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A reaction-diffusion cancer network regulated by microRNA is considered in this paper. We study the asymptotic behavior of
solution and show the existence of global uniformly bounded solution to the system in a bounded domain Ω ⊂ 𝑅

𝑛. Some estimates
and asymptotic compactness of the solutions are proved. As a result, we establish the existence of the global attractor in𝐿

2

(Ω)×𝐿
2

(Ω)

and prove that the solution converges to stable steady states.These results can help to understand the dynamical character of cancer
network and propose a new insight to study themechanism of cancer. In the end, the numerical simulation shows that the analytical
results agree with numerical simulation.

1. Introduction

In this paper, we discuss the asymptoti cbehavior of solu-
tions for reaction-diffusition equations which studied by
Aguda et al. [1] and Shen et al. [2]. The system describes can-
cer network regulated by microRNA (miRNA). MicroRNAs
are an abundant class of small noncoding RNA that function
to regulate the activity and stability of specific mRNA targets
through posttranscriptional regulatory mechanism and play
a role of repressing translation of mRNA or degrading
mRNAs. Recent studies show that miRNAs play a central
role in many biological (cellular) processes, including devel-
opmental timing, cell proliferation, apoptosis, metabolism,
cell differentiation, somitogenesis, and tumour-genesis. In
addition, there is diffusion when molecules interact (see, e.g.,
[2–6]), so we should consider the diffusion process and its
dynamical behavior.

In order to understand further the miR-17-92 involved
in the network with Myc and E2F, we would investigate the
cancer network [1, 2] with diffusion term and consider the
attractor system of cancer network with diffusion as follows:

𝜕𝑢

𝜕𝑡
= 𝐷

1
Δ𝑢 − 𝛿𝑢 + 𝑓 (𝑢, V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕V
𝜕𝑡

= 𝐷
2
ΔV + 𝑘𝑢 − 𝛾V, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝑛
=

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , V (𝑥, 0) = V
0

(𝑥) , 𝑥 ∈ Ω,

(1)

and here Ω is an open bounded subset of 𝑅
𝑛 with the

boundary of class 𝐶
3. 𝑓(𝑢, V) are two real smooth nonlinear

functions for 𝑢, V ∈ [0, +∞) satisfying the following condi-
tions:

(i) there exists 𝜆 > 0 such that 𝑓(𝑢, V) ≤ 𝜆
1
𝑢

2

+ 𝜆
2
V as

𝑢 ≥ 0, V ≥ 0;
(ii) there exists 𝑀

1
, 𝑀

2
> 0 such that |𝑓



𝑢
| < 𝑀

1
, |𝑓



V | <

𝑀
2
for all 𝑢, V ∈ [0, +∞).

To our knowledge, the long time behavior of solution for
reaction-diffusion system has been studied by several authors
(see [7–15]). But for different nonlinear reaction function,
there are some different extra difficulties. We will study the
existence of global attractor for the system (1) in 𝐿

2

(Ω) ×

𝐿
2

(Ω). The key point to our method relies on the regularity
and estimates on solutions which show that the solutions are
uniformly bounded in 𝐿

2

(Ω) × 𝐿
2

(Ω).
We construct a local solution of system (1) by the

semigroupmethod and fixed-point theorem and then discuss
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its regularity by priori estimate method.We study the asymp-
totic behavior of solution and show the existence of global
uniformly bounded solution to the system in a bounded
domainΩ ⊂ 𝑅

𝑛. Some estimates and asymptotic compactness
of the solutions are proved. As a result, we establish the
existence of global attractor in 𝐿

2

(Ω) × 𝐿
2

(Ω) and prove that
the solution converges to stable steady states. In the end, we
apply these results to the cancer network model and give
the numerical test. The numerical simulation shows that the
analytical results agree with numerical simulation.This paper
is more motivated from the mathematical point of view than
from the biological one, but it will help to get more insights
in the understanding of the behavior of the problem.

For readers’ convenience, the following standard result on
attractor is first presented here (see, e.g., [8, 9, 13, 14]).

