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We investigate the traveling solitary wave solutions of the generalized Camassa-Holm equation 𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢
2
𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+

𝑢𝑢
𝑥𝑥𝑥

on the nonzero constant pedestal lim
𝜉→±∞

𝑢(𝜉) = 𝐴. Our procedure shows that the generalized Camassa-Holm equation
with nonzero constant boundary has cusped and smooth soliton solutions. Mathematical analysis and numerical simulations are
provided for these traveling soliton solutions of the generalizedCamassa-Holm equation. Some exact explicit solutions are obtained.
We show some graphs to explain our these solutions.

1. Introduction

In 1993, Camassa and Holm [1] derived a nonlinear wave
equation (Camassa-Holm equation)

𝑢
𝑡
+ 2𝑘𝑢

𝑥
− 𝑢
𝑥𝑥𝑡
+ 3𝑢𝑢

𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥

(1)

and obtained the peakon wave solution of the form 𝑢 =

𝑐𝑒
−|𝑥−𝑐𝑡|.Whereafter, (1) has been researched bymany authors

[2–7]. Because (1) possesses rich dynamics and complex
properties, recently, many authors are interested in its gen-
eralized forms. In particular, Liu and Qian [8] suggested a
generalized Camassa-Holm equation,

𝑢
𝑡
+ 2𝑘𝑢

𝑥
− 𝑢
𝑥𝑥𝑡
+ 3𝑢
2
𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥
, (2)

and obtained the explicit expressions of the peakon solution
of (2). Afterwards, Tian and Song [9] gave some physical
significance of this equation and obtained some peakon
solutions with special wave speeds. Kalisch [10] studied
the stability of solitary wave solution of (2). He et al. [11]
constructed some exact traveling wave solutions by using the
integral bifurcation method. Liu and Liang [12] studied the
explicit nonlinearwave solutions and their bifurcations of (2).

When 𝑘 = 0, (2) transforms into the following equation:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡
+ 3𝑢
2
𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥𝑥
. (3)

For (3), there are some related works. Shen and Xu [13]
discussed the existence of smooth and nonsmooth traveling
waves. Khuri [14] obtained a singular wave solution com-
posed of triangle functions. Wazwaz [15, 16] acquired eleven
exact travelingwave solutions composed of triangle functions
or hyperbolic functions. Liu and Ouyang [17] obtained a
peakon solution composed of hyperbolic functions. Liu and
Guo [18] investigated the periodic blow-up solutions and
their limit forms. Wang and Tang [19] obtained two exact
solutions. Yomba [20, 21] gave two methods, the sub-ODE
method and the generalized auxiliary equation method, to
obtain the exact solution of (3). Liu and Pan [22] studied the
coexistence of multifarious solutions.

In this paper, we use the Qiao and Zhang method [23] to
investigate the traveling solitary wave solutions of (3) on the
nonzero constant pedestal

lim
𝜉→±∞

𝑢 (𝜉) = 𝐴 ̸= 0. (4)

Since Qiao and Zhang presented this method, many
authors applied it to different nonlinear models and obtained
a variety of new type soliton solutions. Zhang and Qiao [24]
discussed the traveling wave solutions for the Degasperis-
Procesi equation

𝑚
𝑡
+ 𝑚
𝑥
𝑢 + 3𝑚𝑢

𝑥
= 0, 𝑚 = 𝑢 − 𝑢

𝑥𝑥
(5)
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on the nonzero constant pedestal and found new cusped
and peaked soliton solutions. Qiao [25] proposed a new
completely integrable wave equation:

𝑚
𝑡
+ 𝑚
𝑥
(𝑢
2
− 𝑢
2

𝑥
) + 2𝑚

2
𝑢
𝑥
= 0, 𝑚 = 𝑢 − 𝑢

𝑥𝑥
, (6)

and obtained new cusped, one-peak, W/M-shape-peaks soli-
ton solutions. Later, Chen et al. [26, 27] studied the osmosis
𝐾(2, 2) equation

𝑢
𝑡
± (𝑢
2
)
𝑥
± (𝑢
2
)
𝑥𝑥𝑥

= 0 (7)

under the inhomogeneous boundary condition and obtained
smooth, peaked, cusped soliton solutions of the osmosis
𝐾(2, 2) equation by using the phase portrait analytical
technique. Wei et al. [28] investigated the generalized KP-
MEW(2,2) equation

(𝑢
𝑡
+ (𝑢
2
)
𝑥
+ (𝑢
2
)
𝑥𝑥𝑡
)
𝑥
+ 𝑢
𝑦𝑦
= 0 (8)

on the nonzero constant pedestal and acquired smooth,
peaked, cusped, and loop soliton solutions. More works on
single peak soliton are reported [29–32].

2. Some Preliminary Results

Substituting 𝑢(𝑥, 𝑡) = 𝑢(𝜉) and 𝜉 = 𝑥 − 𝑐𝑡 into (3), we have

−𝑐𝑢

+ 𝑐𝑢

+ 3𝑢
2
𝑢

= 2𝑢

𝑢

+ 𝑢𝑢

, (9)

where “” is the derivative with respect to 𝜉. Integrating (9)
once, we yield

−𝑐𝑢 + 𝑐𝑢

+ 𝑢
3
=

1

2

(𝑢

)

2

+ 𝑢𝑢

+ 𝑔
1
, (10)

where 𝑔
1
∈ 𝑅 is an integration constant.

