛} converges strongly to the minimum-
norm solution 𝑥

†
∈ Γ of CMP (2); see [7, Theorem 6.1]. Very

recently, the hybrid GPA with regularization is extended to
develop new extragradient methods with regularization in
Ceng et al. [8, 9] for finding a common solution of the split
feasibility problem (SFP) and the fixed point problem of a
nonexpansive mapping in a real Hilbert space.

On the other hand, consider the following variational
inequality problem (VIP): find a 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (7)

The solution set of VIP (7) is denoted by VI(𝐶, 𝐴).
The VIP (7) was first discussed by Lions [10] and

now is well known; there are a lot of different approaches
towards solving VIP (7) in finite-dimensional and infinite-
dimensional spaces, and the research is intensively continued.
The VIP (7) has many applications in computational math-
ematics, mathematical physics, operations research, mathe-
matical economics, optimization theory, and other fields; see,

for example, [11–14]. It is well known that if 𝐴 is a strongly
monotone and Lipschitz-continuous mapping on 𝐶, then
VIP (7) has a unique solution. Not only the existence and
uniqueness of solutions are important topics in the study of
VIP (7), but also how to actually find a solution of VIP (7) is
important.

Motivated by the idea of Korpelevič’s extragradient
method [15], Nadezhkina and Takahashi [16] introduced an
extragradient iterative scheme:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑦𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛𝐴𝑥𝑛) ,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑆𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑦
𝑛
) , ∀𝑛 ≥ 0,

(8)

where 𝐴 : 𝐶 → 𝐻 is a monotone, 𝐿-Lipschitz continuous
mapping, 𝑆 : 𝐶 → 𝐶 is a nonexpansive mapping, and
{𝜆𝑛

} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/𝐿) and {𝛼
𝑛
} ⊂ [𝑐, 𝑑] for

some 𝑐, 𝑑 ∈ (0, 1). They proved the weak convergence of
{𝑥𝑛} to an element of Fix(𝑆) ∩ VI(𝐶, 𝐴). Recently, inspired
by Nadezhkina and Takahashi’s iterative scheme [16], Zeng
and Yao [17] introduced another iterative scheme for finding
an element of Fix(𝑆) ∩ VI(𝐶, 𝐴) and derived the weak con-
vergence result. Furthermore, by combining the CQ method
and extragradient method, Nadezhkina and Takahashi [18]
introduced an iterative process:

𝑥
0
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) ,

𝑧𝑛 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛𝐴𝑦𝑛) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩
} ,

𝑄
𝑛 = {𝑧 ∈ 𝐶 : ⟨𝑥𝑛 − 𝑧, 𝑥 − 𝑥𝑛⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ≥ 0.

(8)
󸀠

They proved the strong convergence of {𝑥
𝑛
} to an element

of Fix(𝑆) ∩ VI(𝐶, 𝐴) under appropriate conditions. Later on,
Ceng and Yao [19] introduced an extragradient-like approx-
imation method which is based on the above extragradient
method and viscosity approximation method and derived a
strong convergence result as well. Next, recall some concepts.
A mapping 𝐴 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if
there exists a constant 𝐿 ≥ 0 such that

󵄩
󵄩
󵄩
󵄩
𝐴𝑥 − 𝐴𝑦

󵄩
󵄩
󵄩
󵄩
≤ 𝐿

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑥, 𝑦 ∈ 𝐶. (9)

In particular, if 𝐿 = 1, then 𝐴 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1), then 𝐴 is called a contraction.

Recall that a mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (10)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶; (11)
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(iii) 𝛼-inverse-stronglymonotone if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩
󵄩
󵄩
󵄩
𝐴𝑥 − 𝐴𝑦

󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (12)

It is obvious that if 𝐴 is 𝛼-inverse-strongly monotone,
then 𝐴 is monotone and (1/𝛼)-Lipschitz continuous.

Definition 1. Let 𝐶 be a nonempty subset of a normed space
𝑋 and let 𝑆 : 𝐶 → 𝐶 be a self-mapping on 𝐶.

(i) 𝑆 is asymptotically nonexpansive (cf. [20]) if there
exists a sequence {𝑘𝑛} of positive numbers satisfying
the property lim𝑛→∞𝑘𝑛 = 1 and

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶; (13)

(ii) 𝑆 is asymptotically nonexpansive in the intermediate
sense [21] provided 𝑆 is uniformly continuous and

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩
−
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) ≤ 0; (14)

(iii) 𝑆 is uniformly Lipschitzian if there exists a constant
L > 0 such that

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩
≤ L

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (15)

It is clear that every nonexpansive mapping is asymptot-
ically nonexpansive and every asymptotically nonexpansive
mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings was
introduced by Goebel and Kirk [20] as an important general-
ization of the class of nonexpansive mappings. The existence
of fixed points of asymptotically nonexpansive mappings was
proved by Goebel and Kirk [20] as follows.

TheoremGK (see [20,Theorem 1]). If𝐶 is a nonempty closed
convex bounded subset of a uniformly convex Banach space,
then every asymptotically nonexpansive mapping 𝑆 : 𝐶 → 𝐶

has a fixed point in 𝐶.

The class of asymptotically nonexpansive mappings in
the intermediate sense was introduced by Bruck et al. [21].
Recently, Kim and Xu [22] introduced the concept of asymp-
totically 𝜅-strict pseudocontractive mappings in a Hilbert
space as follows.

Definition 2. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝜅-
strict pseudocontractive mapping with sequence {𝛾

𝑛
} if there

exists a constant 𝜅 ∈ [0, 1) and a sequence {𝛾
𝑛
} in [0,∞) with

lim
𝑛→∞

𝛾
𝑛
= 0 such that

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩

2
≤ (1 + 𝛾𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+ 𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩
󵄩
󵄩
󵄩

2
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(16)

They studied weak and strong convergence theorems
for this class of mappings. It is important to note that
every asymptotically 𝜅-strict pseudocontractive mapping
with sequence {𝛾

𝑛
} is a uniformly L-Lipschitzian mapping

withL = sup{((𝜅 + √1 + (1 − 𝜅)𝛾
𝑛
)/(1 + 𝜅)) : 𝑛 ≥ 1}.

Recently, Sahu et al. [23] considered the concept of
asymptotically 𝜅-strict pseudocontractive mappings in the
intermediate sense, which are not necessarily Lipschitzian.

Definition 3. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝜅-
strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
} if there exist a constant 𝜅 ∈ [0, 1) and a

sequence {𝛾
𝑛
} in [0,∞) with lim

𝑛→∞
𝛾
𝑛
= 0 such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩

2
− (1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

−𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩
󵄩
󵄩
󵄩

2
) ≤ 0.

(17)

Put 𝑐𝑛 := max{0, sup
𝑥,𝑦∈𝐶

(‖𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦‖
2
−(1+𝛾𝑛)‖𝑥 − 𝑦‖

2
−

𝜅‖𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)‖
2
)}. Then 𝑐

𝑛
≥ 0 (∀𝑛 ≥ 1), 𝑐

𝑛
→

0(𝑛 → ∞) and (17) reduces to the relation

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩

2
≤ (1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

+ 𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(18)

Whenever 𝑐
𝑛 = 0 for all 𝑛 ≥ 1 in (18), then 𝑆 is

an asymptotically 𝜅-strict pseudocontractive mapping with
sequence {𝛾𝑛}. In 2009, Sahu et al. [23] derived the weak and
strong convergence of the modified Mann iteration process
for the class of asymptotically 𝜅-strictly pseudocontractive
mappings in the intermediate sense with sequence {𝛾𝑛}. More
precisely, they established the following theorems.

Theorem SXY 1. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space𝐻 and let 𝑆 : 𝐶 → 𝐶 be a uniformly con-
tinuous asymptotically 𝜅-strict pseudocontractive mapping in
the intermediate sense with sequence {𝛾

𝑛
} such that Fix(𝑆) ̸= 0

and∑∞
𝑛=1

𝛾
𝑛
< ∞. Assume that {𝛼

𝑛
} is a sequence in (0, 1) such

that 0 < 𝛿 ≤ 𝛼
𝑛
≤ 1 − 𝜅 − 𝛿 and ∑

∞

𝑛=1
𝛼
𝑛
𝑐
𝑛
< ∞. Let {𝑥

𝑛
}
∞

𝑛=1

be a sequence in 𝐶 generated by the modified Mann iteration
process:

𝑥
1
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑄
𝑛 = {𝑧 ∈ 𝐶 : ⟨𝑥𝑛 − 𝑧, 𝑥 − 𝑥𝑛⟩ ≥ 0} ,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
, ∀𝑛 ≥ 1.

(19)

Then {𝑥
𝑛
} converges weakly to an element of Fix(𝑆).
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Theorem SXY 2. Let 𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense with sequence {𝛾

𝑛
} such that Fix(𝑆) is

nonempty and bounded. Let {𝛼
𝑛
} be a sequence in [0, 1] such

that 0 < 𝛿 ≤ 𝛼
𝑛
≤ 1 − 𝜅 for all 𝑛 ≥ 1. Let {𝑥

𝑛
} be the sequence

in 𝐶 generated by the following (CQ) algorithm:

𝑥
1
= 𝑥 ∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑦𝑛 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆
𝑛
𝑥𝑛,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥𝑛+1 = 𝑃𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ≥ 1,

(20)

where 𝜃𝑛 = 𝑐𝑛 + 𝛾𝑛Δ 𝑛 and Δ 𝑛 = sup{‖𝑥𝑛 − 𝑧‖
2
: 𝑧 ∈ Fix(𝑆)} <

∞. Then {𝑥𝑛
} converges strongly to 𝑃Fix(𝑆)𝑥.

Subsequently, the iterative algorithms in Theorems SXY1
and SXY2 are extended to develop new iterative algorithms
for finding a common solution of the VIP and the fixed
point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space; see,
for example, [24, 25].

On the other hand, Yao et al. [26] introduced two iterative
algorithms for finding a common element of the set of fixed
points of an asymptotically 𝜅-strict pseudocontraction and
the set of solutions of a mixed equilibrium problem in a real
Hilbert space. Then they obtained some weak and strong
convergence theorems for the proposed iterative algorithms.
Very recently, motivated by Yao et al. [26], Cai and Bu [3]
introduced two iterative algorithms for finding a common
element of the set of solutions of finite generalized mixed
equilibrium problems, the set of solutions of finite varia-
tional inequalities for inverse strong monotone mappings,
and the set of fixed points of an asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense in a
real Hilbert space. Then they proved some strong and weak
convergence theorems for the proposed iterative algorithms
under appropriate conditions.

In this paper, inspired by the above facts, we introduce
two iterative algorithms by hybrid extragradient method
with regularization for finding a common element of the
set of solutions of the CMP (2) for a convex functional 𝑓 :

𝐶 → R with 𝐿-Lipschitz continuous gradient ∇𝑓, the set
of solutions of finite GMEPs, the set of solutions of finite
VIPs for inverse strong monotone mappings, and the set of
fixed points of an asymptotically 𝜅-strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space.
Then we prove some strong and weak convergence theorems
for the proposed iterative algorithms under mild conditions.
For recent related results, see, for example, [7, 24, 27–31] and
ther references therein.

2. Preliminaries

Let𝐻 be a real Hilbert space whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐶 be a nonempty
closed convex subset of 𝐻. We write 𝑥𝑛 ⇀ 𝑥 to indicate
that the sequence {𝑥𝑛} converges weakly to 𝑥 and 𝑥𝑛 → 𝑥

to indicate that the sequence {𝑥𝑛
} converges strongly to 𝑥.

Moreover, we use 𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of
the sequence {𝑥

𝑛
}; that is,

𝜔
𝑤
(𝑥
𝑛
) := {𝑥 ∈ 𝐻 : 𝑥

𝑛
𝑖

⇀ 𝑥

for some subsequence {𝑥𝑛
𝑖

} o𝑓 {𝑥𝑛}} .

(21)

Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃

𝐶 : 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃𝐶𝑥 ∈ 𝐶 satisfying the property

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑃
𝐶𝑥

󵄩
󵄩
󵄩
󵄩
= inf
𝑦∈𝐶

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
=: 𝑑 (𝑥, 𝐶) . (22)

Some important properties of projections are gathered in the
following proposition.

Proposition 4. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶:

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for all 𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
−‖𝑦 − 𝑧‖

2, for all 𝑦 ∈

𝐶;
(iii) ⟨𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2, for all 𝑦 ∈ 𝐻.

Consequently, 𝑃
𝐶
is nonexpansive and monotone.

If𝐴 is an 𝛼-inverse-stronglymonotonemapping of𝐶 into
𝐻, then it is obvious that𝐴 is (1/𝛼)-Lipschitz continuous.We
also have that, for all 𝑢, V ∈ 𝐶 and 𝜆 > 0,

‖(𝐼 − 𝜆𝐴) 𝑢 − (𝐼 − 𝜆𝐴) V‖2

= ‖(𝑢 − V) − 𝜆(𝐴𝑢 − 𝐴V)‖2

= ‖𝑢 − V‖2 − 2𝜆 ⟨𝐴𝑢 − 𝐴V, 𝑢 − V⟩

+ 𝜆
2
‖𝐴𝑢 − 𝐴V‖2

≤ ‖𝑢 − V‖2 + 𝜆 (𝜆 − 2𝛼) ‖𝐴𝑢 − 𝐴V‖2.