Proposition 1. Suppose that 𝑋 is a metric space and 𝑆(𝑡)
𝑡≥0

is a semigroup of continuous operators in 𝑋. If 𝑆(𝑡)
𝑡≥0

has
a bounded absorbing set and is asymptotically compact, then
𝑆(𝑡)

𝑡≥0
possesses a global attractor which is a compact invariant

set and attracts every bounded set in 𝑋.

Definition 2. The semigroup 𝑆(𝑡) is asymptotically compact;
that is, if 𝑢

𝑛
is bounded in 𝑋 and 𝑡

𝑛
→ ∞, then 𝑆(𝑡

𝑛
)𝑢

𝑛
is

precompact in 𝑋.

2. Preliminary

Some well-known inequalities and embedding results that
will be used in the sequel are presented.

Lemma 3 (see [9]). If 𝑝, 𝑞 ≥ 1 and 𝑝(𝑛 − 𝑞) < 𝑛𝑞, then, for
𝑟 ∈ (0, 𝑝),

‖𝑢‖
𝐿
𝑝
(Ω)

≤ 𝑐‖𝑢‖
𝑎

𝑊
1,𝑞 ⋅ ‖𝑢‖

(1−𝑎)

𝐿
𝑟
(Ω)

∀𝑢 ∈ 𝑊
1,𝑞

(Ω) , (2)

where 𝑎 = ((𝑛/𝑟) − (𝑛/𝑝))/(1 − (𝑛/𝑞) + (𝑛/𝑟)) ∈ (0, 1).

Lemma 4 (see [9]). Let 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞ and 𝑓 ∈ 𝐿
𝑞

(Ω). Then


𝑒

𝑡Δ

𝑓
𝑝

≤ (4𝜋𝑡)
−(𝑛/2)((1/𝑞)−(1/𝑝))𝑓

𝑞
,


(−Δ + 1)

𝛽

𝑒
𝑡Δ

𝑓
𝑝

≤ 𝑐𝑡
−𝛽−(𝑛/2)((1/𝑞)−(1/𝑝))

𝑒
(1−𝜇)𝑡𝑓

𝑞

𝑝 ̸= 𝑞,

(3)

where 𝛽 > 0, 𝜇 > 0, and 𝑐 is a positive constant depending
only on 𝑝, 𝑞, Ω. (𝑒

𝑡Δ

𝑓)(𝑥) = ∫
Ω

𝐺(𝑥 − 𝑦, 𝑡)𝑓(𝑦)𝑑𝑦 and 𝐺(𝑥, 𝑡)

is the Green function of the heat equation (𝜕𝑢/𝜕𝑡) − Δ𝑢 = 0,
𝑥 ∈ Ω, 𝑡 > 0 with the homogeneous Neumann boundary
condition.

Lemma 5 (see [10]). Let 𝐴
𝑝

= −Δ and 𝐷(𝐴
𝑝

) = {𝜑 ∈

𝑊
2,𝑝

(Ω)
|𝜕𝜑/𝜕𝑁|

𝜕Ω
= 0}; then

𝐷 ((𝐴
𝑝

+ 1)
𝛽

) → 𝑊
1,𝑝

(Ω) , if 𝛽 >
1

2
,

𝐷 ((𝐴
𝑝

+ 1)
𝛽

) → 𝐶
𝛿

(Ω) , if 2𝛽 −
𝑛

𝑝
> 𝛿 ≥ 0,


(𝐴 + 1)

𝛽

𝑒
−𝑡(𝐴+1)

𝑢
𝐿
𝑝
(Ω)

≤ 𝑐𝑡
−𝛽

‖𝑢‖
𝐿
𝑝
(Ω)

.

(4)

Lemma 6 (see [12]). Suppose 𝐻
𝑠 is an interpolation space of

𝐻
𝑠0 and 𝐻

𝑠1 , where 0 ≤ 𝑠
0

< 𝑠
1

< ∞, 0 < 𝜃 < 1, and 𝑠 =

(1 − 𝜃)𝑠
0

+ 𝜃𝑠
1
, then

‖⋅‖
𝐻
𝑠 ≤ 𝑐‖⋅‖

1−𝜃

𝐻
𝑠0 ‖⋅‖

𝜃

𝐻
𝑠1 , (5)

and here 𝐻
𝑠

(Ω), 𝑠 > 0, denotes the fractional Sobolev space in
Ω.

