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We give some sufficient conditions to guarantee convergence of solutions to a nonlinear vector differential equation of third order.
We prove a new result on the convergence of solutions. An example is given to illustrate the theoretical analysis made in this paper.
Our result improves and generalizes some earlier results in the literature.

1. Introduction

This paper is concerned with the following nonlinear vector
differential equation of third order:

⃛

𝑋 + 𝐹 (

̈

𝑋) + 𝐺 (

̇

𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,

̇

𝑋,

̈

𝑋) , (1)

where 𝑋 ∈ R𝑛 and 𝐹, 𝐺,𝐻 : R𝑛 → R𝑛 and 𝑃 : R ×R𝑛 ×
R𝑛 ×R𝑛 → R𝑛 are continuous functions in their respective
arguments.

It should be noted that, in 2005, Afuwape and Omeike
[1] considered the following nonlinear vector differential
equation of third order:

⃛

𝑋 + 𝐴

̈

𝑋 + 𝐺 (

̇

𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,

̇

𝑋,

̈

𝑋) , (2)

where 𝐴 is real symmetric 𝑛 × 𝑛-matrix. The author estab-
lished a new result on the convergence of solutions of (2)
under different conditions on the function 𝑃. For some
related papers on the convergence of solutions to certain
vector differential equations of third order, the readers can
referee to the papers of Afuwape [2], Afuwape and Omeike
[3], and Olutimo [4]. Further, it is worth mentioning that
in a sequence of results Afuwape [2, 5, 6], Afuwape and
Omeike [3], Afuwape and Ukpera [7], Ezeilo [8], Ezeilo
and Tejumola [9, 10], Meng [11], Olutimo [4], Reissig et al.
[12], Tiryaki [13], Tunç [14–16], Tunç and Ateş [17], C. Tunç
and E. Tunç [18], and Tunç and Karakas [19] investigated

the qualitative behaviors of solutions, stability, boundedness,
uniform boundedness and existence of periodic solutions,
and so on, except convergence of solutions, for some kind of
vector differential equations of third order.

The Lyapunov direct method was used with the aid
of suitable differentiable auxiliary functions throughout the
mentioned papers. However, to the best of our knowledge,
till now, the convergence of the solutions to (1) has not been
discussed in the literature. Thus, it is worthwhile to study the
topic for (1). It should be noted that the result to be established
here is different from that in Afuwape [2], Afuwape and
Omeike [1, 3], Olutimo [4], and the above mentioned papers.
This paper is an extension and generalization of the result of
Afuwape and Omeike [3]. It may be useful for the researchers
working on the qualitative behaviors of solutions (see, also,
Tunç and Gözen [20]).

It should be noted that throughout the paper 𝑅𝑛 will
denote the real Euclidean space of 𝑛-vectors and ‖𝑋‖ will
denote the norm of the vector𝑋 in 𝑅𝑛.

Definition 1. Any two solutions 𝑋
1
(𝑡), 𝑋

2
(𝑡) of (1) in 𝑅𝑛 will

be said to converge to each other if









𝑋

2
(𝑡) − 𝑋

1
(𝑡)









→ 0,











̇

𝑋

2
(𝑡) −

̇

𝑋

1
(𝑡)











→ 0,











̈

𝑋

2
(𝑡) −

̈

𝑋

1
(𝑡)











→ 0

(3)

as 𝑡 → ∞.
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2. Main Result

Themain result of this paper is the following theorem.

Theorem 2. We assume that there are positive constants 𝛿
𝑔
,

𝛿

ℎ
, 𝛿
𝑓
, Δ
𝑔
, Δ
ℎ
, Δ
𝑓
, and Δ

1
such that the following conditions

hold:

(i) the Jacobian matrices 𝐽
𝑔
(𝑌) = 𝜕𝑔

𝑖
/𝜕𝑦

𝑗
, 𝐽
ℎ
(𝑋) =

𝜕ℎ

𝑖
/𝜕𝑥

𝑗
, and 𝐽

𝑓
(𝑍) = 𝜕𝑓

𝑖
/𝜕𝑧

𝑗
exist and are symmetric

and their eigenvalues satisfy

0 < 𝛿

𝑔
≤ 𝜆

𝑖
(𝐽

𝑔
(𝑌)) ≤ Δ

𝑔
,

0 < 𝛿

ℎ
≤ 𝜆

𝑖
(𝐽

ℎ
(𝑋)) ≤ Δ

ℎ
,

0 < 𝛿

𝑓
≤ 𝜆

𝑖
(𝐽

𝑓
(𝑍)) ≤ Δ

𝑓
, (𝑖 = 1, 2, . . . , 𝑛) ,

(4)

for all𝑋, 𝑌, 𝑍 in 𝑅𝑛;
(ii) 𝑃(𝑡, 𝑋, 𝑌, 𝑍) satisfies








𝑃 (𝑡, 𝑋

2
, 𝑌

2
, 𝑍

2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌

1
, 𝑍

1
)









≤ Δ

1
{









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

}

1/2

(5)

for any𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, (𝑖 = 1, 2), in 𝑅𝑛.