(23)

So if 𝜆 ≤ 2𝛼, then 𝐼 − 𝜆𝐴 is a nonexpansive mapping from 𝐶

to𝐻.

Definition 5. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if
󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑇𝑦

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑥, 𝑦 ∈ 𝐻; (24)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or
equivalently, if 𝑇 is 1-inverse strongly monotone (1-
ism),

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
󵄩
󵄩
󵄩
󵄩
𝑇𝑥 − 𝑇𝑦

󵄩
󵄩
󵄩
󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻; (25)
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alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 =

1

2

(𝐼 + 𝑆) , (26)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if 𝑇 is nonexpansive, then
𝐼 − 𝑇 is monotone. It is also easy to see that a projection
𝑃𝐶

is 1-ism. Inverse strongly monotone (also referred to as
co-coercive) operators have been applied widely in solving
practical problems in various fields.

Definition 6. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (27)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged.Thus, firmly nonexpansivemappings (in particular,
projections) are (1/2)-averaged maps.

Proposition 7 (see [32]). Let 𝑇 : 𝐻 → 𝐻 be a given
mapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇

is (1/2)-ism.
(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is ]-ism

for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Proposition 8 (see [32, 33]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1

is averaged, then so is the composite 𝑇
1
⋅ ⋅ ⋅ 𝑇
𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

(v) If the mappings {𝑇
𝑖}
𝑁

𝑖=1
are averaged and have a

common fixed point, then

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) = Fix (𝑇

1
⋅ ⋅ ⋅ 𝑇
𝑁
) . (28)

The notation Fix(𝑇) denotes the set of all fixed points of the
mapping 𝑇; that is, Fix(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 9. Let 𝑋 be a real inner product space. Then there
holds the following inequality:

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (29)

Lemma 10. Let {𝑥
𝑛
} be a bounded sequence on a reflexive

Banach space𝑋. If 𝜔𝑤({𝑥𝑛}) = {𝑥}, then 𝑥𝑛 ⇀ 𝑥.

Lemma 11. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 4 (i)) implies

𝑢 ∈ VI (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (

𝑢 − 𝜆𝐴𝑢) , 𝑓𝑜𝑟𝑠𝑜𝑚𝑒 𝜆 > 0.

(30)

Lemma 12. Let 𝐻 be a real Hilbert space. Then the following
hold:

(i) ‖𝑥 − 𝑦‖
2
= ‖𝑥‖

2
− ‖𝑦‖
2
− 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;

(ii) ‖(1 − 𝑡)𝑥 + 𝑡𝑦‖
2
= (1−𝑡)‖𝑥‖

2
+𝑡‖𝑦‖

2
−𝑡(1−𝑡)‖𝑥 − 𝑦‖

2

for all 𝑡 ∈ [0, 1] and for all 𝑥, 𝑦 ∈ 𝐻;
(iii) If {𝑥

𝑛
} is a sequence in 𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
= lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2
, ∀𝑦 ∈ 𝐻.

(31)

Lemma 13 ([23, Lemma 2.5]). Let 𝐻 be a real Hilbert space.
Given a nonempty closed convex subset of 𝐻 and points
𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a real number 𝑎 ∈ R, the set

{V ∈ 𝐶 :
󵄩
󵄩
󵄩
󵄩
𝑦 − V󵄩󵄩󵄩

󵄩

2
≤ ‖𝑥 − V‖2 + ⟨𝑧, V⟩ + 𝑎} (32)

is convex (and closed).

Lemma 14 ([23, Lemma 2.6]). Let 𝐶 be a nonempty subset of
a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be an asymptotically
𝜅-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩
󵄩
󵄩
󵄩

≤

1

1 − 𝜅

× (𝜅
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
√(1 + (1 − 𝜅) 𝛾𝑛

) ‖ 𝑥 − 𝑦‖
2
+ (1 − 𝜅) 𝑐𝑛

)

(33)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.

Lemma 15 ([23, Lemma 2.7]). Let 𝐶 be a nonempty subset
of a Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense with sequence {𝛾

𝑛
}. Let {𝑥

𝑛
} be a

sequence in𝐶 such that ‖𝑥
𝑛
−𝑥
𝑛+1

‖ → 0 and ‖𝑥
𝑛
−𝑆
𝑛
𝑥
𝑛
‖ → 0

as 𝑛 → ∞. Then ‖𝑥
𝑛
− 𝑆𝑥
𝑛
‖ → 0 as 𝑛 → ∞.
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Lemma 16 (demiclosedness principle [23, Proposition 3.1]).
Let 𝐶 be a nonempty closed convex subset of a Hilbert space
𝐻 and let 𝑆 : 𝐶 → 𝐶 be a continuous asymptotically
𝜅-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then 𝐼−𝑆 is demiclosed at zero in the sense

that if {𝑥
𝑛
} is a sequence in 𝐶 such that 𝑥

𝑛
⇀ 𝑥 ∈ 𝐶 and

lim sup
𝑚→∞

lim sup
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑚
𝑥
𝑛
‖ = 0, then (𝐼 − 𝑆)𝑥 = 0.

Lemma 17 ([23, Proposition 3.2]). Let 𝐶 be a nonempty
closed convex subset of a Hilbert space 𝐻 and let 𝑆 : 𝐶 →

𝐶 be a continuous asymptotically 𝜅-strict pseudocontractive
mapping in the intermediate sense with sequence {𝛾𝑛} such that
Fix(𝑆) ̸= 0. Then Fix(𝑆) is closed and convex.

Remark 18. Lemmas 16 and 17 give some basic properties of
an asymptotically 𝜅-strict pseudocontractive mapping in the
intermediate sense with sequence {𝛾𝑛}. Moreover, Lemma 16
extends the demiclosedness principles studied for certain
classes of nonlinear mappings in Kim and Xu [22], Górnicki
[34], Marino and Xu [35], and Xu [36].

To prove a weak convergence theorem by a modified
extragradient method with regularization for the CMP (2)
and the fixed point problem of an asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense, we
need the following lemma due to Osilike et al. [37].

Lemma 19 (see [37, page. 80]). Let {𝑎
𝑛
}
∞

𝑛=1
, {𝑏
𝑛
}
∞

𝑛=1
and

{𝛿
𝑛
}
∞

𝑛=1
be sequences of nonnegative real numbers satisfying the

inequality
𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (34)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑

∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. If,

in addition, {𝑎
𝑛
}
∞

𝑛=1
has a subsequence which converges to zero,

then lim𝑛→∞𝑎𝑛 = 0.

Corollary 20 (see [38, page. 303]). Let {𝑎
𝑛}
∞

𝑛=0
and {𝑏𝑛}

∞

𝑛=0

be two sequences of nonnegative real numbers satisfying the
inequality

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 0. (35)

If ∑∞
𝑛=0

𝑏
𝑛
converges, then lim

𝑛→∞
𝑎
𝑛
exists.

Recall that a Banach space 𝑋 is said to satisfy the Opial
condition [39] if for any given sequence {𝑥

𝑛
} ⊂ 𝑋 which

converges weakly to an element 𝑥 ∈ 𝑋, there holds the
inequality

lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥

󵄩
󵄩
󵄩
󵄩
< lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(36)

It is well known in [39] that every Hilbert space 𝐻 satisfies
the Opial condition.

Lemma 21 (see [24, Proposition 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻 and let {𝑥

𝑛
} be a

sequence in𝐻. Suppose that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2
≤ (1 + 𝜆

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛿
𝑛
, ∀𝑝 ∈ 𝐶, 𝑛 ≥ 1,

(37)

where {𝜆
𝑛
} and {𝛿

𝑛
} are sequences of nonnegative real numbers

such that ∑∞
𝑛=1

𝜆
𝑛

< ∞ and ∑
∞

𝑛=1
𝛿
𝑛

< ∞. Then {𝑃
𝐶
𝑥
𝑛
}

converges strongly in 𝐶.

A set-valued mapping 𝑇 : 𝐻 → 2
𝐻 is called monotone if

for all 𝑥, 𝑦 ∈ 𝐻,𝑓 ∈ 𝑇𝑥 and𝑔 ∈ 𝑇𝑦 imply ⟨𝑥−𝑦, 𝑓−𝑔⟩ ≥ 0. A
monotonemapping𝑇 : 𝐻 → 2

𝐻 ismaximal if its graph𝐺(𝑇)
is not properly contained in the graph of any other monotone
mapping. It is known that a monotonemapping𝑇 is maximal
if and only if for (𝑥, 𝑓) ∈ 𝐻 × 𝐻, ⟨𝑥 − 𝑦, 𝑓 − 𝑔⟩ ≥ 0 for
all (𝑦, 𝑔) ∈ 𝐺(𝑇) implies 𝑓 ∈ 𝑇𝑥. Let 𝐴 : 𝐶 → 𝐻 be a
monotone, 𝐿-Lipschitz continuous mapping, and let 𝑁

𝐶
V be

the normal cone to 𝐶 at V ∈ 𝐶; that is, 𝑁
𝐶
V = {𝑤 ∈ 𝐻 :

⟨V − 𝑢, 𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶}. Define

𝑇V = {

𝐴V + 𝑁
𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.

(38)

It is known that in this case 𝑇 is maximal monotone, and 0 ∈

𝑇V if and only if V ∈ Ω; see [40].
For solving the equilibrium problem, let us assume that

the bifunction 𝐹 satisfies the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) 𝐹 is upper-hemicontinuous, that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

𝐹 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝐹 (𝑥, 𝑦) ; (39)

(A4) 𝐹(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(B1) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset𝐷

𝑥
⊆ 𝐶 and𝑦

𝑥
∈ 𝐶 such that for any 𝑧 ∈ 𝐶\𝐷

𝑥
,

𝐹 (𝑧, 𝑦𝑥
) + 𝜑 (𝑦𝑥

) − 𝜑 (𝑧) +

1

𝑟

⟨𝑦𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0; (40)

(B2) 𝐶 is a bounded set.

Lemma 22 (see [41]). Assume that 𝐹 : 𝐶 × 𝐶 → R
satisfies (A1)–(A4) and let 𝜑 : 𝐶 → R be a proper lower
semicontinuous and convex function. Assume that either (B1)
or (B2) holds. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping
𝑇
(𝐹,𝜑)

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
(𝐹,𝜑)

𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑧)

+

1

𝑟

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(41)

for all 𝑥 ∈ 𝐻. Then the following hold:

(1) for each 𝑥 ∈ 𝐻, 𝑇
(𝐹,𝜑)

𝑟
(𝑥) ̸= 0;

(2) 𝑇(𝐹,𝜑)
𝑟

is single-valued;
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(3) 𝑇(𝐹,𝜑)
𝑟

is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
(𝐹,𝜑)

𝑟
𝑥 − 𝑇
(𝐹,𝜑)

𝑟
𝑦

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ⟨𝑇
(𝐹,𝜑)

𝑟
𝑥 − 𝑇
(𝐹,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ ; (42)

(4) Fix(𝑇(𝐹,𝜑)
𝑟

) = MEP(𝐹, 𝜑);
(5) MEP(𝐹, 𝜑) is closed and convex.

Lemma 23 (see [42]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻. Let {𝑥𝑛} be a sequence in 𝐻 and 𝑢 ∈ 𝐻. Let
𝑞 = 𝑃𝐶𝑢. If {𝑥𝑛} is such that 𝜔𝑤(𝑥𝑛) ⊂ 𝐶 and satisfies the
condition

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑞

󵄩
󵄩
󵄩
󵄩
, ∀𝑛, (43)

then 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for a
hybrid extragradient iterative algorithm with regularization
for finding a common element of the set of solutions of the
CMP (2) for a convex functional 𝑓 : 𝐶 → R with 𝐿-
Lipschitz continuous gradient∇𝑓, the set of solutions of finite
generalized mixed equilibrium problems, the set of solutions
of finite variational inequalities for inverse strong monotone
mappings, and the set of fixed points of an asymptotically
𝜅-strict pseudocontractive mapping 𝑆 : 𝐶 → 𝐶 in the
intermediate sense in a real Hilbert space. This iterative
algorithm with regularization is based on the extragradient
method, shrinking projection method, Mann-type iterative
method, and hybrid gradient projection algorithm (GPA)
with regularization.

Theorem 24. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let𝑀,𝑁

be two integers. Let 𝐹𝑘 be a bifunction from 𝐶 × 𝐶 to R
satisfying (A1)–(A4) and let 𝜑𝑘 : 𝐶 → R ∪ {+∞} be a
proper lower semicontinuous and convex function, where 𝑘 ∈

{1, 2, . . . ,𝑀}. Let 𝐵
𝑘
and 𝐴

𝑖
be 𝜇
𝑘
-inverse strongly monotone

and 𝜂
𝑖
-inverse-strongly monotone, respectively, where 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝜅 < 1 with
sequence {𝛾

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛

= 0 and
{𝑐
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛

= 0. Assume that
𝐹 := ∩

𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩ ∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ Fix(𝑆) ∩ Γ is

nonempty and bounded. Let {𝛼
𝑛
} be a sequence in [0,∞) and

let {𝛽
𝑛
}, {𝛿
𝑛
} be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽

𝑛
≤ 1

and 𝜅 ≤ 𝛿𝑛 ≤ 𝑏 < 1. Pick any 𝑥0 ∈ 𝐻 and set 𝐶1 = 𝐶,
𝑥1 = 𝑃𝐶

1

𝑥0. Let {𝑥𝑛} be a sequence generated by the following
algorithm:

𝑢𝑛 = 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟𝑀,𝑛𝐵𝑀) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀,𝑛

× (𝐼 − 𝑟𝑀−1,𝑛𝐵𝑀−1) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟1,𝑛𝐵1) 𝑥𝑛,

𝑥
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) 𝑃
𝐶
(𝐼 − 𝜆

𝑁−1,𝑛
𝐴
𝑁−1

)

⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) ,

𝑧𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 0,

(44)

where 𝜃
𝑛
= (𝛾
𝑛
+ 𝜆
𝑛
𝛼
𝑛
)Δ
2

𝑛
+ 3𝜆
𝑛
𝛼
𝑛
(1 + 𝛾

𝑛
)
2
󰜚
2
+ 𝑐
𝑛
, Δ
𝑛
=

sup{‖𝑥𝑛 − 𝑝‖ : 𝑝 ∈ 𝐹} < ∞ and = sup{‖𝑝‖ : 𝑝 ∈ 𝐹} < ∞.
Assume that the following conditions hold:

(i) lim𝑛→∞𝛼𝑛 = 0;
(ii) {𝜆

𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, (1/𝐿));

(iii) {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), for all 𝑖 ∈ {1, 2, . . . , 𝑁};

(iv) {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), for all 𝑘 ∈ {1, 2, . . . ,𝑀}.