In this paper, we denote the standard Sobolev spaces by
𝐻

𝑠 and 𝐻
0

= 𝐿
2

(Ω). For any 1 ≤ 𝑝 ≤ ∞, we denote the norm
of 𝐿

𝑝

(Ω) by ‖ ⋅ ‖
𝐿
𝑝 . In general, ‖ ⋅ ‖

𝑋
denotes the norm of any

Banach space 𝑋.

3. Local Existence and Uniqueness

The local existence of a solution to system (1) is discussed in
this section.

Theorem 7. Suppose 0 ≤ 𝑢
0
(𝑥) ∈ 𝐿

2

(Ω), 0 ≤ V
0
(𝑥) ∈ 𝐿

2

(Ω);
then there is a 𝑇 ≤ ∞ (depending on initial data) such that
there exists a unique nonnegative solution (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) to
(1) in [0, 𝑇] and

𝑢, V ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω)) ⋂ 𝐶
2,1

(Ω; (0, 𝑇]) . (6)

Proof. Choose 𝑇 ∈ (0, 1) and 𝑅 > 0 to be fixed. In Banach
space 𝑋 = 𝐶

0

([0, 𝑇]; 𝐿
2

(Ω)) × 𝐶
0

([0, 𝑇]; 𝐿
2

(Ω)), we define a
bounded closed set

𝑆 := {(𝑢, V) ∈ 𝑋 | ‖(𝑢, V)‖
𝑋

≤ 𝑅} . (7)

Let

𝜓 (𝑢, V) (𝑡) = (

𝜓
1

(𝑢, V) (𝑡)

𝜓
2

(𝑢, V) (𝑡)
)

= (

𝑒
𝑡Δ

𝑢
0

− ∫

𝑡

0

𝑒
(𝑡−𝑠)Δ

[−𝛿
1

+ 𝑓 (𝑢, V)] 𝑑𝑠

𝑒
𝑡(Δ−1)V

0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)(Δ−1)

𝑢 (𝑠) 𝑑𝑠

) .

(8)
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Next, we prove 𝜓 is a contractive mapping from 𝑆 into
itself for𝑇 small enough and𝑅 sufficiently large. By Lemma 4,
then

𝜓
1

(𝑢, V)
𝐿
2 ≤


𝑒

−𝑡𝐴

𝑢
0

(𝑥)
𝐿
2

+ 𝛿
1

∫

𝑡

0


𝑒

−(𝑡−𝑠)𝐴

𝑢
𝐿
2
𝑑𝑠

+ ∫

𝑡

0


𝑒

−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠) , V (𝑠))
𝐿
2
𝑑𝑠

≤
𝑢

0
(𝑥)

𝐿
2 + 𝛿

1
∫

𝑡

0

‖𝑢‖
𝐿
2𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
−(𝑛/2)(1−(1/2))𝑓 (𝑢 (𝑠) , V (𝑠))

𝐿
1𝑑𝑠,

(9)

where 𝐴 = −Δ. For 𝑛 ≤ 3, 1 − (𝑛/4) > 0, and ∫
𝑡

0

(𝑡 −

𝑠)
−(𝑛/2)(1−(1/2))

‖𝑓(𝑢(𝑠), V(𝑠))‖
𝐿
1𝑑𝑠 ≤ 𝑐𝑅𝑇

1−(𝑛/4). Hence
𝜓

1
(𝑢, V)

𝐿
2 ≤

𝑢
0

(𝑥)
𝐿
2 + 𝛿

1
𝑅𝑇 + 𝑐𝑅𝑇

1−(𝑛/4)

. (10)

By Lemma 5, for any 𝑡 ∈ [0, 𝑇),

𝜓
2

(𝑢, V)
𝐿
2 ≤


𝑒

−𝑡(𝐴+1)V
0

(𝑥)
𝐿
2

+ ∫

𝑡

0


𝑒

−(𝑡−𝑠)(𝐴+1)