If

Δ

1
< 𝜀,

Δ

ℎ
≤ min {3−1𝛽 (1 − 𝛽) 𝛿2

𝑔
;

6

−1

𝛼 (1 − 𝛽) 𝛿

𝑔
𝛿

𝑓
(1 + 𝛼)

−2

} = 𝑘𝛿

𝑔
𝛿

𝑓
,

(6)

then any two solutions𝑋
1
(𝑡),𝑋
2
(𝑡) of (1) necessarily converge,

where 𝛼, 𝜀, 𝑘, 𝛽 are some positive constants with 0 < 𝛽 < 1 and
𝑘(< 1),

𝑘 = min {3−1𝛽 (1 − 𝛽) 𝛿
𝑔
𝛿

−1

𝑓
; 6

−1

𝛼 (1 − 𝛽) (1 + 𝛼)

−2

} . (7)

Remark 3. Thementioned theorem itself still holds valid with
(5) replaced by the much weaker condition








𝑃 (𝑡, 𝑋

2
, 𝑌

2
, 𝑍

2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌

1
, 𝑍

1
)









≤ 𝜙 (𝑡) {









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

}

1/2

(8)

for arbitrary 𝑡 any 𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, (𝑖 = 1, 2), in 𝑅𝑛, where it is

assumed that ∫𝑡
0

𝜙

V
(𝑠)𝑑𝑠 ≤ Δ

1
𝑡 for 1 ≤ V ≤ 2.

The following lemma is needed in our later analysis.

Lemma 4. Let 𝐴 be a real symmetric 𝑛 × 𝑛-matrix and

𝑎 ≥ 𝜆

𝑖
(𝐴) ≥ 𝑎 > 0, (𝑖 = 1, 2, . . . , 𝑛) , (9)

where 𝑎 and 𝑎 are constants.
Then

𝑎 ⟨𝑋,𝑋⟩ ≥ ⟨𝐴𝑋,𝑋⟩ ≥ 𝑎 ⟨𝑋,𝑋⟩ ,

𝑎

2

⟨𝑋,𝑋⟩ ≥ ⟨𝐴𝑋,𝐴𝑋⟩ ≥ 𝑎

2

⟨𝑋,𝑋⟩ .

(10)

Proof (see Afuwape [5]). Our main tool in the proof of our
result is the continuous function 𝑉 = 𝑉(𝑋, 𝑌, 𝑍) defined for
any triple vectors𝑋, 𝑌, 𝑍 in 𝑅𝑛, by

2𝑉 = ⟨𝛽 (1 − 𝛽) 𝛿

2

𝑔
𝑋,𝑋⟩ + ⟨𝛽𝛿

𝑔
𝑌, 𝑌⟩

+ ⟨𝛼𝛿

𝑔
𝑌, 𝑌⟩ + ⟨𝛼𝑍, 𝑍⟩

+ ⟨𝑍 + 𝑌 + (1 − 𝛽) 𝛿

𝑔
𝑋,𝑍 + 𝑌 + (1 − 𝛽) 𝛿

𝑔
𝑋⟩ .

(11)

This function can be rearranged as

2𝑉 = 𝛽 (1 − 𝛽) 𝛿

2

𝑔
‖𝑋‖

2

+ 𝛽𝛿

𝑔
‖𝑌‖

2

+ 𝛼𝛿

𝑔
‖𝑌‖

2

+ 𝛼‖𝑍‖

2

+











𝑍 + 𝑌 + (1 − 𝛽) 𝛿

𝑔
𝑋











2

,

(12)

where 0 < 𝛽 < 1 and 𝛼 > 0
The following result is immediate from the estimate (11).