Then {𝑥𝑛} converge strongly to𝑃𝐹𝑥0 provided either (B1) or (B2)
holds.

Proof. First of all, one can show that 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼
) is 𝜉-

averaged for each 𝜆 ∈ (0, (2/(𝛼 + 𝐿))), where

𝜉 =

2 + 𝜆 (𝛼 + 𝐿)

4

∈ (0, 1) , (45)

which shows that𝑃
𝐶
(𝐼−𝜆∇𝑓

𝛼
) is nonexpansive. Furthermore,

for {𝜆
𝑛
} ⊂ [𝑐, 𝑑] with 𝑐, 𝑑 ∈ (0, (1/𝐿)), we have

𝑐 ≤ inf
𝑛≥1

𝜆
𝑛
≤ sup
𝑛≥1

𝜆
𝑛
≤ 𝑑 <

1

𝐿

= lim
𝑛→∞

1

𝛼
𝑛
+ 𝐿

. (46)

Without loss of generality, we may assume that

𝑐 ≤ inf
𝑛≥1

𝜆𝑛 ≤ sup
𝑛≥1

𝜆𝑛 ≤ 𝑑 <

1

𝛼
𝑛
+ 𝐿

, ∀𝑛 ≥ 1. (47)

Consequently, it follows that for each integer 𝑛 ≥ 1, 𝑃
𝐶(𝐼 −

𝜆𝑛∇𝑓𝛼
𝑛

) is 𝜉𝑛-averaged with

𝜉𝑛 =

1

2

+

𝜆𝑛 (𝛼𝑛 + 𝐿)

2

−

1

2

⋅

𝜆𝑛 (𝛼𝑛 + 𝐿)

2

=

2 + 𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

4

∈ (0, 1) .

(48)

This immediately implies that 𝑃𝐶(𝐼−𝜆𝑛∇𝑓𝛼
𝑛

) is nonexpansive
for all 𝑛 ≥ 1.

We divide the proof into several steps.

Step 1. We show that {𝑥𝑛} is well defined. It is obvious that
𝐶𝑛 is closed and convex. As the defining inequality in 𝐶𝑛 is
equivalent to the inequality

⟨2 (𝑥
𝑛
− 𝑧
𝑛
) , 𝑧⟩ ≤

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
, (49)

by Lemma 13 we know that 𝐶
𝑛
is convex for every 𝑛 ≥ 1.
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Next we show that 𝐹 ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Put

Θ
𝑘

𝑛
= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑀
) 𝑇
(𝐹
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

𝐵
𝑘−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛

(50)

for all 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑛 ≥ 1,

Ω
𝑖

𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑃
𝐶
(𝐼 − 𝜆

𝑖−1,𝑛
𝐴
𝑖−1

)

⋅ ⋅ ⋅ 𝑃𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
)

(51)

for all 𝑖 ∈ {1, 2, . . . , 𝑁} and 𝑛 ≥ 1, and Θ
0

𝑛
= Ω
0

𝑛
= 𝐼, where 𝐼

is the identity mapping on𝐻. Then we have that 𝑢
𝑛
= Θ
𝑀

𝑛
𝑥
𝑛

and 𝑥
𝑛
= Ω
𝑁

𝑛
𝑢
𝑛
. Suppose that 𝐹 ⊂ 𝐶

𝑛
for some 𝑛 ≥ 1. Take

𝑝 ∈ 𝐹 arbitrarily. Then from (23) and Lemma 22 we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛

−𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟𝑀,𝑛𝐵𝑀)Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
)Θ
𝑀−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑀,𝑛
𝐵
𝑀
)Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

...

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
0

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
.

(52)

Similarly, we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
)Ω
𝑁−1

𝑛
𝑢
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
)Ω
𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
)Ω
𝑁−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
)Ω
𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢
𝑛
− Ω
𝑁−1

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

...

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑥𝑛 − Ω

0

𝑛
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
.

(53)

Combining (52) and (53), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
. (54)

Also, it follows from (44) that

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑥
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑥
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶 (𝐼 − 𝜆𝑛∇𝑓𝛼

𝑛

) p − 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑝 − (𝐼 − 𝜆
𝑛
∇𝑓) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
.

(55)

Note that 𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) for every 𝑛 = 1, 2, . . . .

Then, by Proposition 4(ii), we have

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
) − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
) − 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
⟨∇𝑓
𝛼
𝑛

(𝑡
𝑛
) , 𝑝 − 𝑧

𝑛
⟩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
(⟨∇𝑓
𝛼
𝑛

(𝑡
𝑛
) − ∇𝑓

𝛼
𝑛

(𝑝) , 𝑝 − 𝑡
𝑛
⟩

+⟨∇𝑓𝛼
𝑛

(𝑝) , 𝑝 − 𝑡𝑛⟩ + ⟨∇𝑓𝛼
𝑛

(𝑡𝑛) , 𝑡𝑛 − 𝑧𝑛⟩ )

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛 (⟨∇𝑓𝛼
𝑛

(𝑝) , 𝑝 − 𝑡𝑛⟩ + ⟨∇𝑓𝛼
𝑛

(𝑡𝑛) , 𝑡𝑛 − 𝑧𝑛⟩)

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
[⟨(𝛼
𝑛
𝐼 + ∇𝑓) 𝑝, 𝑝 − 𝑡

𝑛
⟩ + ⟨∇𝑓

𝛼
𝑛

(𝑡
𝑛
) , 𝑡
𝑛
− 𝑧
𝑛
⟩]

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛 [𝛼𝑛 ⟨𝑝, 𝑝 − 𝑡𝑛⟩ + ⟨∇𝑓𝛼
𝑛

(𝑡𝑛) , 𝑡𝑛 − 𝑧𝑛⟩]

=
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

− 2 ⟨𝑥
𝑛
− 𝑡
𝑛
, 𝑡
𝑛
− 𝑧
𝑛
⟩ −

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
[𝛼
𝑛
⟨𝑝, 𝑝 − 𝑡

𝑛
⟩ + ⟨∇𝑓

𝛼
𝑛

(𝑡
𝑛
) , 𝑡
𝑛
− 𝑧
𝑛
⟩]

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2 ⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
) − 𝑡
𝑛
, 𝑧
𝑛
− 𝑡
𝑛
⟩

+ 2𝜆
𝑛
𝛼
𝑛
⟨𝑝, 𝑝 − 𝑡

𝑛
⟩ .

(56)
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Further, by Proposition 4(i), we have

⟨𝑥𝑛 − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛) − 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

= ⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝑡
𝑛
, 𝑧
𝑛
− 𝑡
𝑛
⟩

+ ⟨𝜆𝑛∇𝑓𝛼
𝑛

(𝑥𝑛) − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛) , 𝑧𝑛 − 𝑡𝑛⟩

≤ ⟨𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
) , 𝑧
𝑛
− 𝑡
𝑛
⟩

≤ 𝜆
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − ∇𝑓

𝛼
𝑛

(𝑡
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

≤ 𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
.

(57)

So from (54) and (55), we obtain

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛𝛼𝑛 ⟨𝑝, 𝑝 − 𝑡𝑛⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
.

(58)

By Lemma 12 and (58), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝛿
𝑛
(𝑧
𝑛
− 𝑝) + (1 − 𝛿

𝑛
) (𝑆
𝑛
𝑧
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
)

× [(1 + 𝛾
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜅

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

= [1 + 𝛾
𝑛 (
1 − 𝛿
𝑛)]

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]

× [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
]

+ (1 − 𝛿
𝑛) (𝜅 − 𝛿𝑛)

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤ [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)] [

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

×
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛

≤ (1 + 𝛾
𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛
.

(59)

It follows from (59) and 𝜆
𝑛
(𝛼
𝑛
+ 𝐿) < 1 that

󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛽

𝑛
)(𝑥
𝑛
− 𝑝) + 𝛽

𝑛
(𝑘
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛
{ (1 + 𝛾

𝑛
) [

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐𝑛}

≤ (1 + 𝛾
𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛

= (1 + 𝛾𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛 (1 + 𝛾𝑛)

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

+ 2 (1 + 𝛾
𝑛) 𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆
𝑛
𝛼
𝑛
[(1 + 𝛾

𝑛
)
2󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
]

+ 2 (1 + 𝛾
𝑛) 𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆
𝑛
𝛼
𝑛
[(1 + 𝛾

𝑛
)
2󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
]

+ 2(1 + 𝛾
𝑛
)
2
𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
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= (1 + 𝛾
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆𝑛𝛼𝑛 [3(1 + 𝛾𝑛)
2󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
] + 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (𝛾
𝑛
+ 𝜆
𝑛
𝛼
𝑛
) Δ
2

𝑛

+ 3𝜆𝑛𝛼𝑛(1 + 𝛾𝑛)
2
󰜚
2
+ 𝑐𝑛 =

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃𝑛.

(60)

Hence 𝑝 ∈ 𝐶
𝑛+1

. This implies that 𝐹 ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1.

Therefore, {𝑥
𝑛
} is well defined.

Step 2.We prove that ‖𝑥
𝑛
− 𝑘
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, let V = 𝑃
𝐹
𝑥
0
. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and V ∈ 𝐹 ⊂ 𝐶

𝑛
,

we obtain

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
V − 𝑥
0

󵄩
󵄩
󵄩
󵄩
. (61)

This implies that {𝑥
𝑛} is bounded and hence {𝑢𝑛},

{𝑥𝑛}, {𝑡𝑛}, {𝑧𝑛}, {𝑘𝑛}, and {𝑦𝑛} are also bounded. Since
𝑥
𝑛+1

∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
and 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
0

󵄩
󵄩
󵄩
󵄩
, ∀𝑛 ≥ 1. (62)

Therefore, lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
0
‖ exists. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, 𝑥
𝑛+1

∈

𝐶
𝑛+1

⊂ 𝐶
𝑛
, we obtain

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2
, (63)

which implies

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (64)

It follows from𝑥
𝑛+1 ∈ 𝐶𝑛+1 that ‖𝑦𝑛 − 𝑥𝑛+1‖

2
≤ ‖𝑥𝑛 − 𝑥𝑛+1‖

2
+

𝜃𝑛 and hence

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩

2
≤ 2 (

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑦𝑛

󵄩
󵄩
󵄩
󵄩

2
)

≤ 2 (
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
)

= 2 (2
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
) .

(65)

From (64) and lim𝑛→∞𝜃𝑛 = 0, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (66)

Note that

𝑦
𝑛
− 𝑥
𝑛
= 𝛽
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) . (67)

Since 0 < 𝑎 ≤ 𝛽
𝑛
and (66), we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (68)

Step 3. We prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑢

𝑛
− 𝑧
𝑛
‖ → 0, and

‖𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, from (58) and (59) it follows that

󵄩
󵄩
󵄩
󵄩
𝑘𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤ [1 + 𝛾𝑛 (1 − 𝛿𝑛)]

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2√2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾𝑛(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐𝑛.

(69)

Next we prove that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (70)

For 𝑝 ∈ 𝐹, it follows from (23) that

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛

−𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛𝐵𝑘)Θ

𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝑟
𝑘,𝑛

(𝑟
𝑘,𝑛

− 2𝜇
𝑘
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟
𝑘,𝑛

(𝑟
𝑘,𝑛

− 2𝜇
𝑘
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− B
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(71)
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By (52), (53), (58), (69), and (71), we obtain

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟𝑘,𝑛 (𝑟𝑘,𝑛 − 2𝜇𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
,

(72)

which implies that

𝑟
𝑘,𝑛

(2𝜇
𝑘
− 𝑟
𝑘,𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
.

(73)

Since {𝜆
𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝑟𝑘,𝑛} ⊂ [𝑒𝑘, 𝑓𝑘] ⊂ (0, 2𝜇𝑘), 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝛼
𝑛

→ 0, 𝛾
𝑛

→ 0, and 𝑐
𝑛

→ 0, we conclude
from (68) and the boundedness of {𝑥

𝑛
}, {𝑘
𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (74)

By Lemmas 12 and 22, we have

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ⟨(𝐼 − 𝑟𝑘,𝑛𝐵𝑘)Θ
𝑘−1

𝑛
𝑥𝑛 − (𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑝, Θ

𝑘

𝑛
𝑥𝑛 − 𝑝⟩

=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛
− (𝐼 − 𝑟

𝑘,𝑛
𝐵
𝑘
)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛

− (𝐼 − 𝑟𝑘,𝑛𝐵𝑘) 𝑝 − (Θ
𝑘

𝑛
𝑥𝑛 − 𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛
− 𝑟
𝑘,𝑛
(𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) ,

(75)

which implies that

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

−𝑟
𝑘,𝑛

(𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝑟
2

𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

⟨Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝⟩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
.