𝑢 (𝑠)
𝐿
2
𝑑𝑠

≤
V0

(𝑥)
𝐿
2 + 𝑐 ∫

𝑡

0

𝑒
−(𝑡−𝑠)

‖𝑢 (𝑠)‖
𝐿
2𝑑𝑠

≤
V0

(𝑥)
𝐿
2 + 𝑐𝑅 ∫

𝑡

0

𝑒
−(𝑡−𝑠)

𝑑𝑠

≤
V0

(𝑥)
𝐿
2 + 𝑐𝑅 (1 − 𝑒

−𝑇

) .

(11)

Equations (10) and (11) imply that 𝜓𝑆 ⊂ 𝑆 for any fixed
positive 𝑅 large enough and 𝑇 small enough. Now we
show that 𝜓 is a contractive operator from 𝑆 to 𝑆. For any
(𝑢, V), (𝑢, V) ∈ 𝑆, and for all 𝑡 ∈ [0, 𝑇),

𝜓
1
(𝑢, V) − 𝜓

1
(𝑢, V)

𝐿
2

≤ 𝑐𝛿
1

∫

𝑡

0


𝑒

−(𝑡−𝑠)𝐴

(𝑢 − 𝑢)
𝐿
2
𝑑𝑠

+ ∫

𝑡

0


𝑒

−(𝑡−𝑠)𝐴

(𝑓 (𝑢, V) − 𝑓 (𝑢, V))
𝐿
2
𝑑𝑠

≤ 𝑐𝛿
1
𝑇‖(𝑢, V) − (𝑢, V)‖

𝑋

+ 𝑀 ∫

𝑡

0

‖(𝑢, V) − (𝑢, V)‖
𝑋

𝑑𝑠

≤ (𝑐𝛿
1
𝑇 + 𝑀𝑇) ‖(𝑢, V) − (𝑢, V)‖

𝑋
,

𝜓
2

(𝑢, V) − 𝜓
2

(𝑢, V)
𝐿
2

≤ 𝑐 ∫

𝑡

0


𝑒

−(𝑡−𝑠)(𝐴+1)

(𝑢 (𝑠) − 𝑢 (𝑠))
𝐿
2
𝑑𝑠

≤ 𝑐 ∫

𝑡

0

𝑒
−(𝑡−𝑠)

‖𝑢(𝑠) − 𝑢 (𝑠)‖
𝐿
2𝑑𝑠

≤ 𝑐 (1 − 𝑒
−𝑇

) ‖(𝑢, 𝑤) − (𝑢, 𝑤)‖
𝑋

.

(12)

Equation (12) implies that 𝜓 is a contractive mapping if
𝑇 is sufficiently small. By Banach’s fixed point theorem, there
exists a unique fixed point (𝑢, V) ∈ 𝑋 which is just a local
solution to (1) in 𝑋.

Note that, for any given smooth function V, 𝑢 = 0 is the
subsolution of the following problem:

𝜕𝑢

𝜕𝑡
= Δ𝑢 − 𝛿𝑢 + 𝑓 (𝑢, V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝑛
= 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝑥 ∈ Ω,

(13)

and for any given smooth function 𝑢, V = 0 is the subsolution
of the following problem:

𝜕V
𝜕𝑡

− ΔV + V = 𝑢, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω,

V (𝑥, 0) = V
0

(𝑥) , 𝑥 ∈ Ω.

(14)

By the comparison principle, for any 𝑡 ∈ [0, 𝑇max) and 𝑥 ∈ Ω,
𝑢(𝑥, 𝑡) ≥ 0; 𝑤(𝑥, 𝑡) ≥ 0.