Lemma 5. Assume that all the conditions on the vectors
𝐹(𝑍), 𝐻(𝑋), and 𝐺(𝑌) in the theorem hold. Then, there exist
positive constants 𝛿

1
and 𝛿
2
such that

2𝑉 (𝑋, 𝑌, 𝑍) ≥ 𝛿

1
(‖𝑋‖

2

+ ‖𝑌‖

2

+ ‖𝑍‖

2

) ,

2𝑉 (𝑋, 𝑌, 𝑍) ≤ 𝛿

2
(‖𝑋‖

2

+ ‖𝑌‖

2

+ ‖𝑍‖

2

)

(13)

for arbitrary 𝑋,𝑌, 𝑍 in 𝑅𝑛.

Proof. Let

𝛿

1
= min {𝛽 (1 − 𝛽) 𝛿2

𝑔
, 𝛿

𝑔
(𝛽 + 𝛼) , 𝛼} ,

𝛿

2
= max {𝛿

𝑔
(1 − 𝛽) (1 + 𝛿

𝑔
) , 𝛿

𝑔
(𝛽 + 𝛼) + 1

+ 𝛿

𝑔
(1 − 𝛽) , 1 + 𝛼 + 𝛿

𝑔
(1 − 𝛽)} .

(14)

Then the proof can be easily completed by using Lemma 4.
Therefore, we omit the details of the proof.

Proof of the Theorem. Let 𝑋 in 𝑅𝑛 be any solution of (1). For
such a solution, let ̇

𝑋 and ̈

𝑋 be denoted, respectively, by 𝑌
and 𝑍. Then, we can rewrite (1) in the following equivalent
system form:

̇

𝑋 = 𝑌,

̇

𝑌 = 𝑍,

̇

𝑍 = −𝐹 (𝑍) − 𝐺 (𝑌) − 𝐻 (𝑋) + 𝑃 (𝑡, 𝑋, 𝑌, 𝑍) .

(15)

Let 𝑋
1
(𝑡), 𝑋

2
(𝑡) in 𝑅𝑛 be any solution of (1), define𝑊 =

𝑊(𝑡) by

𝑊(𝑡) = 𝑉 (𝑋

2
(𝑡) − 𝑋

1
(𝑡) , 𝑌

2
(𝑡) − 𝑌

1
(𝑡) , 𝑍

2
(𝑡) − 𝑍

1
(𝑡)) ,

(16)

where 𝑉 is the function defined in (11) with𝑋, 𝑌, 𝑍 replaced
by𝑋
2
− 𝑋

1
, 𝑌
2
− 𝑌

1
and 𝑍

2
− 𝑍

1
, respectively.
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By Lemma 5, it follows that there exist 𝛿
3
> 0 and 𝛿

4
> 0

such that

𝛿

3
(









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

)

≤ 𝑊 ≤ 𝛿

4
(









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

) .

(17)

When we differentiate the function𝑊(𝑡) with respect to
𝑡 along the system (15), it follows, after simplification, that

̇

𝑊 (𝑡) = −𝑊

1
−𝑊

2
−𝑊

3
−𝑊

4
−𝑊

5
+𝑊

6
, (18)

where

𝑊

1
=

1

2

𝛿

𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

2

𝛽𝛿

𝑔
⟨𝑌

2
− 𝑌

1
, 𝑌

2
− 𝑌

1
⟩

+

1

2

𝛼 ⟨𝑍

2
− 𝑍

1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ,

𝑊

2
=

1

6

𝛿

𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+ ⟨𝑌

2
− 𝑌

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

2

𝛽𝛿

𝑔
⟨𝑌

2
− 𝑌

1
, 𝑌

2
− 𝑌

1
⟩

+ ⟨𝑍

2
− 𝑍

1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ,

𝑊

3
=

1

6

𝛿

𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+

1

4

𝛼 ⟨𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) , 𝑍

2
− 𝑍

1
⟩

+ ⟨(1 + 𝛼) (𝑍

2
− 𝑍

1
) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩ ,

𝑊

4
=

1

6

𝛿

𝑔
(1 − 𝛽) ⟨𝑋

2
− 𝑋

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

+ ⟨𝛿

𝑔
(1 − 𝛽) (𝑋

2
− 𝑋

1
) , 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
)