(76)

Utilizing (72) and (76), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
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≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
,

(77)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
.

(78)

Since {𝜆
𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝑟𝑘,𝑛} ⊂ [𝑒𝑘, 𝑓𝑘] ⊂ (0, 2𝜇𝑘), 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝛼𝑛 → 0, 𝛾𝑛 → 0, and 𝑐𝑛 → 0, we conclude
from (68) and (74) and the boundedness of {𝑥𝑛}, {𝑘𝑛} that (70)
holds. Hence we obtain

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
1

𝑛
𝑥
𝑛
− Θ
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(79)

Next we show that lim
𝑛→∞‖𝐴 𝑖Ω

𝑖

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. It follows from (23) that

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛𝐴 𝑖)Ω
𝑖−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑖,𝑛𝐴 𝑖) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(80)

Utilizing (54), (72), and (80), we get

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
,

(81)

which implies

𝜆
𝑖,𝑛
(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
.

(82)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

𝑖 ∈ {1, 2, . . . , 𝑁}, 𝛼
𝑛
→ 0, 𝛾

𝑛
→ 0, and 𝑐

𝑛
→ 0, we conclude

from (68) and the boundedness of {𝑥
𝑛
}, {𝑘
𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (83)

By Proposition 4 and Lemma 12, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝐶(𝐼 − 𝜆𝑖,𝑛𝐴 𝑖)Ω

𝑖−1

𝑛
𝑢𝑛 − 𝑃𝐶(𝐼 − 𝜆𝑖,𝑛𝐴 𝑖)𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐴
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝, Ω

𝑖

𝑛
𝑢
𝑛
− 𝑝⟩
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=

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
) 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐴
𝑖
)Ω
𝑖−1

𝑛
𝑢
𝑛

− (𝐼 − 𝜆𝑖,𝑛𝐴 𝑖) 𝑝 − (Ω
𝑖

𝑛
𝑢𝑛 − 𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛 − 𝜆𝑖,𝑛 (𝐴 𝑖Ω

𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

) ,

(84)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝜆
2

𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛
⟨Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
, 𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛
⟨Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛
, 𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝⟩ .

(85)

Utilizing (81) and (85), we get

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

× [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑖,𝑛 ⟨Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛, 𝐴 𝑖Ω

𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝⟩

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
,

(86)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑖,𝑛 ⟨Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛, 𝐴 𝑖Ω

𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝⟩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
]

+ 𝛾
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ √2𝜆

𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

2

+ 𝑐
𝑛
.

(87)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

𝑖 ∈ {1, 2, . . . , 𝑁}, 𝛼
𝑛
→ 0, 𝛾

𝑛
→ 0, and 𝑐

𝑛
→ 0, we conclude

from (68) and (83) and the boundedness of {𝑥
𝑛
}, {𝑘
𝑛
}, and

{𝑢
𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (88)

From (88) we get

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢𝑛 − Ω

𝑁

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢
𝑛
− Ω
1

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
1

𝑛
𝑢
𝑛
− Ω
2

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(89)

By (79) and (89), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(90)

From (64) and (90), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(91)
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By (68), (79), and (89), we get
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(92)

On the other hand, utilizing (58) and (59) we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤ [1 + 𝛾

𝑛
(1 − 𝛿

𝑛
)]
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼𝑛

+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
,

(93)

which yields

(1 − 𝑑
2
(𝛼𝑛 + 𝐿)

2
)
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(94)

Since {𝜆
𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), 𝛼𝑛 → 0, 𝛾𝑛 → 0, and

𝑐𝑛
→ 0, we conclude from (92) and the boundedness of

{𝑥𝑛}, {𝑘𝑛}, {𝑡𝑛}, and {𝑧𝑛} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (95)

Also, utilizing the similar arguments to those of (58), we
obtain

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛
⟨𝑝, 𝑝 − 𝑡

𝑛
⟩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
,

(96)

which together with (59) leads to

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(97)

So we have

(1 − 𝑑
2
(𝛼
𝑛
+ 𝐿)
2
)
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
)
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛.

(98)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), 𝛼

𝑛
→ 0, 𝛾

𝑛
→ 0, and

𝑐𝑛 → 0, we conclude from (92) and the boundedness of
{𝑥𝑛}, {𝑘𝑛}, {𝑡𝑛}, and {𝑧𝑛} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (99)

Utilizing (92)–(99), we get
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(100)

Since 𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
)𝑆
𝑛
𝑧
𝑛
, we get

(1 − 𝑏)
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤ (1 − 𝛿

𝑛)
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
,

(101)

which together with (100) implies

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (102)

In addition, observe that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
. (103)

From (68), (79), and (100), it immediately follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (104)

Moreover, note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑘
𝑛+1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛+1

− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
.

(105)
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From (91), (92), and (100), it immediately follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (106)

Meantime, it is clear that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑧
𝑛+1

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛+1

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(107)

From (102) and (106) and Lemma 14, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0. (108)

Furthermore, we note that

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(109)

From (102) and (108) and the uniform continuity of 𝑆, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (110)

Step 4. Finally we prove that 𝑥
𝑛 → V = 𝑃𝐹𝑥0 as 𝑛 → ∞.

Indeed, since {𝑥𝑛} is bounded, there exists a subsequence
{𝑥𝑛
𝑖

} which converges weakly to some 𝑤. From (70), (88)–
(90), and (104), we have that Θ𝑘

𝑛
𝑖

𝑥𝑛
𝑖

⇀ 𝑤, Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤,
𝑧
𝑛
𝑖

⇀ 𝑤, 𝑥
𝑛
𝑖

⇀ 𝑤, where 𝑘 ∈ {1, 2, . . . ,𝑀},𝑚 ∈

{1, 2, . . . , 𝑁}. Since 𝑆 is uniformly continuous, by (110) we
get lim

𝑛→∞
‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ = 0 for any 𝑚 ≥ 1. Hence from

Lemma 16, we obtain 𝑤 ∈ Fix(𝑆). Next we prove that 𝑤 ∈

∩
𝑁

𝑚=1
VI(𝐶, 𝐴

𝑚
). Let

𝑇
𝑚
V = {

𝐴
𝑚
V + 𝑁

𝐶
V, V ∈ 𝐶,

0, V ∉ 𝐶,

(111)

where𝑚 ∈ {1, 2, . . . , 𝑁}. Let (V, 𝑢) ∈ 𝐺(𝑇
𝑚). Since 𝑢 − 𝐴𝑚V ∈

𝑁𝐶V andΩ
𝑚

𝑛
𝑢𝑛 ∈ 𝐶, we have

⟨V − Ω
𝑚

𝑛
𝑢
𝑛
, 𝑢 − 𝐴

𝑚
V⟩ ≥ 0. (112)

On the other hand, fromΩ
𝑚

𝑛
𝑢𝑛 = 𝑃𝐶(𝐼−𝜆𝑚,𝑛𝐴𝑚)Ω

𝑚−1

𝑛
𝑢𝑛 and

V ∈ 𝐶, we have

⟨V − Ω
𝑚

𝑛
𝑢
𝑛
, Ω
𝑚

𝑛
𝑢
𝑛
− (Ω
𝑚−1

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛

𝐴
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛
)⟩ ≥ 0,

(113)

and hence

⟨V − Ω
𝑚

𝑛
𝑢𝑛,

Ω
𝑚

𝑛
𝑢
𝑛
− Ω
𝑚−1

𝑛
𝑢
𝑛

𝜆
𝑚,𝑛

+ 𝐴𝑚Ω
𝑚−1

𝑛
𝑢𝑛
⟩ ≥ 0. (114)

Therefore, we have

⟨V − Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝑢⟩ ≥ ⟨V − Ω
𝑚

𝑛i
𝑢𝑛
𝑖

, 𝐴𝑚V⟩

≥ ⟨V − Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝐴𝑚V⟩

−⟨V − Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

,

Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− Ω
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

+𝐴𝑚Ω
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

= ⟨V − Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐴
𝑚
V − 𝐴

𝑚
Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

+ ⟨V − Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐴
𝑚
Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− 𝐴
𝑚
Ω
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

−⟨V − Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

,

Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Ω
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆𝑚,𝑛
𝑖

⟩

≥ ⟨V − Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝐴𝑚Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− 𝐴𝑚Ω
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

−⟨V − Ω
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

,

Ω
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− Ω
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

⟩.

(115)

From (88) and since 𝐴
𝑚

is continuous, we obtain that
lim
𝑛→∞

‖𝐴
𝑚
Ω
𝑚

𝑛
𝑢
𝑛
− 𝐴
𝑚
Ω
𝑚−1

𝑛
𝑢
𝑛
‖ = 0. From Ω

𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀ 𝑤,
{𝜆
𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), for all 𝑖 ∈ {1, 2, . . . , 𝑁} and (88), we

have

⟨V − 𝑤, 𝑢⟩ ≥ 0. (116)

Since 𝑇
𝑚

is maximal monotone, we have 𝑤 ∈ 𝑇
−1

𝑚
0

and hence 𝑤 ∈ VI(𝐶, 𝐴
𝑚
), 𝑚 = 1, 2, . . . , 𝑁, which

implies 𝑤 ∈ ∩
𝑁

𝑚=1
VI(𝐶, 𝐴𝑚). Next we prove that

𝑤 ∈ ∩
𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
). Since Θ

𝑘

𝑛
𝑥
𝑛

= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 −

𝑟
𝑘,𝑛
𝐵
𝑘
)Θ
𝑘−1

𝑛
𝑥
𝑛
, 𝑛 ≥ 1, 𝑘 ∈ {1, 2, . . . ,𝑀}, we have

𝐹
𝑘 (Θ
𝑘

𝑛
𝑥𝑛, 𝑦) + 𝜑𝑘 (𝑦) − 𝜑𝑘 (Θ

𝑘

𝑛
𝑥𝑛) + ⟨𝐵𝑘Θ

𝑘−1

𝑛
𝑥𝑛, 𝑦 − Θ

𝑘

𝑛
𝑥𝑛⟩

+

1

𝑟𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥
𝑛
, Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛
⟩ ≥ 0.

(117)

By (A2), we have

𝜑
𝑘
(𝑦) − 𝜑

𝑘
(Θ
𝑘

𝑛
𝑥
𝑛
) + ⟨𝐵

𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
, 𝑦 − Θ

𝑘

𝑛
𝑥
𝑛
⟩

+

1

𝑟
𝑘,𝑛

⟨𝑦 − Θ
𝑘

𝑛
𝑥𝑛, Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛⟩ ≥ 𝐹𝑘 (𝑦, Θ

𝑘

𝑛
𝑥𝑛) .

(118)
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Let 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. This implies

that 𝑧
𝑡
∈ 𝐶. Then we have

⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
⟩

≥ 𝜑𝑘 (Θ
𝑘

𝑛
𝑥𝑛) − 𝜑𝑘 (𝑧𝑡) + ⟨𝑧𝑡 − Θ

𝑘

𝑛
𝑥𝑛, 𝐵𝑘𝑧𝑡⟩

− ⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
,

Θ
𝑘

𝑛
𝑥𝑛 − Θ

𝑘−1

𝑛
𝑥𝑛

𝑟
𝑘,𝑛

⟩ + 𝐹
𝑘
(𝑧
𝑡
, Θ
𝑘

𝑛
𝑥
𝑛
)

= 𝜑𝑘 (Θ
𝑘

𝑛
𝑥𝑛) − 𝜑𝑘 (𝑧𝑡) + ⟨𝑧𝑡 − Θ

𝑘

𝑛
𝑥𝑛, 𝐵𝑘𝑧𝑡 − 𝐵𝑘Θ

𝑘

𝑛
𝑥𝑛⟩

+ ⟨𝑧
𝑡
− Θ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
− 𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
⟩

− ⟨𝑧
𝑡 − Θ
𝑘

𝑛
𝑥𝑛,

Θ
𝑘

𝑛
𝑥
𝑛
− Θ
𝑘−1

𝑛
𝑥
𝑛

𝑟
𝑘,𝑛

⟩ + 𝐹𝑘 (𝑧𝑡, Θ
𝑘

𝑛
𝑥𝑛) .