Now, we discuss the regularity of the solution to (1). From
the above analysis, 𝑢(𝑡, 𝑥), V(𝑥, 𝑡) is bounded in 𝐿

2

(Ω) for any
𝑡 ∈ [0, 𝑇]. From the semigroup representation of the solution
to (1) and Lemmas 3 and 4, for any 𝑞 ∈ (2, 𝑛/(𝑛 − 2)] and
𝜏 ∈ (0, 𝑇), there exists 𝛼 = 1 − (𝑛/2)(1 − (1/𝑞)) > 0 such that

‖𝑢(𝑥, 𝑡)‖
𝐿
𝑞 ≤


𝑒

−(𝑡−(𝜏/2))𝐴

𝑢
(𝜏/2)

(𝑥)
𝐿
𝑞

+ 𝑐 ∫

𝑡

(𝜏/2)


𝑒

−(𝑡−𝑠)𝐴

𝑓 (𝑢, V)
𝐿
𝑞
𝑑𝑠

+ 𝛿 ∫

𝑡

(𝜏/2)


𝑒

−(𝑡−𝑠)𝐴

𝑢 (𝑠)
𝐿
𝑞
𝑑𝑠

≤ 𝑐(𝑡 −
𝜏

2
)

−(𝑛/2)((1/2)−(1/𝑞))

𝑢
(𝜏/2)

(𝑥)
𝐿
2

+ 𝑐𝜆 ∫

𝑡

(𝜏/2)

(𝑡 − 𝑠)
−(𝑛/2)(1−(1/𝑞))


𝑢

2
𝐿
1
𝑑𝑠

+ 𝛿 ∫

𝑡

0

(𝑡 − 𝑠)
−(𝑛/2)((1/2)−(1/𝑞))

‖𝑢 (𝑠)‖
𝐿
2𝑑𝑠

≤ 𝑐𝜏
−(𝑛/2)((1/2)−(1/𝑞))𝑢

𝜏/2
(𝑥)

𝐿
2

+ (𝑡 −
𝜏

2
)

𝛼

[
𝑐𝜆

𝛼
+

𝛿

𝛼 + (𝑛/2)
(𝑡 −

𝜏

2
)

𝑛/2

]

× sup
𝜏/2<𝑠<𝑡

‖𝑢‖
𝐿
2 ,

(15)

which implies that ‖𝑢(𝑥, 𝑡)‖
𝐿
𝑞 is bounded for any 𝑡 ∈ [𝜏, 𝑇].
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If 𝑛 = 3, repeating the above process, we choose 3/(2 +

3𝜖) < 𝑞
0

< 3/2 for any small enough 𝜖 > 0 and 𝑞 ∈ [2, 1/𝜖),
then there exists 𝛼

1
= 1 − (𝑛/2)((1/𝑞

0
) − (1/𝑞)) such that

∫

𝑡

𝜏/2


𝑒

−(𝑡−𝑠)𝐴

𝑓 (𝑢, V)
𝐿
𝑞
𝑑𝑠

≤ 𝑐𝜆 ∫

𝑡

𝜏/2

(𝑡 − 𝑠)
−(𝑛/2)((1/𝑞0)−(1/𝑞))


𝑢

2
𝐿
𝑞0

𝑑𝑠

≤ 𝑐𝜆 ∫

𝑡

𝜏/2

(𝑡 − 𝑠)
−(𝑛/2)((1/𝑞0)−(1/𝑞))

‖𝑢‖
𝐿
2𝑞0𝑑𝑠

≤
𝑐𝜆

𝛼
1

(𝑡 − 𝑠)
𝛼1 sup

𝜏/2<𝑠<𝑡

‖𝑢‖
𝐿
2𝑞0 .

(16)

From the above analysis, for any 𝑝 ≥ 2, ‖𝑢(𝑥, 𝑡)‖
𝐿
𝑞(𝑛 ≤ 3)

is uniformly bounded for any 𝑡 ∈ [𝜏, 𝑇]. On the other hand,
since V(𝑥, 𝑡) = 𝑒

(𝑡−(𝜏/2))(Δ−1)V
𝜏/2

+ ∫
𝑡

𝜏/2

𝑒
(𝑡−𝑠)(Δ−1)

𝑢(𝑠)𝑑𝑠, for any
𝜏 ∈ (0, 𝑇], we deduce that

‖V‖
𝐿
𝑝 ≤


𝑒

−(𝑡−(𝜏/2))(𝐴+1)V
𝜏/2

(𝑥)
𝐿
𝑝

+ ∫

𝑡

𝜏/2


𝑒

−(𝑡−𝑠)(𝐴+1)