Further, we get

(𝑢

)

2

=

𝑢
4
− 2𝑐𝑢
2
− 4𝑔
1
𝑢 − 4𝑔

2

2 (𝑢 − 𝑐)

, (11)

where 𝑔
2
∈ 𝑅 is an integration constant.

Let us solve (11) with the following boundary condition:

lim
𝜉→±∞

𝑢 (𝜉) = 𝐴 ̸= 0, (12)

where 𝐴 is a constant. Equation (11) can be cast into the
following ordinary differential equation:

(𝑢

)

2

=

(𝑢 − 𝐴)
2
(𝑢
2
+ 2𝐴𝑢 + 3𝐴

2
− 2𝑐)

2 (𝑢 − 𝑐)

. (13)

When 𝑐 − 𝐴2 ≥ 0, then (13) reduces to

(𝑢

)

2

=

(𝑢 − 𝐴)
2
(𝑢 − 𝐵

1
) (𝑢 − 𝐵

2
)

2 (𝑢 − 𝑐)

, (14)

where

𝐵
1
= −𝐴 + √2 (𝑐 − 𝐴

2
), 𝐵

2
= −𝐴 − √2 (𝑐 − 𝐴

2
). (15)

Obviously, 𝐵
1
≥ 𝐵
2
.

Remark 1. In the existing research on this method, the cases
on (𝑢−𝐴)2(𝑢−V

1
)/(𝑢−V

2
) and (𝑢−𝐴)2(𝑢−V

3
)(𝑢−V

4
)/(𝑢−V

5
)
2

have been discussed, but the case on (𝑢 − 𝐴)2(𝑢 − V
6
)(𝑢 −

V
7
)/(𝑢 − V

8
) (V
𝑖
(𝑖 = 1, . . . , 8) ≐ constant) has not been

discussed. So we consider it is very meaningful researching
this new case on this method, and we can obtain some new
soliton solutions from this case.

Definition 2. A wave function 𝑢(𝜉) is called smooth soliton
solution, if 𝑢(𝜉) is smooth and lim

𝜉↑𝜉0
𝑢

(𝜉) = −lim

𝜉↓𝜉0
𝑢

(𝜉) =

0.

Definition 3. A wave function 𝑢(𝜉) is called cuspon solution,
if 𝑢(𝜉) is smooth locally on either side of 𝜉

0
and lim

𝜉↑𝜉0
𝑢

(𝜉) =

−lim
𝜉↓𝜉0
𝑢

(𝜉) = +∞ (or −∞).

Without loss of generality, we assume 𝜉
0
= 0.

3. The Parametric Conditions and Phase
Portraits of Existence of Soliton Solutions of
the Generalized Camassa-Holm Equation (3)

By virtue of the above analysis, we know that soliton solitons
for the generalized Camassa-Holm Equation (3) must satisfy
the following initial and boundary values problem:

(𝑢

)

2

=

(𝑢 − 𝐴)
2
(𝑢
2
+ 2𝐴𝑢 + 3𝐴

2
− 2𝑐)

2 (𝑢 − 𝑐)

,

𝑢 (0) ∈ {𝑐, 𝐵
1
, 𝐵
2
} ,

lim
𝜉→±∞

𝑢 (𝜉) = 𝐴.

(16)

Lemma 4. Suppose that one of the following five conditions
holds:

(i) 𝑐 < 𝐴2, 𝐴 ≤ 𝑐;
(ii) 𝑐 = 𝐴2, 𝐴 ≤ 𝑐;
(iii) 𝐴2 < 𝑐 < 3𝐴2, 𝐴 ≤ 𝑐;
(iv) 3𝐴2 = 𝑐, 𝑐 < 𝐴;
(v) 3𝐴2 < 𝑐, 𝑐 < 𝐴.
Then (3) has trivial solution 𝑢(𝜉) ≡ 𝐴.

Proof. (i) If 𝑐 < 𝐴
2 and 𝐴 ≤ 𝑐, then we have 𝑢2 + 2𝐴𝑢 +

3𝐴
2
− 2𝑐 > 0. When𝐴 < 𝑐, (13) leads to (𝑢)2 = (𝑢 −𝐴)2(𝑢2 +

2𝐴𝑢 + 3𝐴
2
− 2𝑐)/2(𝑢 − 𝑐) ≤ 0. For 𝐴 = 𝑐, (13) can be cast into

(𝑢

)
2
= (1/2)(𝑢 − 𝐴)(𝑢

2
+ 2𝐴𝑢 + 3𝐴

2
− 2𝑐) ≤ 0.

(ii) When 𝑐 = 𝐴2 and 𝐴 ≤ 𝑐, then we have 𝑢2 + 2𝐴𝑢 +
3𝐴
2
− 2𝑐 = (𝑢 + 𝐴)

2
≥ 0. If 𝐴 < 𝑐, (14) changes into (𝑢)2 =

(𝑢 − 𝐴)
2
(𝑢 + 𝐴)

2
/2(𝑢 − 𝑐) ≤ 0. If 𝐴 = 𝑐, (14) transforms into

(𝑢

)
2
= (1/2)(𝑢 − 𝐴)(𝑢 + 𝐴)

2
≤ 0.