(119)

By (70), we have ‖𝐵
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
− 𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Furthermore, by the monotonicity of 𝐵
𝑘
, we obtain ⟨𝑧

𝑡
−

Θ
𝑘

𝑛
𝑥
𝑛
, 𝐵
𝑘
𝑧
𝑡
− 𝐵
𝑘
Θ
𝑘

𝑛
𝑥
𝑛
⟩ ≥ 0. Then by (A4), we obtain

⟨𝑧
𝑡
− 𝑤, 𝐵

𝑘
𝑧
𝑡
⟩ ≥ 𝜑
𝑘 (
𝑤) − 𝜑

𝑘
(𝑧
𝑡
) + 𝐹
𝑘
(𝑧
𝑡
, 𝑤) . (120)

Utilizing (A1), (A4), and (120), we obtain

0 = 𝐹
𝑘
(𝑧
𝑡
, 𝑧
𝑡
) + 𝜑
𝑘
(𝑧
𝑡
) − 𝜑
𝑘
(𝑧
𝑡
)

≤ 𝑡𝐹
𝑘
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) 𝐹𝑘

(𝑧
𝑡
, 𝑤)

+ 𝑡𝜑𝑘 (𝑦) + (1 − 𝑡) 𝜑𝑘 (𝑤) − 𝜑𝑘 (𝑧𝑡)

≤ 𝑡 [𝐹
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
)]

+ (1 − 𝑡) ⟨𝑧𝑡 − 𝑤, 𝐵𝑘𝑧𝑡⟩

= 𝑡 [𝐹
𝑘
(𝑧
𝑡
, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘
(𝑧
𝑡
)]

+ (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤, 𝐵
𝑘
𝑧
𝑡
⟩ ,

(121)

and hence

0 ≤ 𝐹
𝑘 (
𝑧
𝑡
, 𝑦) + 𝜑

𝑘 (
𝑦) − 𝜑

𝑘 (
𝑧
𝑡)
+ (1 − 𝑡) ⟨𝑦 − 𝑤, 𝐵

𝑘
𝑧
𝑡⟩
.

(122)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ 𝐹
𝑘
(𝑤, 𝑦) + 𝜑

𝑘
(𝑦) − 𝜑

𝑘 (
𝑤) + ⟨𝑦 − 𝑤, 𝐵

𝑘
𝑤⟩ . (123)

This implies that 𝑤 ∈ GMEP(𝐹
𝑘, 𝜑𝑘, 𝐵𝑘) and hence 𝑤 ∈

∩
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐵𝑘).
Further, let us show that 𝑤 ∈ Γ. As a matter of fact, since

𝑥𝑛 −𝑡𝑛 → 0 and 𝑥𝑛 −𝑧𝑛 → 0 (due to (95) and (99)), we have
𝑡
𝑛
𝑖

⇀ 𝑤 and 𝑧
𝑛
𝑖

⇀ 𝑤. Let

𝑇V = {

∇𝑓 (V) + 𝑁
𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶,

(124)

where 𝑁
𝐶
V is the normal cone to 𝐶 at V ∈ 𝐶. We have

alreadymentioned that in this case themapping𝑇 is maximal
monotone, and 0 ∈ 𝑇V if and only if V ∈ VI(𝐶, ∇𝑓); see
[40] for more details. Let 𝐺(𝑇) be the graph of 𝑇 and let
(V, 𝑢) ∈ 𝐺(𝑇). Then, we have 𝑢 ∈ 𝑇V = ∇𝑓(V) + 𝑁

𝐶
V and

hence 𝑢 − ∇𝑓(V) ∈ 𝑁
𝐶
V. So we have ⟨V − 𝑡, 𝑢 − ∇𝑓(V)⟩ ≥ 0 for

all 𝑡 ∈ 𝐶. On the other hand, from 𝑧𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
))

and V ∈ 𝐶, we have

⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
) − 𝑧
𝑛
, 𝑧
𝑛
− V⟩ ≥ 0, (125)

and hence

⟨V − 𝑧
𝑛
,

𝑧
𝑛
− 𝑥
𝑛

𝜆
𝑛

+ ∇𝑓
𝛼
𝑛

(𝑡
𝑛
)⟩ ≥ 0. (126)

Therefore, from ⟨V−𝑡, 𝑢−∇𝑓(V)⟩ ≥ 0 for all 𝑡 ∈ 𝐶 and 𝑧
𝑛
𝑖

∈ 𝐶,
we have

⟨V − 𝑧
𝑛
𝑖

, 𝑢⟩ ≥ ⟨V − 𝑧
𝑛
𝑖

, ∇𝑓 (V)⟩

≥ ⟨V − 𝑧
𝑛
𝑖

, ∇𝑓 (V)⟩

− ⟨V − 𝑧𝑛
𝑖

,

𝑧
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

+ ∇𝑓𝛼
𝑛
𝑖

(𝑡𝑛
𝑖

)⟩

= ⟨V − 𝑧
𝑛
𝑖

, ∇𝑓 (V)⟩

− ⟨V − 𝑧
𝑛
𝑖

,

𝑧𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

+ ∇𝑓 (𝑡
𝑛
𝑖

)⟩

− 𝛼
𝑛
𝑖

⟨V − 𝑧
𝑛
𝑖

, 𝑡
𝑛
𝑖

⟩

= ⟨V − 𝑧𝑛
𝑖

, ∇𝑓 (V) − ∇𝑓 (𝑧𝑛
𝑖

)⟩

+ ⟨V − 𝑧
𝑛
𝑖

, ∇𝑓 (𝑧
𝑛
𝑖

) − ∇𝑓 (𝑡
𝑛
𝑖

)⟩

− ⟨V − 𝑧
𝑛
𝑖

,

𝑧
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆𝑛
𝑖

⟩ − 𝛼
𝑛
𝑖

⟨V − 𝑧
𝑛
𝑖

, 𝑡
𝑛
𝑖

⟩

≥ ⟨V − 𝑧𝑛
𝑖

, ∇𝑓 (𝑧𝑛
𝑖

) − ∇𝑓 (𝑡𝑛
𝑖

)⟩

− ⟨V − 𝑧𝑛
𝑖

,

𝑧
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

⟩ − 𝛼𝑛
𝑖

⟨V − 𝑧𝑛
𝑖

, 𝑡𝑛
𝑖

⟩ .

(127)

Note that 𝛼
𝑛 → 0, ‖𝑧𝑛 − 𝑥𝑛‖ → 0, and ‖∇𝑓(𝑧𝑛) − ∇𝑓(𝑡𝑛)‖ →

0 (due to the 𝐿-Lipschitz continuity of ∇𝑓). Thus, we obtain
⟨V − 𝑤, 𝑢⟩ ≥ 0 as 𝑖 → ∞. Since 𝑇 is maximal monotone,
we have 𝑤 ∈ 𝑇

−1
0 and hence 𝑤 ∈ VI(𝐶, ∇𝑓). Clearly, 𝑤 ∈ Γ.

Consequently, 𝑤 ∈ 𝐹. This shows that 𝜔𝑤({𝑥𝑛}) ⊂ 𝐹. From
(61) and Lemma 23 we infer that 𝑥𝑛 → V = 𝑃𝐹𝑥0 as 𝑛 → ∞.
This completes the proof.

Corollary 25 (i.e., [3, Theorem 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let 𝑓 :

𝐶 → R be a convex functional with 𝐿-Lipschitz continuous
gradient ∇𝑓. Let 𝑀,𝑁 be two integers. Let 𝐹

𝑘
be a bifunction

from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let 𝜑
𝑘

: 𝐶 →

R ∪ {+∞} be a proper lower semicontinuous and convex
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function, where 𝑘 ∈ {1, 2, . . . ,𝑀}. Let 𝐵
𝑘
and let 𝐴

𝑖
be 𝜇
𝑘
-

inverse strongly monotone and 𝜂
𝑖
-inverse-strongly monotone,

respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑖 ∈ {1, 2, . . . , 𝑁}. Let
𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝜅 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
=

0 and {𝑐𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0. Assume that

𝐹 := ∩
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖) ∩ Fix(𝑆) ∩ Γ is

nonempty and bounded. Let {𝛽𝑛} and {𝛿𝑛} be sequences in [0, 1]
such that 0 < 𝑎 ≤ 𝛽

𝑛
≤ 1 and 𝜅 ≤ 𝛿

𝑛
≤ 𝑏 < 1. Pick any 𝑥

0
∈ 𝐻

and set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated

by the following algorithm:

𝑢
𝑛
= 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐵
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛
,

𝑧
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐴
𝑁
) 𝑃
𝐶
(𝐼 − 𝜆

𝑁−1,𝑛
𝐴
𝑁−1

)

⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0,

(128)

where 𝜃
𝑛
= 𝛾
𝑛
Δ
2

𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖ : 𝑝 ∈ 𝐹} < ∞,

{𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑖 ∈

{1, 2, . . . , 𝑁}, 𝑘 ∈ {1, 2, . . . ,𝑀}. Assume that either (B1) or (B2)
holds. Then {𝑥

𝑛
} converge strongly to 𝑃

𝐹
𝑥
0
.

Proof. In Theorem 24, put ∇𝑓 = 0 and 𝛼
𝑛

= 0 for all
𝑛 ≥ 1. Then Γ = 𝐶 and 𝐹 = ∩

𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ Fix(𝑆) ∩ Γ = ∩

𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ Fix(𝑆). In this case, we obtain from (44) that

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) = 𝑥

𝑛
,

𝑧𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛)) = 𝑥𝑛.

(129)

Thus, the iterative scheme (44) reduces to (128). Since 𝛼
𝑛 = 0

for all 𝑛 ≥ 1 and 𝐹 is bounded, we know that 󰜚 = sup{‖𝑝‖ :

𝑝 ∈ 𝐹} < ∞,Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖ : 𝑝 ∈ 𝐹} < ∞, and

𝜃
𝑛
= (𝛾
𝑛
+ 𝜆
𝑛
𝛼
𝑛
) Δ
2

𝑛
+ 3𝜆
𝑛
𝛼
𝑛
(1 + 𝛾

𝑛
)
2
󰜚
2
+ 𝑐
𝑛
= 𝛾
𝑛
Δ
2

𝑛
+ 𝑐
𝑛
.

(130)

It is easy to see that all the conditions of Theorem 24 are
satisfied. Therefore, in terms of Theorem 24, we derive the
desired result.

Corollary 26. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let 𝜑 :

𝐶 → R∪ {+∞} be a proper lower semicontinuous and convex
function. Let 𝐵 and 𝐴

𝑖
be 𝜇-inverse strongly monotone and

𝜂
𝑖
-inverse-strongly monotone, respectively, where 𝑖 = 1, 2. Let

𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝜅 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
=

0 and {𝑐
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0. Assume that

𝐹 := GMEP(𝐹, 𝜑, 𝐴) ∩ VI(𝐶, 𝐴
1
) ∩ VI(𝐶, 𝐴

2
) ∩ Fix(𝑆) ∩ Γ is

nonempty and bounded. Let {𝛼𝑛} be a sequence in [0,∞), and
let {𝛽𝑛}, {𝛿𝑛} be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽𝑛 ≤ 1

and 𝜅 ≤ 𝛿𝑛 ≤ 𝑏 < 1. Pick any 𝑥0 ∈ 𝐻 and set 𝐶1 = 𝐶,
𝑥1 = 𝑃𝐶

1

𝑥0. Let {𝑥𝑛} be a sequence generated by the following
algorithm:

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑡
𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼

𝑛

(𝑥𝑛)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0,

(131)

where 𝜃𝑛 = (𝛾𝑛 + 𝜆𝑛𝛼𝑛)Δ
2

𝑛
+ 3𝜆𝑛𝛼𝑛(1 + 𝛾𝑛)

2
󰜚
2
+ 𝑐𝑛, Δ 𝑛 =

sup{‖𝑥𝑛 − 𝑝‖ : 𝑝 ∈ 𝐹} < ∞ and 󰜚 = sup{‖𝑝‖ : 𝑝 ∈ 𝐹} < ∞.
Assume that the following conditions hold:

(i) lim𝑛→∞𝛼𝑛 = 0;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿);

(iii) {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), 𝑖 = 1, 2;

(iv) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇).

Then {𝑥
𝑛
} converge strongly to𝑃

𝐹
𝑥
0
provided either (B1) or (B2)

holds.

Corollary 27. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be a bifunction
from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪

{+∞} be a proper lower semicontinuous and convex function.
Let 𝐵 and 𝐴 be 𝜇-inverse strongly monotone and 𝜂-inverse-
strongly monotone, respectively. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝜅 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞)

such that lim
𝑛→∞

𝑐
𝑛
= 0. Assume that 𝐹 := GMEP(𝐹, 𝜑, 𝐴) ∩

VI(𝐶, 𝐴) ∩ Fix(𝑆) ∩ Γ is nonempty and bounded. Let {𝛼
𝑛
} be

a sequence in [0,∞), and let {𝛽
𝑛
}, {𝛿
𝑛
} be sequences in [0, 1]

such that 0 < 𝑎 ≤ 𝛽
𝑛
≤ 1 and 𝜅 ≤ 𝛿

𝑛
≤ 𝑏 < 1. Pick any 𝑥

0
∈ 𝐻
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and set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated

by the following algorithm:

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝐴𝑢
𝑛
) ,

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 0,

(132)

where 𝜃
𝑛
= (𝛾
𝑛
+ 𝜆
𝑛
𝛼
𝑛
)Δ
2

𝑛
+ 3𝜆
𝑛
𝛼
𝑛
(1 + 𝛾

𝑛
)
2
󰜚
2
+ 𝑐
𝑛
, Δ
𝑛
=

sup{‖𝑥
𝑛
− 𝑝‖ : 𝑝 ∈ 𝐹} < ∞, and 󰜚 = sup{‖𝑝‖ : 𝑝 ∈ 𝐹} < ∞.

Assume that the following conditions hold:

(i) lim𝑛→∞𝛼𝑛 = 0;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿);

(iii) {𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜂);

(iv) {𝑟𝑛} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇).

Then {𝑥𝑛} converge strongly to𝑃𝐹𝑥0 provided either (B1) or (B2)
holds.