𝑢 (𝑠)
𝐿
𝑝
𝑑𝑠

≤ (𝑡 −
𝜏

2
)

−(𝑛/2)((1/2)−(1/𝑝))

V𝜏/2
(𝑥)

𝐿
2

+ 𝑐 ∫

∞

0

𝑒
−(𝑡−𝑠)

(𝑡 − 𝑠)
−(𝑛/2)((1/𝑞)−(1/𝑝))

‖𝑢 (𝑠)‖
𝐿
𝑞𝑑𝑠

≤ 𝑐
1
(𝜏)

−(𝑛/2)((1/2)−(1/𝑝))

+ 𝑐Γ (𝛾) sup
𝜏<𝑠<𝑡

‖𝑢 (𝑠)‖
𝑞
,

(17)

where 2 ≤ 𝑞 ≤ 𝑝 < ∞, 𝛾 = 1 − 𝛽 − (𝑛/2)((1/𝑞) − (1/𝑝)), and
Γ(⋅) is the Gamma function. It can be proved that

𝑢, V ∈ 𝐶
0

((0, 𝑇] ; 𝐿
∞

(Ω)) . (18)

There exist 𝑝, 𝛽, 𝜀
1
satisfying 𝑝 > 𝑛, 1/2 > 𝛽 > 𝑛/2𝑝 such

that, for any small enough constant 𝜂 > 0 and 𝑡 ∈ [𝜏 + 𝜂, 𝑇),

‖𝑢 (𝑥, 𝑡)‖
𝐶
0 ≤


𝑒

−(𝑡−𝜏)𝐴

𝑢
𝜏

(𝑥)
𝐶
0

+ 𝑐𝛿 ∫

𝑡

𝜏


𝑒

−(𝑡−𝑠)𝐴

𝑢
𝐶
0
𝑑𝑠

+ ∫

𝑡

𝜏


𝑒

−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠) , V (𝑠))
𝐶
0
𝑑𝑠

≤

(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝜏)𝐴

𝑢
𝜏

(𝑥)
𝐿
𝑝

+ 𝑐𝛿 ∫

𝑡

𝜏


(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝑠)𝐴

𝑢 (𝑠)
𝐿
𝑝
𝑑𝑠

+ ∫

𝑡

𝜏


(𝐴 + 1)

𝛽

𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠) , V (𝑠))
𝐿
𝑝
𝑑𝑠

≤ 𝜂
−𝛽−(𝑛/2)((1/2)−(1/𝑝))

𝑒
(1−𝜇)𝑡𝑢

𝜏
(𝑥)

𝐿
2

+ 𝑐𝛿 sup
𝜏<𝑠<𝑡

‖𝑢‖
𝐿
2 ∫

𝑡

𝜏

(𝑡 − 𝑠)
−𝛽−(𝑛/2)((1/2)−(1/𝑝))

𝑑𝑠

+ 𝑐𝜆 sup
𝜏<𝑠<𝑡

‖𝑢‖
𝐿
4 ∫

𝑡

𝜏

(𝑡 − 𝑠)
−𝛽−𝜀1𝑑𝑠,

(19)

where 𝜀
1

= (𝑛/2)((1/2) − (1/𝑝)) < 1 − 𝛽, which implies
that 𝑢 ∈ 𝐶

0

((0, 𝑇]; 𝐶
0

(Ω)). By semigroup techniques and
Schauder estimates, we see that

𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡) ∈ 𝐶 ([0, 𝑇] ; 𝐿
2

(Ω)) ⋂ 𝐶
2,1

(Ω; (0, 𝑇]) .

(20)

It easy to know that

𝑢, V ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω)) ⋂ 𝐶
0

((0, 𝑇] ; 𝐻
2

𝑁
(Ω)) , (21)

and here we denote that 𝐻
𝑠

𝑁
= {𝑢 ∈ 𝐻

𝑠

(Ω); 𝜕𝑢/𝜕𝑛 =

0, on 𝜕Ω}.