(iii) For 𝐴2 < 𝑐 < 3𝐴2 and 𝐴 ≤ 𝑐, then we obtain 𝑢2 +
2𝐴𝑢 + 3𝐴

2
− 2𝑐 = (𝑢 − 𝐵

1
)(𝑢 − 𝐵

2
) > 0. If 𝐴 < 𝑐, (14) leads to

(𝑢

)
2
= (𝑢 − 𝐴)

2
(𝑢 − 𝐵

1
)(𝑢 − 𝐵

2
)/2(𝑢 − 𝑐) ≤ 0. If 𝐴 = 𝑐, (14)

changes into (𝑢)2 = (1/2)(𝑢 − 𝐴)(𝑢 − 𝐵
1
)(𝑢 − 𝐵

2
) ≤ 0.

(iv) If 3𝐴2 = 𝑐 and 𝑐 < 𝐴, then we get 𝑢2 + 2𝐴𝑢 + 3𝐴2 −
2𝑐 = (𝑢 − 𝐴)(𝑢 + 3𝐴) < 0 and (14) can be cast into (𝑢)2 =
(𝑢 − 𝐴)

3
(𝑢 + 3𝐴)/2(𝑢 − 3𝐴

2
) ≤ 0.
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(v) When 3𝐴2 < 𝑐 and 𝑐 < 𝐴, then we have 𝑢2 + 2𝐴𝑢 +
3𝐴
2
− 2𝑐 = (𝑢 − 𝐵

1
)(𝑢 − 𝐵

2
) < 0 and (14) transforms into

(𝑢

)
2
= (𝑢 − 𝐴)

2
(𝑢 − 𝐵

1
)(𝑢 − 𝐵

2
)/2(𝑢 − 𝑐) ≤ 0.

The fact that (𝑢)2 ≥ 0 implies 𝑢 = 0 and 𝑢(𝜉) ≡ 𝐴.

Obviously, we get that the generalized Camassa-Holm
Equation (3) with nonzero boundary condition has soliton
solutions when𝐴 and 𝑐 do not belong to the above five cases.
Then we obtain the generalized Camassa-Holm Equation (3)
with nonzero boundary condition having soliton solutions,
when 𝑐 < 𝐴2, 𝑐 < 𝐴; 𝑐 = 𝐴2, 𝑐 < 𝐴; 𝐴2 < 𝑐 < 3𝐴2, 𝑐 < 𝐴; and
3𝐴
2
= 𝑐, 𝐴 ≤ 𝑐; 3𝐴2 < 𝑐, 𝐴 ≤ 𝑐.
For the cases on 𝐴2 < 𝑐 < 3𝐴2, 𝑐 < 𝐴, 𝐵

1
= 𝑐; 3𝐴2 = 𝑐,

𝐴 = 𝑐, and 3𝐴2 < 𝑐, 𝐴 ≤ 𝑐, 𝐵
1
= 𝑐, Liu and Qian [8] and

Tian and Song [9] researched that the generalized Camassa-
Holm Equation (3) has smooth soliton and peakon solutions
as similar as follows:

𝑢 (𝜉) = 𝑚(

1 − 𝑒
−𝑛|𝜉|

1 + 𝑒
−𝑛|𝜉|

)

2

+ 𝑝,

𝑢 (𝜉) = 𝑚(

1 − 𝑒
−𝑛(|𝜉|+𝑠)

1 + 𝑒
−𝑛(|𝜉|+𝑠)

)

2

+ 𝑝,

(17)

where 𝑚, 𝑛, and 𝑝 are constants, and 𝑠 > 0 is an integration
constant.

In fact, when 𝑐 < 𝐴2, 𝑐 < 𝐴; 𝑐 = 𝐴2, 𝑐 < 𝐴; 𝐴2 < 𝑐 < 3𝐴2,
𝑐 < 𝐴; and 3𝐴2 = 𝑐, 𝐴 < 𝑐; 3𝐴2 < 𝑐, 𝐴 ≤ 𝑐, the
generalizedCamassa-HolmEquation (3) has also other forms
of the smooth soliton and cuspon. Because (11) is equivalent
to the two-dimensional system

𝑢

= 𝑦,

𝑦

=

𝑢
3
− 𝑐𝑢 − (1/2) 𝑦

2
+ 𝑔
1

𝑢 − 𝑐

.

(18)

From (18), we can obtain the phase portraits of existence of
soliton solutions of the generalized Camassa-Holm Equation
(3) under the inhomogeneous boundary condition, when 𝐴
and 𝑐 belong to the above five cases (see Figure 1).

The phase portraits of (3) are shown in Figure 1 under
different parametric conditions.