Corollary 28. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be a bifunction
from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪

{+∞} be a proper lower semicontinuous and convex function.
Let 𝐵 and 𝐴 be 𝜇-inverse strongly monotone and 𝜂-inverse-
strongly monotone, respectively. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
for some 0 ≤ 𝜅 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that

lim
𝑛→∞

𝛾
𝑛
= 0. Assume that𝐹 := GMEP(𝐹, 𝜑, 𝐴)∩VI(𝐶, 𝐴)∩

Fix(𝑆) ∩ Γ is nonempty and bounded. Let {𝛼
𝑛
} be a sequence

in [0,∞), and let {𝛽
𝑛
}, {𝛿
𝑛
} be sequences in [0, 1] such that

0 < 𝑎 ≤ 𝛽
𝑛
≤ 1 and 𝜅 ≤ 𝛿

𝑛
≤ 𝑏 < 1. Pick any 𝑥

0
∈ 𝐻

and set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated

by the following algorithm:

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝐴𝑢
𝑛
) ,

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧

󵄩
󵄩
󵄩
󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 0,

(133)

where 𝜃
𝑛
= (𝛾
𝑛
+𝜆
𝑛
𝛼
𝑛
)Δ
2

𝑛
+3𝜆
𝑛
𝛼
𝑛
(1+𝛾
𝑛
)
2
󰜚
2, Δ
𝑛
= sup{‖𝑥

𝑛
−

𝑝‖ : 𝑝 ∈ 𝐹} < ∞, and 󰜚 = sup{‖𝑝‖ : 𝑝 ∈ 𝐹} < ∞. Assume
that the following conditions hold:

(i) lim𝑛→∞𝛼𝑛 = 0;
(ii) {𝜆

𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿);

(iii) {𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜂);

(iv) {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇).

Then {𝑥
𝑛
} converge strongly to𝑃

𝐹
𝑥
0
provided either (B1) or (B2)

holds.

Remark 29. Theorem 24 extends, improves, supplements,
and develops Yao et al. [26, Theorem 3.1] in the following
aspects.

(i) Theorem 24 generalizes and extends [26, Theorem
3.1] from the asymptotically 𝑘-strict pseudocontrac-
tive mapping to the asymptotically 𝑘-strict pseu-
docontractive mapping in the intermediate sense
and from one mixed equilibrium problem to finite
GMEPs.

(ii) We add finite VIPs and the CMP (2) in our algorithm
such that it can be applied to find a common element
of the set of solutions of finite GMEPs, the set of
solutions of finite VIPs for inverse strongly monotone
mappings, the set of fixed points of an asymptotically
𝑘-strict pseudocontractivemapping in the intermedi-
ate sense, and the CMP (2) for a convex functional 𝑓
with 𝐿-Lipschitz continuous gradient ∇𝑓.

(iii) Theorem 24 also removes the condition (ii) in [26,
Theorem 3.1].

4. Weak Convergence Theorem

In this section, we prove a new weak convergence theorem
by a modified extragradient method with regularization for
finding a common element of the set of solutions of the
CMP (2) for a convex functional 𝑓 : 𝐶 → R with 𝐿-
Lipschitz continuous gradient∇𝑓, the set of solutions of finite
generalized mixed equilibrium problems, the set of solutions
of finite variational inequalities for inverse strong monotone
mappings, and the set of fixed points of an asymptotically
𝜅-strict pseudocontractive mapping 𝑆 : 𝐶 → 𝐶 in the
intermediate sense in a real Hilbert space. This iterative
algorithm with regularization is based on the extragradient
method, Mann-type iterative method, and hybrid gradient
projection algorithm (GPA) with regularization.
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Theorem 30. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝑀,𝑁 be two
integers. Let 𝐹

𝑘
be a bifunction from 𝐶 × 𝐶 to R satisfying

(A1)–(A4) and let 𝜑
𝑘
: 𝐶 → R ∪ {+∞} be a proper lower

semicontinuous and convex function, where 𝑘 ∈ {1, 2, . . . ,𝑀}.
Let 𝐵𝑘 and 𝐴 𝑖 be 𝜇𝑘-inverse strongly monotone and 𝜂

𝑖
-inverse-

strongly monotone, respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀},
𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be the uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝜅 < 1 with
sequences {𝛾𝑛} ⊂ [0,∞) and {𝑐𝑛} ⊂ [0,∞). Assume that
𝐹 := ∩

𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖) ∩ Fix(𝑆) ∩ Γ is

nonempty. Let {𝛼𝑛} be a sequence in (0,∞), and let {𝛽𝑛}, {𝛿𝑛}
be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽𝑛 ≤ 𝛽 < 1 and
𝜅 ≤ 𝛿

𝑛
≤ 𝑏 < 1. Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝑢
𝑛
= 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐵
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛
,

𝑥𝑛 = 𝑃𝐶 (𝐼 − 𝜆𝑁,𝑛𝐴𝑁) 𝑃𝐶 (𝐼 − 𝜆𝑁−1,𝑛𝐴𝑁−1)

⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑘𝑛,

(134)

where {𝜆𝑖,𝑛} ⊂ [𝑎
𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑖 ∈

{1, 2, . . . , 𝑁}, and 𝑘 ∈ {1, 2, . . . ,𝑀}. Assume that either (B1) or
(B2) holds and that the following conditions are satisfied:

(i) ∑∞
𝑛=1

𝛼
𝑛
< ∞,∑

∞

𝑛=1
𝛾
𝑛
< ∞ and ∑∞

𝑛=1
𝑐
𝑛
< ∞;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿).

Then

(a) {𝑥
𝑛} converges weakly to an element w ∈ 𝐹;

(b) {𝑥
𝑛
} converges weakly to 𝑤 = lim

𝑛→∞
𝑃
𝐹
𝑥
𝑛
provided

𝐹 is bounded.

Proof. First of all, again one can show that 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼
) is

𝜉-averaged for each 𝜆 ∈ (0, 2/(𝛼 + 𝐿)), where

𝜉 =

2 + 𝜆 (𝛼 + 𝐿)

4

∈ (0, 1) . (135)

This shows that 𝑃𝐶(𝐼 − 𝜆∇𝑓𝛼) is nonexpansive. Furthermore,
for {𝜆𝑛} ⊂ [𝑎, 𝑏]with𝑎, 𝑏 ∈ (0, 1/𝐿), without loss of generality,
we may assume that

𝑎 ≤ inf
𝑛≥1

𝜆
𝑛
≤ sup
𝑛≥1

𝜆
𝑛
≤ 𝑏 <

1

𝛼𝑛 + 𝐿

, ∀𝑛 ≥ 1. (136)

Consequently, it follows that for each integer 𝑛 ≥ 1, 𝑃
𝐶
(𝐼 −

𝜆
𝑛
∇𝑓
𝛼
𝑛

) is 𝜉
𝑛
-averaged with

𝜉
𝑛
=

1

2

+

𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

2

−

1

2

⋅

𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

2

=

2 + 𝜆
𝑛
(𝛼
𝑛
+ 𝐿)

4

∈ (0, 1) .

(137)

This immediately implies that 𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓
𝛼
𝑛

) is nonexpansive
for all 𝑛 ≥ 1.

Next let us show that lim
𝑛→∞

‖𝑥
𝑛
−𝑝‖ exists for any𝑝 ∈ 𝐹.

Put

Θ
𝑘

𝑛
= 𝑇
(𝐹
𝑘
,𝜑
𝑘
)

𝑟
𝑘,𝑛

(𝐼 − 𝑟
𝑘,𝑛
𝐵
𝑘
) 𝑇
(𝐹
𝑘−1
,𝜑
𝑘−1
)

𝑟
𝑘−1,𝑛

× (𝐼 − 𝑟
𝑘−1,𝑛

𝐵
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛
,

(138)

for all 𝑘 ∈ {1, 2, . . . ,𝑀}, 𝑛 ≥ 1, and Θ
0

𝑛
= Ω
0

𝑛
= 𝐼, where 𝐼

is the identity mapping on𝐻. Then we have that 𝑢
𝑛
= Θ
𝑀

𝑛
𝑥
𝑛

and 𝑥
𝑛
= Ω
𝑁

𝑛
𝑢
𝑛
. Take 𝑝 ∈ 𝐹 arbitrarily. Similarly to the proof

of Theorem 24, we obtain that

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
, (139)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
, (140)

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
, (141)

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼𝑛 + 𝐿)

2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
,

(142)

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
,

(4.5)
󸀠

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟
𝑘,𝑛

(𝑟
𝑘,𝑛

− 2𝜇
𝑘
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘Θ
𝑘−1

𝑛
𝑥𝑛 − 𝐵𝑘𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

, 𝑘 ∈ {1, 2, . . . ,𝑀} ,

(143)
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󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
,

𝑘 = 1, 2, . . . ,𝑀,

(144)

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

, 𝑖 ∈ {1, 2, . . . , 𝑁} ,

(145)

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
,

𝑖 ∈ {1, 2, . . . , 𝑁} .

(146)

We observe that

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
=
󵄩
󵄩
󵄩
󵄩
𝛿
𝑛 (𝑧𝑛 − 𝑝) + (1 − 𝛿𝑛) (𝑆

𝑛
𝑧𝑛 − 𝑝)

󵄩
󵄩
󵄩
󵄩

2

= 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛿
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
)

× [(1 + 𝛾𝑛)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜅

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛]

− 𝛿𝑛 (1 − 𝛿𝑛)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

= [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛿
𝑛
) (𝜅 − 𝛿

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑆
𝑛
𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(147)

It follows from (142) and (147) and 𝜆
𝑛
(𝛼
𝑛
+ 𝐿) < 1 that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑝) + 𝛽

𝑛
(𝑘
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛽𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛽
𝑛
[(1 + 𝛾

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
]

≤ (1 − 𝛽
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛
{(1 + 𝛾

𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐
𝑛
}

≤ (1 + 𝛾𝑛) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐𝑛

= (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2 (1 + 𝛾

𝑛
) 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+ 2 (1 + 𝛾
𝑛
) 𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ (1 + 𝛾

𝑛
) 𝜆
𝑛
𝛼
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
)

+ 2 (1 + 𝛾
𝑛
) 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

= [1 + 𝛾𝑛 + (1 + 𝛾𝑛) 𝜆𝑛𝛼𝑛]
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 3 (1 + 𝛾
𝑛
) 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(148)

From {𝜆
𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿) and condition (i) we have

∞

∑

𝑛=1

[𝛾
𝑛
+ (1 + 𝛾

𝑛
) 𝜆
𝑛
𝛼
𝑛
] < ∞,

∞

∑

𝑛=1

[3 (1 + 𝛾
𝑛
) 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
] < ∞.

(149)

So, applying Lemma 19 to (148), we deduce that lim
𝑛→∞‖𝑥𝑛−

𝑝‖ exists. This implies that {𝑥𝑛} is bounded and hence
{𝑢𝑛}, {𝑥𝑛}, {𝑡𝑛}, {𝑧𝑛}, and {𝑘𝑛} are also bounded. In addition,
by Lemma 12 and (59) we obtain from 𝜆𝑛(𝛼𝑛 + 𝐿) < 1 that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2
= (1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
𝑛
{(1 + 𝛾

𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
] + 𝑐𝑛}

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 + 𝛾
𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

×
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
]

+ 𝑐
𝑛
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 + 𝛾
𝑛
) [
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+2𝜆
𝑛
𝛼
𝑛
‖ 𝑝‖
2
] + 𝑐
𝑛

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩

2
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= (1 + 𝛾
𝑛)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2 (1 + 𝛾𝑛) 𝜆𝑛𝛼𝑛

×
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
)

+ 𝑐
𝑛 − 𝛽𝑛 (1 − 𝛽𝑛)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩

2
.

(150)

Thus, it is easy to see from 0 < 𝑎 ≤ 𝛽
𝑛
≤ 𝛽 < 1 that

𝑎 (1 − 𝛽)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2 (1 + 𝛾
𝑛
) 𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
) + 𝑐
𝑛
.

(151)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists, 𝛼

𝑛
→

0, 𝛾
𝑛

→ 0, 𝑐
𝑛

→ 0, and the sequence {𝑥
𝑛
} is bounded, we

obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (152)

Taking into consideration 𝑥
𝑛+1

= (1 − 𝛽
𝑛
)𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
, we get

𝑥
𝑛+1

− 𝑥
𝑛
= 𝛽
𝑛
(𝑘
𝑛
− 𝑥
𝑛
), which together with (152) leads to

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (153)

Combining (140), (142), (143), and (147), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑟
𝑘,𝑛

(𝑟
𝑘,𝑛

− 2𝜇
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
,

(154)

which yields

𝑟
𝑘,𝑛

(2𝜇
𝑘
− 𝑟
𝑘,𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(155)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝑟

𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑘 ∈

{1, 2, . . . ,𝑀}, 𝛼
𝑛
→ 0, 𝛾

𝑛
→ 0, and 𝑐

𝑛
→ 0, we conclude

from (152) and the boundedness of {𝑥
𝑛
}, {𝑘
𝑛
}, {𝑡
𝑛
}, and {𝑧

𝑛
}

that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (156)

Combining (140), (142), (144), and (147), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘

𝑛
𝑥𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛,

(157)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝑟
𝑘,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥
𝑛
− Θ
𝑘

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
𝑘
Θ
𝑘−1

𝑛
𝑥
𝑛
− 𝐵
𝑘
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(158)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, (1/𝐿)), {𝑟

𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
),

𝑘 ∈ {1, 2, . . . ,𝑀}, 𝛼
𝑛

→ 0, 𝛾
𝑛

→ 0, and 𝑐
𝑛

→ 0,
we conclude from (152) and (156) and the boundedness of
{𝑥
𝑛
}, {𝑘
𝑛
}, {𝑡
𝑛
}, and {𝑧

𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑘−1

𝑛
𝑥𝑛 − Θ

𝑘

𝑛
𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑘 = 1, 2, . . . ,𝑀. (159)

From (159), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
0

𝑛
𝑥
𝑛
− Θ
1

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
1

𝑛
𝑥
𝑛
− Θ
2

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Θ
𝑀−1

𝑛
𝑥
𝑛
− Θ
𝑀

𝑛
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ as 𝑛 󳨀→ ∞.