4. Global Solution and Some
A Priori Estimates

In this section, the global-in-time existence of a solution to
system (1) is proved.The following a priori estimates will play
a crucial role in the proof of our result.

Lemma 8. Suppose that 0 ≤ 𝑢
0

∈ 𝐿
2

(Ω), 0 ≤ V
0

∈ 𝐿
2

(Ω), and
(𝑢, V) is a local solution to (1) in [0, 𝑇] satisfying

𝑢, V ∈ 𝐶
0

([0, 𝑇] ; 𝐿
2

(Ω)) ⋂ 𝐶
0

((0, 𝑇] ; 𝐻
1

(Ω))

⋂ 𝐶
0

((0, 𝑇] ; 𝐻
2

𝑁
(Ω)) ,

(22)

then, for any 𝜏 > 0,

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖V (𝑡)‖

2

𝐿
2 ≤ 𝑒

−𝜐1𝑡 (𝑐𝑡 + (
𝑢

0



2

𝐿
2 +

V0



2

𝐿
2)) ,

0 ≤ 𝑡 ≤ 𝑇,

‖𝑢 (𝑡)‖
𝐻
1 + ‖V (𝑡)‖

𝐻
1 ≤ 𝐶, 𝜏 < 𝑡 ≤ 𝑇,

(23)

where 𝐶 depends only on Ω, 𝑢
𝜏
, V

𝜏
, and 𝜐

1
> 0.

Proof. In the process of the proof, we denote any positive
constant by 𝑐 which may change from line to line and let 𝜏

be a small enough constant.

Step 1. Taking the inner product of the first equation of (1)
with 𝑢 in 𝐿

2

(Ω), by Young’s inequality, for any 𝜀 > 0, there is
a constant 𝑐

𝜀
such that

1

2

𝑑‖𝑢 (𝑡)‖
2

𝐿
2

𝑑𝑡
+ ∫

Ω

|∇𝑢|
2

𝑑𝑥 + 𝛿 ∫
Ω

𝑢
2

𝑑𝑥

= ∫
Ω

𝑓 (𝑢, V) 𝑢 𝑑𝑥

≤ 𝜀 ∫
Ω

|𝑢|
2

𝑑𝑥 + 𝑐
𝜀

|Ω| .

(24)
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Taking the inner product of the second equation of (1)
with V in 𝐿

2

(Ω), for any 𝜀
1

> 0,

1

2

𝑑‖V (𝑡)‖
2

𝐿
2

𝑑𝑡
+ ∫

Ω

|∇V|
2

𝑑𝑥 + 𝛾 ∫
Ω

|V|
2

𝑑𝑥

= 𝑘
2

∫
Ω

𝑢V 𝑑𝑥

≤
𝜀

2

1
𝑘

2

2
∫

Ω

|𝑢|
2

𝑑𝑥 +
1

2𝑘
2
𝜀

2

1

∫
Ω

|V|
2

𝑑𝑥.

(25)

If these parameters meet the conditions, 4𝛾𝛿 ≥ 𝑘
2
, then there

are 𝜀, 𝜀
1
such that 𝜐

1
= min{𝛿 − 𝜀 − (𝜀

2

1
/2), 2𝛾 − (1/𝜀

2

1
)} > 0.

From (24) and (25),

𝑑 (‖V(𝑡)‖
2

𝐿
2 + ‖𝑢(𝑡)‖

2

𝐿
2)

𝑑𝑡

+ 𝜐
1

(∫
Ω

|V|
2

𝑑𝑥 + ∫
Ω

|∇V|
2

𝑑𝑥

+ ∫
Ω

|𝑢|
2

𝑑𝑥 + ∫
Ω

|∇𝑢|
2

𝑑𝑥) ≤ 𝑐.

(26)

By the Poincaré inequality,

∫
Ω

|∇𝑢|
2

𝑑𝑥 ≥ 𝑐 ∫
Ω

𝑢
2

𝑑𝑥, ∫
Ω

|∇V|
2

𝑑𝑥 ≥ 𝑐 ∫
Ω

|V|
2

𝑑𝑥.