(1-1) 𝑐 < 𝐴2, 𝑐 < 𝐴; (1-2) 𝑐 = 𝐴2, 𝑐 < 𝐴; (1-3) 𝐴2 < 𝑐 <
3𝐴
2, 𝑐 < 𝐴, 𝑐 < 𝐵

1
; (1-4) 𝐴2 < 𝑐 < 3𝐴2, 𝑐 < 𝐴, 𝐵

1
< 𝑐; (1-5)

𝑐 = 3𝐴
2, 0 < 𝐴 < 𝑐; (1-6) 𝑐 = 3𝐴2, 𝐴 < −1 < 𝑐; (1-7) 𝑐 = 3𝐴2,

−1 < 𝐴 < 0 < 𝑐; (1-8) 3𝐴2 < 𝑐, 𝐴 = 𝑐; (1-9) 3𝐴2 < 𝑐, 𝐴 < 𝑐,
𝑐 < 𝐵
1
; (1-10) 3𝐴2 < 𝑐, 𝐴 < 𝑐, 𝐵

1
< 𝑐.

4. Cusped and Smooth Solitons for
the Generalized Camassa-Holm Equation (3)

In this section, by using the phase portrait analytical tech-
nique, which has been developed by Li and Dai [33], we
get cusped and smooth soliton solutions of the general-
ized Camassa-Holm Equation (3) under the inhomogeneous
boundary condition.

Case 1 (𝑐 < 𝐴
2, 𝑐 < 𝐴). By the standard phase portrait

analysis (see Figure 1(1-1)), we have 𝑢(0) = 𝑐 < 𝐴. From (13),
we yield

𝑢

= −

(𝑢 − 𝐴)√𝑢
2
+ 2𝐴𝑢 + 3𝐴

2
− 2𝑐

√2 (𝑢 − 𝑐)

sign (𝜉) . (19)

Taking the integration of both sides of (19), we can obtain the
implicit cuspon solution 𝑢(𝜉) defined by

−

√2𝑊

𝑐 −𝑊 − 𝐴

[−𝑆
1
(𝑢) +

1

1 − 𝛼

(𝑆
2
(𝑢) − 𝛼

sn (𝑢)
dn (𝑢)

)]

=




𝜉




+ 𝐾
1
,

(20)

where𝐾
1
= 0 is an integration constant,

𝑆
1
(𝑢) = ϝ [arccos(𝑊 + 𝑐 − 𝑢

𝑊 − 𝑐 + 𝑢

) , 𝑘] ,

𝑆
2
(𝑢) = ∏[arccos(𝑊 + 𝑐 − 𝑢

𝑊 − 𝑐 + 𝑢

) ,

𝛼
2

𝛼
2
− 1

, 𝑘] ,

𝑊 = √(𝐴 + 𝑐)
2
+ 2 (𝐴

2
− 𝑐),

𝑘 = √
𝑊 − 𝐴 − 𝑐

2𝑊

, 𝛼 =

𝑐 −𝑊 − 𝐴

𝑐 +𝑊 − 𝐴

,

sn (𝑢) = √1 − (𝑊 + 𝑐 − 𝑢

𝑊 − 𝑐 + 𝑢

)

2

,

dn (𝑢) = √1 − 𝑘2sn2 (𝑢).

(21)

Remark 5. ϝ(𝜙, 𝑘) is the elliptic integral of first kind, and
Π(𝜙, 𝜏, 𝑘) is the elliptic integral of third kind [34].

The profile of cusped soliton solution is shown in Figure
2(2-1).

Case 2 (𝑐 = 𝐴2, 𝑐 < 𝐴). Equation (14) can be cast into

(𝑢

)

2

=

(𝑢 − 𝐴)
2
(𝑢 + 𝐴)

2

2 (𝑢 − 𝐴
2
)

. (22)

By the standard phase portrait analysis (see Figure 1(1-2)), we
have 𝑢(0) = 𝑐 < 𝐴. From (22), we get

𝑢

= −

(𝑢 − 𝐴) (𝑢 + 𝐴)

√2 (𝑢 − 𝐴
2
)

sign (𝜉) . (23)

Let ℎ(𝑢) = −1/(𝑢 − 𝐴)(𝑢 + 𝐴); then ℎ(𝑐) = −1/(𝑐 − 𝐴)(𝑐 + 𝐴),
and

∫√2 (𝑢 − 𝐴
2
)ℎ (𝑢) 𝑑𝑢 = ∫ sign (𝜉) 𝑑𝜉. (24)

Inserting ℎ(𝑢) = ℎ(𝑐) + 𝑂(𝑢) into (24) and using the initial
condition 𝑢(0) = 𝑐, we obtain

1

3

[2 (𝑢 − 𝐴
2
)]

3/2

ℎ (𝑐) (1 + 𝑂 (1)) =




𝜉




. (25)
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Figure 1: Phase portraits of (3) under the inhomogeneous boundary condition.

Thus,

𝑢 =

1

2





𝜉





2/3

(

3

ℎ(𝑐)

)

2/3

(1 + 𝑂 (1))
−2/3

+ 𝐴
2
, 𝜉 → 0, (26)

which implies 𝑢 = 𝑂(|𝜉|2/3). Therefore, we have

𝑢 =

1

2

(

3

ℎ(𝑐)

)

2/3





𝜉





2/3

+ 𝑂 (




𝜉




) + 𝐴
2
, 𝜉 → 0,

𝑢

=

1

3

(

3

ℎ(𝑐)

)

2/3





𝜉





−1/3

+ 𝑂 (1) , 𝜉 → 0.