(160)
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Combining (140), (142), (145), and (147), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
,

(161)

where 𝑖 ∈ {1, 2, . . . , 𝑁}, which implies

𝜆
𝑖,𝑛
(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(162)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), 𝑖 ∈

{1, 2, . . . , 𝑁}, 𝛼
𝑛

→ 0, 𝛾
𝑛

→ 0, and 𝑐
𝑛

→ 0, we conclude
from (152) and the boundedness of {𝑥

𝑛
}, {𝑘
𝑛
}, {𝑡
𝑛
}, and {𝑧

𝑛
}

that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 ∈ {1, 2, . . . , 𝑁} . (163)

Combining (140), (142), (146), and (147), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
,

(164)

which implies

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖
Ω
𝑖−1

𝑛
𝑢
𝑛
− 𝐴
𝑖
𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑖,𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢𝑛 − Ω

𝑖

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
𝑖Ω
𝑖−1

𝑛
𝑢𝑛 − 𝐴 𝑖𝑝

󵄩
󵄩
󵄩
󵄩
󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(165)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

𝑖 ∈ {1, 2, . . . , 𝑁}, 𝛼
𝑛

→ 0, 𝛾
𝑛

→ 0, and 𝑐
𝑛

→ 0,
we conclude from (152) and (163) and the boundedness of
{𝑥
𝑛
}, {𝑘
𝑛
}, {𝑢
𝑛
}, {𝑡
𝑛
}, and {𝑧

𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑖−1

𝑛
𝑢
𝑛
− Ω
𝑖

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, 𝑖 ∈ {1, 2, . . . , 𝑁} . (166)

By (166), we have

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢
𝑛
− Ω
𝑁

𝑛
𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
0

𝑛
𝑢𝑛 − Ω

1

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
1

𝑛
𝑢𝑛 − Ω

2

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+ ⋅ ⋅ ⋅ +

󵄩
󵄩
󵄩
󵄩
󵄩
Ω
𝑁−1

𝑛
𝑢𝑛 − Ω

𝑁

𝑛
𝑢𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(167)

From (160) and (167), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑢𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(168)

By (152) and (168), we obtain

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑥𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(169)

Furthermore, combining (139), (140), (142), and (147), we
have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
,

(170)
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which yields

(1 − 𝜆
2

𝑛
(𝛼𝑛 + 𝐿)

2
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑘𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(171)

Since {𝜆
𝑛
} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), 𝛼

𝑛
→ 0, 𝛾

𝑛
→ 0, and 𝑐

𝑛
→ 0,

we obtain from (152) and the boundedness of {𝑥
𝑛
}, {𝑘
𝑛
}{𝑡
𝑛
},

and {𝑧
𝑛
} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (172)

Also, combining (139), (140), (4.5)󸀠, and (147), we have

󵄩
󵄩
󵄩
󵄩
𝑘
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼𝑛 + 𝐿)

2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑡𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 2𝜆
𝑛
𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩

+ (𝜆
2

𝑛
(𝛼𝑛 + 𝐿)

2
− 1)

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 𝛾𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛,

(173)

which leads to

(1 − 𝜆
2

𝑛
(𝛼
𝑛
+ 𝐿)
2
)
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑘
𝑛

󵄩
󵄩
󵄩
󵄩
(
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑘
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)

+ 2𝜆
𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛.

(174)

Since {𝜆
𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿), 𝛼𝑛 → 0, 𝛾𝑛 → 0, and 𝑐𝑛 → 0,

we obtain from (152) and the boundedness of {𝑥𝑛}, {𝑘𝑛}, {𝑡𝑛},
and {𝑧𝑛} that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑡
𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (175)

Hence, combining (172) and (175), we get
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝑛 󳨀→ ∞.

(176)

We note that

𝑘
𝑛
− 𝑥
𝑛
= (1 − 𝛿

𝑛
) (𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
) . (177)

From 𝛿
𝑛
≤ 𝑏 < 1 and (169), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (178)

On the other hand, we observe that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1

− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩
.

(179)

By (153), (168), and (176), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (180)

We note that
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑧
𝑛+1 − 𝑆

𝑛+1
𝑧𝑛+1

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧𝑛+1 − 𝑆
𝑛+1

𝑧𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝑛+1

𝑧𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
.

(181)

From (178), (180), Lemma 14, and the uniform continuity of
𝑆, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑧
𝑛 − 𝑆𝑧𝑛

󵄩
󵄩
󵄩
󵄩
= 0. (182)

Since {𝑥
𝑛} is bounded, there exists a subsequence {𝑥𝑛

𝑖

} of
{𝑥𝑛

} which converges weakly to 𝑤. From (168) and (176), we
have that 𝑧𝑛

𝑖

⇀ 𝑤. From (182) and the uniform continuity
of 𝑆, we have lim

𝑛→∞‖𝑧𝑛 − 𝑆
𝑚
𝑧𝑛‖ = 0 for any 𝑚 ≥ 1.

So, from Lemma 16, we have 𝑤 ∈ Fix(𝑆). Similarly to the
arguments in the proof of Theorem 24, we can derive 𝑤 ∈

∩
𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐵
𝑘
) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ Γ. Consequently,

𝑤 ∈ 𝐹. This shows that 𝜔𝑤(𝑥𝑛) ⊂ 𝐹.
Next let us show that 𝜔𝑤(𝑥𝑛) is a single-point set. As a

matter of fact, let {𝑥𝑛
𝑗

} be another subsequence of {𝑥𝑛} such
that 𝑥

𝑛
𝑗

⇀ 𝑤
󸀠. Then we get 𝑤󸀠 ∈ 𝐹. If 𝑤 ̸=𝑤

󸀠, from the Opial
condition, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑤

󵄩
󵄩
󵄩
󵄩
= lim
𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑖

− 𝑤

󵄩
󵄩
󵄩
󵄩
󵄩
< lim
𝑖→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
𝑖

− 𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑤
󸀠󵄩󵄩
󵄩
󵄩
󵄩
= lim
𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
𝑗

− 𝑤
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

< lim
𝑗→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
𝑗

− 𝑤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛 − 𝑤

󵄩
󵄩
󵄩
󵄩
.

(183)

This attains a contraction. So we have 𝑤 = 𝑤
󸀠. This shows

that 𝜔
𝑤
(𝑥
𝑛
) = {𝑤}. Therefore, by Lemma 10, we know that

𝑥
𝑛
⇀ 𝑤.
Finally, we claim that 𝑤 = lim

𝑛→∞
𝑃
𝐹
𝑥
𝑛
provided 𝐹 is

bounded. Put V
𝑛
= 𝑃
𝐹
(𝑥
𝑛
). Since𝑤 ∈ 𝐹, we have ⟨𝑥

𝑛
−V
𝑛
, V
𝑛
−

𝑤⟩ ≥ 0. By (148) andLemma 21, we have {V
𝑛
}which converges

strongly to some 𝑤
0
∈ 𝐹. Since {𝑥

𝑛
} converges weakly to 𝑤,

we have

⟨𝑤 − 𝑤
0
, 𝑤
0
− 𝑤⟩ ≥ 0. (184)

Therefore, we obtain𝑤 = 𝑤
0
= lim
𝑛→∞

𝑃
𝐹
𝑥
𝑛
. This completes

the proof.
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Corollary 31 (i.e., [3, Theorem 4.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space 𝐻. Let 𝑀,𝑁 be
two integers. Let 𝐹

𝑘
be a bifunction from 𝐶 × 𝐶 to R satisfying

(A1)–(A4) and let 𝜑
𝑘
: 𝐶 → R ∪ {+∞} be a proper lower

semicontinuous and convex function, where 𝑘 ∈ {1, 2, . . . ,𝑀}.
Let 𝐵
𝑘
and 𝐴

𝑖
be 𝜇
𝑘
-inverse strongly monotone and 𝜂

𝑖
-inverse-

strongly monotone, respectively, where 𝑘 ∈ {1, 2, . . . ,𝑀},
𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be the uniformly
continuous asymptotically 𝜅-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝜅 < 1 with sequences
{𝛾𝑛} ⊂ [0,∞) and {𝑐𝑛} ⊂ [0,∞). Assume that 𝐹 :=

∩
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘)∩∩

𝑁

𝑖=1
VI(𝐶, 𝐴 𝑖)∩ Fix(𝑆) is nonempty.

Let {𝛽𝑛} and {𝛿𝑛} be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽𝑛 ≤

𝛽 < 1 and 𝜅 ≤ 𝛿𝑛 ≤ 𝑏 < 1. Pick any 𝑥1 ∈ 𝐻 and let {𝑥𝑛} be a
sequence generated by the following algorithm:

𝑢
𝑛
= 𝑇
(𝐹
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐵
𝑀
) 𝑇
(𝐹
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀,𝑛

× (𝐼 − 𝑟M−1,𝑛𝐵𝑀−1) ⋅ ⋅ ⋅ 𝑇
(𝐹
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛
𝐵
1
) 𝑥
𝑛
,

𝑧
𝑛 = 𝑃𝐶 (𝐼 − 𝜆𝑁,𝑛𝐴𝑁) 𝑃𝐶 (𝐼 − 𝜆𝑁−1,𝑛𝐴𝑁−1)

⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

(185)

where {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), {𝑟
𝑘,𝑛
} ⊂ [𝑒

𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑖 ∈

{1, 2, . . . , 𝑁}, and 𝑘 ∈ {1, 2, . . . ,𝑀}. Assume that∑∞
𝑛=1

𝛾
𝑛
< ∞

and∑∞
𝑛=1

𝑐
𝑛
< ∞, and that either (B1) or (B2) holds. Then {𝑥

𝑛
}

converges weakly to 𝑤 = lim𝑛→∞𝑃𝐹𝑥𝑛.

Proof. In Theorem 30, put ∇𝑓 = 0 and 𝛼
𝑛 = 0 for all

𝑛 ≥ 1. Then Γ = 𝐶 and 𝐹 = ∩
𝑀

𝑘=1
GMEP(𝐹𝑘, 𝜑𝑘, 𝐴𝑘) ∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
) ∩ Fix(𝑆) ∩ Γ = ∩

𝑀

𝑘=1
GMEP(𝐹

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)∩Fix(𝑆). In this case, we obtain from (134) that

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) = 𝑥

𝑛
,

𝑧𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛)) = 𝑥𝑛.

(186)

Thus, the iterative scheme (134) reduces to (95). It is easy
to see that all the conditions of Theorem 24 are satisfied. In
terms of Theorem 24, we have that {𝑥

𝑛
} converges weakly to

an element 𝑤 ∈ 𝐹. Now, put V
𝑛
= 𝑃
𝐹
(𝑥
𝑛
). Since 𝑤 ∈ 𝐹, we

have ⟨𝑥
𝑛
− V
𝑛
, V
𝑛
− 𝑤⟩ ≥ 0. Taking into account that 𝛼

𝑛
= 0

for all 𝑛 ≥ 1, we conclude from (148) that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2
≤ [1 + 𝛾

𝑛
+ (1 + 𝛾

𝑛
) 𝜆
𝑛
𝛼
𝑛
]
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 3 (1 + 𝛾𝑛) 𝜆𝑛𝛼𝑛

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2
+ 𝑐
𝑛
.

(187)

By Lemma 21, we have that {V
𝑛} converges strongly to some

𝑤
0
∈ 𝐹. Since {𝑥

𝑛
} converges weakly to 𝑤, we have

⟨𝑤 − 𝑤
0
, 𝑤
0
− 𝑤⟩ ≥ 0. (188)

Therefore, we obtain𝑤 = 𝑤
0
= lim
𝑛→∞

𝑃
𝐹
𝑥
𝑛
. This completes

the proof.

Corollary 32. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let 𝜑 :

𝐶 → R∪ {+∞} be a proper lower semicontinuous and convex
function. Let 𝐵 and 𝐴

𝑖
be 𝜇-inverse strongly monotone and 𝜂

𝑖
-

inverse-strongly monotone, respectively, where 𝑖 ∈ {1, 2}. Let
𝑆 : 𝐶 → 𝐶 be the uniformly continuous asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝜅 < 1 with sequences {𝛾𝑛} ⊂ [0,∞) and {𝑐𝑛} ⊂ [0,∞).
Assume that 𝐹 := GMEP(𝐹, 𝜑, 𝐵) ∩ VI(𝐶, 𝐴1) ∩ VI(𝐶, 𝐴2) ∩
Fix(𝑆)∩Γ is nonempty. Let {𝛼𝑛} is a sequence in (0,∞), and let
{𝛽𝑛}, {𝛿𝑛} be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽𝑛 ≤ 𝛽 < 1

and 𝜅 ≤ 𝛿𝑛 ≤ 𝑏 < 1. Pick any 𝑥1 ∈ 𝐻 and let {𝑥𝑛} be a sequence
generated by the following algorithm:

𝐹 (𝑢𝑛, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐵𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+

1

𝑟
𝑛

⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐴
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐴
1
) 𝑢
𝑛
,

𝑡
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
)) ,

𝑧𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼
𝑛

(𝑡𝑛)) ,

𝑘
𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆

𝑛
𝑧𝑛,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

(189)

where {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), {𝑟
𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇), and

𝑖 ∈ {1, 2}. Assume that either (B1) or (B2) holds and that the
following conditions are satisfied:

(i) ∑∞
𝑛=1

𝛼
𝑛
< ∞,∑

∞

𝑛=1
𝛾
𝑛
< ∞ and ∑∞

𝑛=1
𝑐
𝑛
< ∞;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿).