−𝛿

𝑔
(𝑌

2
− 𝑌

1
)⟩

+

1

2

⟨𝑌

2
− 𝑌

1
, 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
) − 𝛿

𝑔
(𝑌

2
− 𝑌

1
)⟩

+ ⟨𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) − (𝑍

2
− 𝑍

1
) , 𝑌

2
− 𝑌

1
⟩

+ ⟨𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) − (𝑍

2
− 𝑍

1
) ,

(1 − 𝛽) 𝛿

𝑔
(𝑋

2
− 𝑋

1
)⟩ ,

𝑊

5
=

1

4

𝛼 ⟨𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) , 𝑍

2
− 𝑍

1
⟩

+ ⟨(1 + 𝛼) (𝑍

2
− 𝑍

1
) , 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
) − 𝛿

𝑔
(𝑌

2
− 𝑌

1
)⟩

+

1

2

⟨𝑌

2
− 𝑌

1
, 𝐺 (𝑌

2
) − 𝐺 (𝑌

1
) − 𝛿

𝑔
(𝑌

2
− 𝑌

1
)⟩ ,

𝑊

6
= ⟨𝛿

𝑔
(1 − 𝛽) (𝑋

2
− 𝑋

1
) + 𝑌

2
− 𝑌

1
+ (1 + 𝛼) (𝑍

2
− 𝑍

1
) ,

𝑃 (𝑡, 𝑋

2
, 𝑌

2
, 𝑍

2
) − 𝑃 (𝑡, 𝑋

1
, 𝑌

1
, 𝑍

1
) ⟩

+ ⟨𝑍

2
− 𝑍

1
, 𝑍

2
− 𝑍

1
⟩ .

(19)

Note that the existence of the following estimates is clear
(see Afuwape and Omeike [1]):

𝐻(𝑋

2
) − 𝐻 (𝑋

1
) = ∫

1

0

𝐽

ℎ
(𝜉) (𝑋

2
− 𝑋

1
) 𝑑𝑠,

𝐺 (𝑌

2
) − 𝐺 (𝑌

1
) = ∫

1

0

𝐽

𝑔
(𝜏) (𝑌

2
− 𝑌

1
) 𝑑𝑡,

𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) = ∫

1

0

𝐽

𝑓
(𝜂) (𝑍

2
− 𝑍

1
) 𝑑𝜇,

(20)

where 𝜉 = 𝑠𝑋

2
+ (1 − 𝑠)𝑋

1
, 0 ≤ 𝑠 ≤ 1, 𝜏 = 𝑡𝑌

2
+ (1 − 𝑡)𝑌

1
,

0 ≤ 𝑡 ≤ 1, 𝜂 = 𝜇𝑍
2
+ (1 − 𝜇)𝑍

1
, 0 ≤ 𝜇 ≤ 1.

Subject to the assumptions, it can be easily obtained that

𝑊

𝑗
≥ 0, (𝑗 = 3, 4, 5) . (21)

In view of the assumptions of the theorem, it is also clear
that

⟨𝑌

2
− 𝑌

1
, 𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

=











𝑘

1
(𝑌

2
− 𝑌

1
) + 2

−1

𝑘

−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))











2

− ⟨𝑘

2

1
(𝑌

2
− 𝑌

1
) , 𝑌

2
− 𝑌

1
⟩

− ⟨4

−1

𝑘

−2

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩ ,

⟨𝑍

2
− 𝑍

1
, 𝐹 (𝑍

2
) − 𝐹 (𝑍

1
)⟩ ≥ 𝛿

𝑓
⟨𝑍

2
− 𝑍

1
, 𝑍

2
− 𝑍

1
⟩ .

(22)

Hence,

𝑊

2
≥











𝑘

1
(𝑌

2
− 𝑌

1
) + 2

−1

𝑘

−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))











2

+ ⟨𝑌

2
− 𝑌

1
, (2

−1

𝛽𝛿

𝑔
− 𝑘

2

1
) (𝑌

2
− 𝑌

1
)⟩

+ ⟨𝐻 (𝑋

2
) − 𝐻 (𝑋

1
) , (6

−1

𝛿

𝑔
(1 − 𝛽)) (𝑋

2
− 𝑋

1
)

−4

−1

𝑘

−2

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))⟩

+ 𝛿

𝑓
⟨𝑍

2
− 𝑍

1
, 𝑍

2
− 𝑍

1
⟩ .