(27)

So we can get the implicit cuspon solution 𝑢(𝜉) defined by

𝐴 − 1

√2 (𝐴 − 𝐴
2
)

𝐼
1
(𝑢) −

√2 (𝐴 + 1)

√𝐴 + 𝐴
2

𝐼
2
(𝑢) =





𝜉




+ 𝐾
2
, (28)

where

𝐼
1
(𝑢) = ln











√𝑢 − 𝐴
2
− √𝐴 − 𝐴

2

√𝑢 − 𝐴
2
+ √𝐴 − 𝐴

2











,

𝐼
2
(𝑢) = arctan(√ 𝑢 − 𝐴

2

𝐴 + 𝐴
2
) .

(29)

Remark 6. The proof of other cuspons is similar to the above
proof.

Because 𝑢(0) = 𝑐, the constant𝐾
2
is defined by

𝐾
2𝑐
=

𝐴 − 1

√2 (𝐴 − 𝐴
2
)

𝐼
1
(𝑐) −

√2 (𝐴 + 1)

√𝐴 + 𝐴
2

𝐼
2
(𝑐) = 0. (30)
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The profile of cusped soliton solution is shown in Figure 2
(2-2).

Case 3 (𝐴2 < 𝑐 < 3𝐴2, 𝑐 < 𝐴). In this case, we discuss two
conditions: (1) 𝐵

1
> 𝑐; (2) 𝐵

1
< 𝑐.

(1) When 𝐵
1
> 𝑐, by the standard phase portrait analysis

(see Figure 1(1-3)), we have 𝑐 < 𝑢(0) = 𝐵
1
< 𝐴. From (14), we

have

𝑢

= −

(𝑢 − 𝐴)√(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

√2 (𝑢 − 𝑐)

sign (𝜉) . (31)

As same as the above, we can obtain the implicit smooth
soliton solution 𝑢(𝜉) defined by

−

2√2 (𝐵
1
− 𝑐)

(𝐵
1
− 𝐴)√𝐵

1
− 𝐵
2

𝑉 (𝑢) =




𝜉




+ 𝐾
3
, (32)

where

𝑉 (𝑢) = ∏(arcsin(√𝑢 − 𝐵1
𝑢 − 𝑐

) ,

𝐴 − 𝑐

𝐴 − 𝐵
1

, √

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

) .

(33)

For 𝑢(0) = 𝐵
1
, the constant𝐾

3
is defined by𝐾

3𝐵1

= 0. For this
smooth soliton solution, we get an exact explicit form [35]

𝑢 (𝜉)

= (𝐵
1
− 𝑐 ⋅ sin2 (Π−1 (

(𝐴 − 𝐵
1
)√𝐵
1
− 𝐵
2





𝜉





2√2 (𝐵
1
− 𝑐)

,

𝐴 − 𝑐

𝐴 − 𝐵
1

, √

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

)))

× (1 − sin2(Π−1(
(𝐴 − 𝐵

1
)√𝐵
1
− 𝐵
2





𝜉





2√2 (𝐵
1
− 𝑐)

,

𝐴 − 𝑐

𝐴 − 𝐵
1

, √

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

)))

−1

.

(34)

The profile of smooth soliton solution is shown in Figure 2(2-
3).

(2) When 𝐵
1
< 𝑐, by the standard phase portrait analysis

(see Figure 1(1-4)), we have 𝐵
1
< 𝑢(0) = 𝑐 < 𝐴. Taking

the integration of both sides of (31), we can yield the implicit
cuspon solution 𝑢(𝜉) defined by

2√2 (𝑐 − 𝐵
1
)

(𝐴 − 𝐵
1
)√𝑐 − 𝐵

2

(𝑂
1
(𝑢) − 𝑂

2
(𝑢)) =





𝜉




+ 𝐾
4
, (35)

where

𝑂
1
(𝑢) = ∏(arcsin(√

𝑢 − 𝑐

𝑢 − 𝐵
1

) ,

𝐴 − 𝐵
1

𝐴 − 𝑐

,√

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

) ,

𝑂
2
(𝑢) = ϝ(arcsin(√

𝑢 − 𝑐

𝑢 − 𝐵
1

) ,√

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

) .

(36)

By view of 𝑢(0) = 𝑐, the constant𝐾
4
is defined by𝐾

4𝑐
= 0.The

profile of cusped soliton solution is shown in Figure 2(2-4).