Then

(a) {𝑥
𝑛
} converges weakly to an element 𝑤 ∈ 𝐹;

(b) {𝑥
𝑛
} converges weakly to 𝑤 = lim

𝑛→∞
𝑃
𝐹
𝑥
𝑛
provided

𝐹 is bounded.

Corollary 33. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑 : 𝐶 → R ∪ {+∞} be a proper lower semicontinuous
and convex function. Let 𝐵 and 𝐴 be 𝜇-inverse strongly
monotone and 𝜂-inverse-strongly monotone, respectively. Let
𝑆 : 𝐶 → 𝐶 be the uniformly continuous asymptotically 𝜅-strict
pseudocontractive mapping in the intermediate sense for some
0 ≤ 𝜅 < 1 with sequences {𝛾

𝑛
} ⊂ [0,∞) and {𝑐

𝑛
} ⊂ [0,∞).

Assume that 𝐹 := GMEP(𝐹, 𝜑, 𝐵) ∩ VI(𝐶, 𝐴) ∩ Fix(𝑆) ∩ Γ is
nonempty. Let {𝛼

𝑛
} be a sequence in (0,∞), and let {𝛽

𝑛
}, {𝛿
𝑛
}

be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽
𝑛
≤ 𝛽 < 1 and
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𝜅 ≤ 𝛿
𝑛
≤ 𝑏 < 1. Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+

1

𝑟𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝐴𝑢
𝑛
) ,

𝑡
𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼

𝑛

(𝑥𝑛)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

(190)

where {𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜂), {𝑟

𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇). Assume

that either (B1) or (B2) holds and that the following conditions
are satisfied:

(i) ∑∞
𝑛=1

𝛼𝑛 < ∞,∑
∞

𝑛=1
𝛾𝑛 < ∞ and ∑∞

𝑛=1
𝑐𝑛 < ∞;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿).

Then

(a) {𝑥
𝑛
} converges weakly to an element 𝑤 ∈ 𝐹;

(b) {𝑥𝑛} converges weakly to 𝑤 = lim𝑛→∞𝑃𝐹𝑥𝑛 provided
𝐹 is bounded.

Corollary 34. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex
functional with 𝐿-Lipschitz continuous gradient ∇𝑓. Let 𝐹 be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4) and let
𝜑 : 𝐶 → R ∪ {+∞} be a proper lower semicontinuous
and convex function. Let 𝐵 and 𝐴 be 𝜇-inverse strongly
monotone and 𝜂-inverse-strongly monotone, respectively. Let
𝑆 : 𝐶 → 𝐶 be the uniformly continuous asymptotically 𝜅-strict
pseudocontractive mapping for some 0 ≤ 𝜅 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞). Assume that 𝐹 := GMEP(𝐹, 𝜑, 𝐵) ∩ VI(𝐶, 𝐴) ∩

Fix(𝑆)∩Γ is nonempty. Let {𝛼
𝑛
} be a sequence in (0,∞), and let

{𝛽
𝑛
}, {𝛿
𝑛
} be sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽

𝑛
≤ 𝛽 < 1

and 𝜅 ≤ 𝛿
𝑛
≤ 𝑏 < 1. Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝐹 (𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐵𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥𝑛 = 𝑃𝐶 (𝑢𝑛 − 𝜌𝑛𝐴𝑢𝑛) ,

𝑡
𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼

𝑛

(𝑥𝑛)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) ,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛
,

(191)

where {𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜂), {𝑟

𝑛
} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇). Assume

that either (B1) or (B2) holds and that the following conditions
are satisfied:

(i) ∑∞
𝑛=1

𝛼𝑛 < ∞ and ∑∞
𝑛=1

𝛾𝑛 < ∞;

(ii) {𝜆
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1/𝐿).

Then

(a) {𝑥
𝑛
} converges weakly to an element 𝑤 ∈ 𝐹;

(b) {𝑥
𝑛} converges weakly to 𝑤 = lim𝑛→∞𝑃𝐹𝑥𝑛 provided

𝐹 is bounded.

Finally, we provide an example to illustrate Corollary 34.

Example 35. Let 𝐻 = R2 with inner product ⟨⋅, ⋅⟩ and norm
‖ ⋅ ‖ which are defined by

⟨𝑥, 𝑦⟩ = 𝑎
1
𝑏
1
+ 𝑎
2
𝑏
2
, ‖𝑥‖ = √𝑎

2

1
+ 𝑎
2

2
, (192)

for all 𝑥, 𝑦 ∈ R2 with 𝑥 = (𝑎1, 𝑎2) and 𝑦 = (𝑏1, 𝑏2). Let
𝐶 = {(𝑎, 𝑎) : 𝑎 ∈ R}. Clearly, 𝐶 is a nonempty closed convex
subset of a real Hilbert space 𝐻 = R2. Let 𝑓 : 𝐶 → R
be a convex functional with 𝐿-Lipschitz continuous gradient
∇𝑓, for instance, putting 𝑓(𝑥) = (1/2)⟨𝑉𝑥, 𝑥⟩, where 𝑉 =

{
3/5 2/5

2/5 3/5
}. Then ∇𝑓 = 𝑉 is 𝐿-Lipschitz continuous with 𝐿 = 1

(due to ‖𝑉‖ = 1). Put 𝐹(𝑥, 𝑦) = 0 and 𝜑(𝑥) = 0 for all
𝑥, 𝑦 ∈ 𝐶. Then it is clear that 𝐹 is a bifunction from 𝐶 × 𝐶

to 𝑅 satisfying (A1)–(A4) and let 𝜑 : 𝐶 → R ∪ {+∞} be a
proper lower semicontinuous and convex function. Let 𝐵 and
𝐴 be 𝜇-inverse strongly monotone and 𝜂-inverse-strongly
monotone, respectively, for instance, putting 𝐴 = {

2/3 1/3

1/3 2/3
}

and 𝐵 = {
3/5 2/5

2/5 3/5
}. Then we can take 𝜇 = 𝜂 = 1/2. Let

𝑆 : 𝐶 → 𝐶 be the uniformly continuous asymptotically 𝜅-
strict pseudocontractive mapping for some 0 ≤ 𝜅 < 1 with
sequence {𝛾

𝑛
} ⊂ [0,∞), for instance, putting 𝑆 = {

4/7 3/7

3/7 4/7
}.

Then 𝜅 = 0 and 𝛾𝑛 = 0 for all 𝑛 ≥ 1 (due to the nonexpansivity
of 𝑆). Thus, we know that 𝐹 := GMEP(𝐹, 𝜑, 𝐵) ∩ VI(𝐶, 𝐴) ∩
Fix(𝑆)∩Γ = GMEP(0, 0, 𝐵)∩VI(𝐶, 𝐴)∩Fix(𝑆)∩Γ = {0}. Take
{𝜌𝑛} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜂) = (0, 1), {𝑟𝑛} ⊂ [𝑒, 𝑓] ⊂ (0, 2𝜇) = (0, 1),
and {𝜆𝑛} ⊂ [𝑐, 𝑑] ⊂ (0, 1/𝐿) = (0, 1). Let {𝛼𝑛} be a sequence
in (0,∞) such that lim𝑛→∞𝛼𝑛 = 0, and let {𝛽𝑛}, {𝛿𝑛} be
sequences in [0, 1] such that 0 < 𝑎 ≤ 𝛽

𝑛
≤ 𝛽 < 1 and

0 = 𝜅 ≤ 𝛿
𝑛
≤ 𝑏 < 1. Pick any 𝑥

1
∈ 𝐶. In this case, the

algorithm (191) reduces to the following algorithm:

𝑢
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝑟
𝑛
𝐵𝑥
𝑛
) = (1 − 𝑟

𝑛
) 𝑥
𝑛
,

𝑥𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝜌
𝑛
𝐴𝑢
𝑛
) = (1 − 𝜌

𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛
,

𝑡
𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜆𝑛∇𝑓𝛼

𝑛

(𝑥𝑛))

= (1 − 𝜆
𝑛
(1 + 𝛼

𝑛
)) (1 − 𝜌

𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛
,
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𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑡
𝑛
)) = (1 − 𝜌

𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛

− 𝜆
𝑛
(1 + 𝛼

𝑛
) (1 − 𝜆

𝑛
(1 + 𝛼

𝑛
)) (1 − 𝜌

𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛

= [1 − 𝜆
𝑛
(1 + 𝛼

𝑛
) (1 − 𝜆

𝑛
(1 + 𝛼

𝑛
))] (1 − 𝜌

𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛
,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛 = 𝑧𝑛,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑘
𝑛

= {(1 − 𝛽𝑛) + 𝛽𝑛 [1 − 𝜆𝑛 (1 + 𝛼𝑛) (1 − 𝜆𝑛 (1 + 𝛼𝑛))]

× (1 − 𝜌
𝑛
) (1 − 𝑟

𝑛
)} 𝑥
𝑛
.

(193)

So it follows that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

= {(1 − 𝛽
𝑛
) + 𝛽
𝑛
[1 − 𝜆

𝑛
(1 + 𝛼

𝑛
) (1 − 𝜆

𝑛
(1 + 𝛼

𝑛
))]

× (1 − 𝜌𝑛) (1 − 𝑟𝑛)}
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ {(1 − 𝛽
𝑛
) + 𝛽
𝑛
[1 − 𝜆

𝑛
(1 + 𝛼

𝑛
) (1 − 𝜆

𝑛
(1 + 𝛼

𝑛
))]}

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

= {1 − 𝛽
𝑛𝜆𝑛 (1 + 𝛼𝑛) (1 − 𝜆𝑛 (1 + 𝛼𝑛))}

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ [1 − 𝑎𝑐 (1 + 𝛼
𝑛
) (1 − 𝑑 (1 + 𝛼

𝑛
))]

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
.

(194)

Since lim
𝑛→∞𝑎𝑐(1 + 𝛼𝑛)(1 − 𝑑(1 + 𝛼𝑛)) = 𝑎𝑐(1 − 𝑑) >

(1/2)𝑎𝑐(1 − 𝑑), we deduce that there exists an integer 𝑛0 ≥ 1

such that

𝑎𝑐 (1 + 𝛼
𝑛
) (1 − 𝑑 (1 + 𝛼

𝑛
)) >

1

2

𝑎𝑐 (1 − 𝑑) , ∀𝑛 ≥ 𝑛
0
.

(195)

Therefore, from (194) we obtain that for all 𝑛 ≥ 𝑛
0

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩
≤ [1 − 𝑎𝑐 (1 + 𝛼

𝑛) (1 − 𝑑 (1 + 𝛼𝑛))]
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ [1 −

1

2

𝑎𝑐 (1 − 𝑑)]
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

...

≤ [1 −

1

2

𝑎𝑐(1 − 𝑑)]

𝑛−𝑛
0
+1
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
0

󵄩
󵄩
󵄩
󵄩
󵄩
.

(196)

This shows that

(a) {𝑥
𝑛} converges to the unique point 0 in 𝐹;

(b) {𝑥
𝑛
} converges to 0 = lim

𝑛→∞
𝑃
𝐹
𝑥
𝑛
.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was partially supported by the National Science
Foundation of China (11071169), Innovation Program of
Shanghai Municipal Education Commission (09ZZ133), and
Leading Academic Discipline Project of Shanghai Normal
University (DZL707). This research was partially supported
by a grant from the NSC (101-2115-M-165 -001) as well.

References

[1] J.-W. Peng and J.-C. Yao, “A new hybrid-extragradient method
for generalized mixed equilibrium problems, fixed point prob-
lems and variational inequality problems,” Taiwanese Journal of
Mathematics, vol. 12, no. 6, pp. 1401–1432, 2008.

[2] L. C. Ceng, H.-Y. Hu, and M. M. Wong, “Strong and weak con-
vergence theorems for generalized mixed equilibrium problem
with perturbation and fixed pointed problem of infinitely many
nonexpansive mappings,” Taiwanese Journal of Mathematics,
vol. 15, no. 3, pp. 1341–1367, 2011.

[3] G. Cai and S. Bu, “Strong and weak convergence theorems for
general mixed equilibrium problems and variational inequality
problems and fixed point problems in Hilbert spaces,” Journal
of Computational and Applied Mathematics, vol. 247, pp. 34–52,
2013.

[4] L.-C. Ceng and J.-C. Yao, “A relaxed extragradient-like method
for a generalized mixed equilibrium problem, a general system
of generalized equilibria and a fixed point problem,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 72, no. 3-4, pp.
1922–1937, 2010.

[5] L.-C. Ceng, Q. H. Ansari, and S. Schaible, “Hybrid
extragradient-like methods for generalized mixed equilibrium
problems, systems of generalized equilibrium problems and
optimization problems,” Journal of Global Optimization, vol.
53, no. 1, pp. 69–96, 2012.

[6] J.-B. Baillon and G. Haddad, “Quelques propriétés des
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