(23)

Using the estimate 0 < 𝛿
ℎ
≤ 𝜆

𝑖
(𝐽

ℎ
(𝑋)) ≤ Δ

ℎ
, it follows that

𝑊

2
≥











𝑘

1
(𝑌

2
− 𝑌

1
) + 2

−1

𝑘

−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))











2

+ ⟨𝑌

2
− 𝑌

1
, (2

−1

𝛽𝛿

𝑔
− 𝑘

2

1
) (𝑌

2
− 𝑌

1
)⟩

+ ⟨𝐻 (𝑋

2
) − 𝐻 (𝑋

1
) , (6

−1

𝛿

𝑔
(1 − 𝛽)) (𝑋

2
− 𝑋

1
)

−4

−1

𝑘

−2

1
𝛿

ℎ
(𝑋

2
− 𝑋

1
)⟩ + 𝛿

𝑓
⟨𝑍

2
− 𝑍

1
, 𝑍

2
− 𝑍

1
⟩
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≥











𝑘

1
(𝑌

2
− 𝑌

1
) + 2

−1

𝑘

−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))











2

+ ⟨𝑌

2
− 𝑌

1
, (2

−1

𝛽𝛿

𝑔
− 𝑘

2

1
) (𝑌

2
− 𝑌

1
)⟩

+ ⟨𝛿

ℎ
(𝑋

2
− 𝑋

1
) , 6

−1

𝛿

𝑔
(1 − 𝛽) (𝑋

2
− 𝑋

1
)⟩

− ⟨Δ

ℎ
(𝑋

2
− 𝑋

1
) , −4

−1

𝑘

−2

1
𝛿

ℎ
(𝑋

2
− 𝑋

1
)⟩

+ 𝛿

𝑓
⟨𝑍

2
− 𝑍

1
, 𝑍

2
− 𝑍

1
⟩

=











𝑘

1
(𝑌

2
− 𝑌

1
) + 2

−1

𝑘

−1

1
(𝐻 (𝑋

2
) − 𝐻 (𝑋

1
))











2

+ (

1

2

𝛽𝛿

𝑔
− 𝑘

2

1
)









𝑌

2
− 𝑌

1









2

+ (

1

6

𝛿

ℎ
𝛿

𝑔
(1 − 𝛽) −

1

4𝑘

2

1

Δ

ℎ
𝛿

ℎ
)









𝑋

2
− 𝑋

1









2

+ 𝛿

𝑓









𝑍

2
− 𝑍

1









2

.

(24)

Then

𝑊

2
≥ 0 ∀𝑋, 𝑌, 𝑍 in 𝑅𝑛 (25)

if 𝑘2
1
≤ (1/2)𝛽𝛿

𝑔
with Δ

ℎ
≤ 3

−1

𝛽𝛿

2

𝑔
(1 − 𝛽).

Further, since

⟨2

−1

(1 − 𝛽) 𝛿

𝑔
(𝑋

2
− 𝑋

1
) ,𝐻 (𝑋

2
) − 𝐻 (𝑋

1
)⟩

≥

1

2

(1 − 𝛽) 𝛿

𝑔
𝛿

ℎ









𝑋

2
− 𝑋

1









2

,

⟨𝐹 (𝑍

2
) − 𝐹 (𝑍

1
) , 𝑍

2
− 𝑍

1
⟩ ≥ 𝛿

𝑓









𝑍

2
− 𝑍

1









2

,

(26)

then

𝑊

1
≥

1

2

(1 − 𝛽) 𝛿

𝑔
𝛿

ℎ









𝑋

2
− 𝑋

1









2

+

1

2

𝛽𝛿

𝑔









𝑌

2
− 𝑌

1









2

+

1

2

𝛼𝛿

𝑓









𝑍

2
− 𝑍

1









2

≥ 2𝛿

5
(









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

) ,

(27)

where 𝛿
5
= (1/4)min{(1 − 𝛽)𝛿

𝑔
𝛿

ℎ
, 𝛽𝛿

𝑔
, 𝛼𝛿

𝑓
}.

Moreover, it is obvious that








𝑊

6









≤ {(1 − 𝛽) 𝛿

𝑔









𝑋

2
− 𝑋

1









+









𝑌

2
− 𝑌

1









+ (𝛼 + 1)









𝑍

2
− 𝑍

1









} ‖𝜃‖ ,

(28)

where 𝜃 = 𝑃(𝑡, 𝑋
2
, 𝑌

2
, 𝑍

2
) − 𝑃(𝑡, 𝑋

1
, 𝑌

1
, 𝑍

1
).

Hence,








𝑊

6









≤ 𝛿

6
{









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

}

1/2

‖𝜃‖ .