Case 4 (3𝐴2 = 𝑐, 𝐴 < 𝑐). (1) When 0 < 𝐴 < 𝑐, by the
standard phase portrait analysis (see Figure 1(1-5)), we have
𝑢(0) = 𝐵

2
< 0 < 𝐵

1
= 𝐴 < 𝑐. Equation (14) transforms into

(𝑢

)

2

=

(𝑢 − 𝐴)
2
(𝑢 − 𝐴) (𝑢 + 3𝐴)

2 (𝑢 − 3𝐴
2
)

. (37)

From (37), we have

𝑢

= − (𝑢 − 𝐴)√

(𝑢 − 𝐴) (𝑢 + 3𝐴)

2 (𝑢 − 3𝐴
2
)

sign (𝜉) . (38)

Taking the integration of both sides of (38), we can obtain the
implicit smooth soliton solution 𝑢(𝜉) defined by

√6

2

√
𝐴 (𝐴 + 1)

𝐴

(

3𝐴 − 1

3𝐴 + 3

𝑃
1
(𝑢) +

4

3𝐴 + 3

𝑃
2
(𝑢)) =





𝜉




+ 𝐾
5
,

(39)

where

𝑃
1
(𝑢) = ∏(arcsin(√3𝐴 + 𝑢

4𝐴

) , 1,

2

√3 + 3𝐴

) ,

𝑃
2
(𝑢) = ϝ(arcsin(√3𝐴 + 𝑢

4𝐴

) ,

2

√3 + 3𝐴

) .

(40)

For 𝑢(0) = 𝐵
2
, we obtain 𝐾

5𝐵2

= 0. The profile of smooth
soliton solution is shown in Figure 2(2-5).

(2) When 𝐴 < 0, by virtue of (37), we have

𝑢

= (𝑢 − 𝐴)√

(𝑢 − 𝐴) (𝑢 + 3𝐴)

2 (𝑢 − 3𝐴
2
)

sign (𝜉) . (41)

In this case, we discuss two conditions: (i) 𝐴 < −1; (ii)
−1 < 𝐴 < 0.

(i) When 𝐴 < −1, by the standard phase portrait analysis
(see Figure 1(1-6)), we have 𝐴 = 𝐵

2
≤ 𝑢 ≤ 𝐵

1
< 𝑐. Taking the

integration of (41) on the interval [𝐴, 𝐵
1
], thus, we obtain the

implicit smooth soliton solution 𝑢(𝜉) defined by

−3√2 (1 + 𝐴)

2√3𝐴
2
− 𝐴

𝐻 (𝑢) =




𝜉




+ 𝑄
1
, (42)

where

𝐻(𝑢) = ∏(arcsin(√ (3𝐴 − 1) (3𝐴 + 𝑢)
4 (3𝐴
2
− 𝑢)

) , 1, √
−4

3𝐴 − 1

) .

(43)
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Because 𝑢(0) = 𝐵
1
, we obtain 𝑄

1𝐵1

= 0. For this smooth
soliton solution, we get an exact explicit form

𝑢 (𝜉)

= (12𝐴
2sin2(Π−1(

2√3𝐴
2
− 𝐴





𝜉





−3√2 (1 + 𝐴)

, 1,

√
−4

3𝐴 − 1

)) − 3𝐴 (3𝐴 − 1))

× ((3𝐴 − 1) + 4sin2(Π−1(
2√3𝐴

2
− 𝐴





𝜉





−3√2 (1 + 𝐴)

, 1,

√
−4

3𝐴 − 1

)))

−1

.

(44)

The profile of smooth soliton solution is shown in Figure 2(2-
6).

(ii) When −1 < 𝐴 < 0, by the standard phase portrait
analysis (see Figure 1(1-7)), we have 𝐴 = 𝐵

2
≤ 𝑢 < 𝑐 < 𝐵

1
.

Integrating (41) on the interval [𝐴, 𝑐), we obtain the implicit
cuspon solution 𝑢(𝜉) defined by

3√2 (𝐴 + 1)

4√−𝐴

[𝑅
1
(𝑢) − 𝑅

2
(𝑢)] =





𝜉




+ 𝑄
2
, (45)

where

𝑅
1
(𝑢)

= ∏(arcsin(√
4(3𝐴

2
− 𝑢)

(3𝐴 − 1) (3𝐴 + 𝑢)

) , 1, √
3𝐴 − 1

−4

) ,

𝑅
2
(𝑢)

= ϝ(arcsin(√
4(3𝐴

2
− 𝑢)

(3𝐴 − 1) (3𝐴 + 𝑢)

) ,√
3𝐴 − 1

−4

) .

(46)

From 𝑢(0) = 𝑐, we obtain 𝑄
2𝑐
= 0. The profile of cusped

soliton solution is shown in Figure 2(2-7).

Case 5 (3𝐴2 < 𝑐, 𝐴 ≤ 𝑐). (1) When 𝐴 = 𝑐, (14) can be cast
into

(𝑢

)

2

=

1

2

(𝑢 − 𝐴) (𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
) . (47)

Because 3𝐴2 < 𝑐, we have𝐵
2
< 𝐴 < 𝐵

1
. By the standard phase

portrait analysis (see Figure 1(1-8)), we get 𝐵
2
≤ 𝑢 ≤ 𝐴 = 𝑐 <

𝐵
1
. By view of (47), we obtain

𝑢

=

√2

2

√(𝑢 − 𝐴) (𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
) sign (𝜉) . (48)

As same as the above, we can get the implicit smooth soliton
solution 𝑢(𝜉) defined by

2√2

√𝐵
1
− 𝐵
2

ϝ(arcsin(√ 𝑢 − 𝐵2
𝐴 − 𝐵

2

) ,√

𝐴 − 𝐵
2

𝐵
1
− 𝐵
2

) =




𝜉




+ 𝐾
6
.

(49)

For 𝑢(0) = 𝐵
2
, the constant𝐾

6
is defined by𝐾

6𝐵2

= 0. For this
smooth soliton solution, we can give an exact explicit form

𝑢 (𝜉) = (𝐴 − 𝐵
2
)

× sin2(ϝ−1(
√(𝐵
1
− 𝐵
2
)




𝜉





2√2

,√

𝐴 − 𝐵
2

𝐵
1
− 𝐵
2

))+ 𝐵
2
.

(50)

The profile of smooth soliton solution is shown in Figure
2(2-8).

(2) When 𝐴 < 𝑐, we discuss three cases: (i) 𝐵
1
> 𝑐; (ii)

𝐵
1
< 𝑐; (iii) 𝐵

1
= 𝑐.

(i) When 𝐵
1
> 𝑐, by the standard phase portrait analysis

(see Figure 1(1-9)), we have 𝑢(0) = 𝐵
2
≤ 𝑢 < 𝐴 or 𝐴 ≤ 𝑢 <

𝑢(0) = 𝑐.
For 𝑢(0) = 𝐵

2
, from (14), we have

𝑢

= (𝐴 − 𝑢)√

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

2 (𝑢 − 𝑐)

sign (𝜉) . (51)

Taking the integration of (51) on the interval [𝐵
2
, 𝐴], thus, we

obtain the implicit smooth soliton solution 𝑢(𝜉) defined by

2√2

√𝐵
1
− 𝐵
2

(

𝑐 − 𝐴

𝐴 − 𝐵
2

𝐺
1
(𝑢) + 𝐺

2
(𝑢)) =





𝜉




+ 𝑊
1
, (52)

where

𝐺
1
(𝑢) = ∏(arcsin(√𝑢 − 𝐵2

𝑐 − 𝐵
2

) ,

𝑐 − 𝐵
2

𝐴 − 𝐵
2

, √

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

) ,

𝐺
2
(𝑢) = ϝ(arcsin(√

𝑢 − 𝐵
2

𝑐 − 𝐵
2

) ,√

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

) .

(53)

The constant𝑊
1
is defined by𝑊

1𝐵2

= 0.The profile of smooth
soliton solution is shown in Figure 2(2-9).

For 𝑢(0) = 𝑐, by view of (14), we obtain

𝑢

= (𝑢 − 𝐴)√

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

2 (𝑢 − 𝑐)

sign (𝜉) . (54)

Taking the integration of both sides of (54), thus, we can yield
the implicit solution 𝑢(𝜉) defined by

2√2 (𝐵
1
− 𝑐)

(𝐵
1
− 𝐴)√𝐵

1
− 𝐵
2

[𝐸
1
(𝑢) − 𝐸

2
(𝑢)] =





𝜉




+ 𝑊
2
, (55)
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where

𝐸
1
(𝑢) = ∏[arcsin(√

(𝐵
1
− 𝐵
2
) (𝑐 − 𝑢)

(𝑐 − 𝐵
2
) (𝐵
1
− 𝑢)

) ,

(𝑐 − 𝐵
2
) (𝐵
1
− 𝐴)

(𝐵
1
− 𝐵
2
) (𝑐 − 𝐴)

,√

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

] ,

𝐸
2
(𝑢) = ϝ[arcsin(√

(𝐵
1
− 𝐵
2
) (𝑐 − 𝑢)

(𝑐 − 𝐵
2
) (𝐵
1
− 𝑢)

) ,√

𝑐 − 𝐵
2

𝐵
1
− 𝐵
2

] .

(56)

For 𝑢(0) = 𝑐,𝑊
2
is defined by𝑊

2𝑐
= 0. The profile of cusped

soliton solution is shown in Figure 2(2-10).
(ii) When 𝐵

1
< 𝑐, by the standard phase portrait analysis

(see Figure 1(1-10)), we have 𝐵
2
< 𝐴 < 𝐵

1
< 𝑐.

For 𝑢(0) = 𝐵
2
, from (14), we get

𝑢

= (𝐴 − 𝑢)√

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

2 (𝑢 − 𝑐)

sign (𝜉) ; (57)

we yield

Θ
1
(𝑢) ≡ ∫ 𝜃

1
(𝑢) 𝑑𝑢 =





𝜉




+ 𝑀
1
, (58)

where

𝜃
1
(𝑢) = −

1

(𝑢 − 𝐴)

√

2 (𝑢 − 𝑐)

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

, (59)

and 𝑀
1
is an integration constant. Taking the integration

of 𝜃
1
(𝑢) on the interval [𝐵

2
, 𝐴], thus, we obtain the implicit

solution 𝑢(𝜉) defined by

Θ
1
(𝑢)

=

2√2 (𝑐 − 𝐵
2
)

𝐵
1
− 𝐵
2

× [(

𝐵
1
− 𝐵
2

𝐴 − 𝐵
2

−

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

)𝑇
1
(𝑢) +

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

𝑇
2
(𝑢)]

=




𝜉




+ 𝑀
1
,

(60)

where

𝑇
1
(𝑢) = ∏(arcsin(√ 𝑢 − 𝐵

2

𝐵
1
− 𝐵
2

) ,

𝐵
1
− 𝐵
2

𝐴 − 𝐵
2

, √

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

) ,

𝑇
2
(𝑢) = ϝ(arcsin(√

𝑢 − 𝐵
2

𝐵
1
− 𝐵
2

) ,√

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

) .