(29)

Using the assumption (5), we get








𝑊

6









≤ 𝛿

6
Δ

1
{









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

} ,

(30)

so that

̇

𝑊 (𝑡) ≤ − (2𝛿

5
− 𝛿

6
Δ

1
)

× {









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

} .

(31)

There exists a constant 𝛿
7
> 0 such that

̇

𝑊 (𝑡) ≤ −𝛿

7
{









𝑋

2
− 𝑋

1









2

+









𝑌

2
− 𝑌

1









2

+









𝑍

2
− 𝑍

1









2

} ,

(32)

provided that Δ
1
< 𝜀, where 𝜀 is a sufficiently small positive

constant.
In view of (17), the last estimate implies that

̇

𝑊 (𝑡) ≤ −𝛿

8
𝑊(𝑡) (33)

for some positive constant 𝛿
8
.

The conclusion of the theorem is immediate if, provided
that Δ

1
< 𝜀, on integrating ̇

𝑊(𝑡) in (33) between 𝑡
0
and 𝑡, we

have

𝑊(𝑡) ≤ 𝑊(𝑡

0
) exp [−𝛿

8
(𝑡 − 𝑡

0
)] , 𝑡 ≥ 𝑡

0
, (34)

which implies that

𝑊(𝑡) → 0 as 𝑡 → ∞. (35)

By (17), this shows that









𝑋

2
(𝑡) − 𝑋

1
(𝑡)









→ 0,









𝑌

2
(𝑡) − 𝑌

1
(𝑡)









→ 0,









𝑋

2
(𝑡) − 𝑋

1
(𝑡)









→ 0, as 𝑡 → ∞.

(36)

This completes the proof of the theorem.

Example 6. Let us consider (1),

⃛

𝑋 + 𝐹 (

̈

𝑋) + 𝐺 (

̇

𝑋) + 𝐻 (𝑋) = 𝑃 (𝑡, 𝑋,

̇

𝑋,

̈

𝑋) , 𝑋 ∈ 𝑅

2

(37)

with

𝐹 = (

�̈�

1
+ arctan �̈�

1

�̈�

2
+ arctan �̈�

2

) , 𝐺 = (

tan−1�̇�
1
+ 0.00004 ̇𝑥

1

�̇�

2

) ,

𝐻 = (

0.001tan−1𝑥
1
+ 0.0001𝑥

1

0.0001𝑥

2

) , 𝑋 = (

𝑥

1

𝑥

2

) ,

𝑃 (𝑡) = (

𝑒

−𝑡

sin 𝑡) ,

(38)

where 𝑒−𝑡, sin 𝑡 are bounded continuous functions on [0,∞).
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Then, it can be easily seen that

𝐽

𝑓
(

̈

𝑋) = (

1 +

1

1 + �̈�

2

1

0

0 1 +

1

1 + �̈�

2

2

),

𝜆

1
(𝐽

𝑓
) = 1 +

1

1 + �̈�

2

1

, 𝜆

2
(𝐽

𝑓
) = 1 +

1

1 + �̈�

2

2

,

𝐽

𝑔
(

̇

𝑋) = (

1

1 + �̇�

2

1

+ 0.00004 0

0 1

) ,

𝜆

1
(𝐽

𝑔
) = 1, 𝜆

2
(𝐽

𝑔
) =

1

1 + �̇�

2

1

+ 0.00004,

𝐽

ℎ
(𝑋) = (

0.001

1 + 𝑥

2

1

+ 0.0001 0

0 0.0001

) ,

𝜆

1
(𝐽

ℎ
) =

0.001

1 + 𝑥

2

1

+ 0.0001, 𝜆

2
(𝐽

ℎ
) = 0.00001.

(39)

Thus, 𝛿
𝑓
= 1, Δ

𝑓
= 2, 𝛿

𝑔
= 1, Δ

𝑔
= 1.00004, 𝛿

ℎ
= 0.0001,

and Δ
ℎ
= 0.0011.

Let us choose

𝛼 = 3,

𝛽 =

1

2

in (Δ
ℎ
≤ min {3−1𝛽 (1 − 𝛽) 𝛿2

𝑔
;

6

−1

𝛼 (1 − 𝛽) 𝛿

𝑔
𝛿

𝑓
(𝛼 + 1)

−2

}

= 𝑘𝛿

𝑔
𝛿

𝑓
) .

(40)

Then,

𝑘 =

1

64

< 1. (41)

Since 0.0011 < 1/64, then all the conditions of Theorem 2
hold. Therefore, all solutions of the equation considered
converge (see, also, [1]).
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