(61)

The constant𝑀
1
is defined by𝑀

1𝐵2

= 0. Because 𝜃
1
(𝑢) > 0,

we know that the Θ
1
(𝑢) is strictly increasing on the interval

[𝐵
2
, 𝐴];

Θ
1
(𝑢) = Θ

1[𝐵2,𝐴]
(𝑢) (62)

has the inverse denoted by 𝑢(𝜉) = Θ
−1

1
(|𝜉|). The profile of

smooth soliton solution is shown in Figure 2(2-11).
For 𝑢(0) = 𝐵

1
, by view of (14), we obtain

𝑢

= (𝑢 − 𝐴)√

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

2 (𝑢 − 𝑐)

sign (𝜉) ,

Θ
2
(𝑢) ≡ ∫ 𝜃

2
(𝑢) 𝑑𝑢 =





𝜉




+ 𝑀
2
,

(63)

where

𝜃
2
(𝑢) =

1

(𝑢 − 𝐴)

√

2 (𝑢 − 𝑐)

(𝑢 − 𝐵
1
) (𝑢 − 𝐵

2
)

, (64)

and 𝑀
2
is an integration constant. Taking the integration

of 𝜃
2
(𝑢) on the interval [𝐴, 𝐵

1
], thus, we obtain the implicit

solution 𝑢(𝜉) defined by

Θ
2
(𝑢) = −

2√2 (𝑐 − 𝐵
1
)

(𝐴 − 𝐵
1
)√𝑐 − 𝐵

2

𝑁(𝑢) =




𝜉




+ 𝑀
2
, (65)

where

𝑁(𝑢) = ∏(arcsin(√
(𝑐 − 𝐵

2
) (𝐵
1
− 𝑢)

(𝐵
1
− 𝐵
2
) (𝑐 − 𝑢)

) ,

(𝐵
1
− 𝐵
2
) (𝐴 − 𝑐)

(𝑐 − 𝐵
2
) (𝐴 − 𝐵

1
)

, √

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

) .

(66)

When 𝑢(0) = 𝐵
1
, the constant 𝑀

2
is defined by 𝑀

2𝐵1

= 0.
From 𝜃

2
(𝑢) > 0, we know that theΘ

2
(𝑢) is strictly increasing

on the interval [𝐴, 𝐵
1
];

Θ
2
(𝑢) = Θ

2[𝐴,𝐵1]
(𝑢) (67)

has the inverse denoted by 𝑢(𝜉) = Θ−1
2
(|𝜉|).

For this smooth soliton solution, we give an exact explicit
form

𝑢 (𝜉) = (𝑐 (𝐵
1
− 𝐵
2
)

× sin2(Π−1(
(𝐴 − 𝐵

1
)√𝑐 − 𝐵

2





𝜉





2√2 (𝐵
1
− 𝑐)

,

(𝐵
1
− 𝐵
2
) (𝐴 − 𝑐)

(𝑐 − 𝐵
2
) (𝐴 − 𝐵

1
)

,

√

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

)) − 𝐵
1
(𝑐 − 𝐵

2
))
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Figure 2: Profiles of soliton solution.

× ( (𝐵
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1
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𝜉





2√2 (𝐵
1
− 𝑐)

,

(𝐵
1
− 𝐵
2
) (𝐴 − 𝑐)

(𝑐 − 𝐵
2
) (𝐴 − 𝐵

1
)

,

√

𝐵
1
− 𝐵
2

𝑐 − 𝐵
2

)) −𝑐 + 𝐵
2
)

−1

.

(68)

The profile of smooth soliton solution is shown in Figure 2
(2-12).

The profile of soliton solution of (3) is shown in Figure 2
under special values of 𝑐 and 𝐴.

(2-1) 𝑐 = 1, 𝐴 = 2; (2-2) 𝑐 = 1/4, 𝐴 = 1/2; (2-3) 𝑐 = 1/10,
𝐴 = 1/5; (2-4) 𝑐 = 1/3, 𝐴 = 1/2; (2-5) 𝑐 = 3, 𝐴 = 1; (2-6)
𝑐 = 12, 𝐴 = −2; (2-7) 𝑐 = 3/16, 𝐴 = −1/4; (2-8) 𝑐 = 𝐴 = 1/4;
(2-9, 10) 𝑐 = 2/3, 𝐴 = −1/3; (2-11, 12) 𝑐 = 4, 𝐴 = −3/4.

5. Conclusion

In this paper, we research the soliton solutions of the gen-
eralized Camassa-Holm Equation (3) under inhomogeneous
boundary condition. The parametric conditions and phase
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portraits of existence of the cuspon and smooth soliton
solutions are given. We obtain cuspon and smooth soliton
solutions of the generalized Camassa-Holm Equation (3).
Some exact explicit solutions are obtained. We show some
graphs to explain our these solutions.
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