(27)

Gronwall’s lemma implies that

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖V (𝑡)‖

2

𝐿
2 ≤ 𝑐 + 𝑒

−𝜐1𝑡 (
𝑢

0



2

𝐿
2 +

V0



2

𝐿
2) ,

𝑡 ∈ [0, 𝑇] .

(28)

Step 2. From the analysis in Step 1, ‖𝑢(𝑡)‖
𝐿
2 , ‖V(𝑡)‖

𝐿
2 is

uniformly bounded in [0, 𝑇].

Taking the inner product on both sides of the second
equation with −ΔV, for any 𝜀

2
> 0,

1

2

𝑑‖∇V‖
2

𝐿
2

𝑑𝑡
+ ∫

Ω

|ΔV|
2

𝑑𝑥 + ∫
Ω

|∇V|
2

𝑑𝑥

= ∫
Ω

∇𝑢 ⋅ ∇V 𝑑𝑥

≤
1

2
∫

Ω

|∇V|
2

𝑑𝑥 +
1

2
∫

Ω

|∇𝑢|
2

𝑑𝑥.

(29)

Taking the inner product of the first equation of (1) with −Δ𝑢

in 𝐿
2

(Ω), then

1

2

𝑑‖∇𝑢‖
2

𝐿
2

𝑑𝑡
+ ∫

Ω

|Δ𝑢|
2

𝑑𝑥 + ∫
Ω

|∇𝑢|
2

𝑑𝑥

= ∫
Ω

(𝑓
𝑢
∇𝑢 ⋅ ∇𝑢 + 𝑓V∇V ⋅ ∇𝑢) 𝑑𝑥

≤ 𝑀
1

∫
Ω

|∇𝑢|
2

𝑑𝑥 + 𝑀
2

∫
Ω

|∇V ⋅ ∇𝑢| 𝑑𝑥

≤ (𝑀
1

+
𝑀

2

2
) ∫

Ω

|∇𝑢|
2

𝑑𝑥 +
𝑀

2

2
∫

Ω

|∇V|
2

𝑑𝑥.

(30)

By Lemma 6, there exist 𝜃 = 1/2, 𝑠
0

= 0, and 𝑠
1

= 2 such that

∫
Ω

|∇𝑢|
2

𝑑𝑥 ≤ 𝑐‖𝑢‖
2

𝐻
1

≤ 𝑐‖𝑢‖
2(1−𝜃)

𝐻
0 ‖𝑢‖

2𝜃

𝐻
2

≤ 𝑐‖𝑢‖
𝐿
2‖𝑢‖

𝐻
2 .

(31)

Since ‖𝑢‖
𝐿
2 is bounded, for any 𝜀

2
> 0, there is a constant 𝑐

𝜀2

such that
𝑐‖𝑢‖

𝐿
2‖𝑢‖

𝐻
2 ≤ 𝜀

2
‖Δ𝑢‖

2

𝐿
2 + 𝑐

𝜀2
. (32)

With the same analysis, it easy to know that there exist 𝜀
3

> 0,
𝑐
𝜀3
such that

∫
Ω

|∇𝑢|
2

𝑑𝑥 ≤ 𝜀
3
‖ΔV‖

2

𝐿
2 + 𝑐

𝜀3
. (33)

From the above analysis and (29) and (30), we choose
𝜀
2
, 𝜀

3
small enough; then there exists positive constant 𝜐

2
=

1/2 > 0, 𝑐
𝜀2 ,𝜀3

> 0 such that

1

2

𝑑 (‖∇V‖
2

𝐿
2 + ‖∇𝑢‖

2

𝐿
2)

𝑑𝑡
+ 𝜐

2
∫

Ω

(|∇V|
2

+ |∇𝑢|
2

) 𝑑𝑥

≤ 𝑐
𝜀2

(𝑀
1

+
𝑀

2

2
) +

𝑀
2
𝑐
𝜀3

2
≤ 𝑐

𝜀2 ,𝜀3
.

(34)

By Gronwall’s lemma,

‖V‖
𝐻
1 + ‖𝑢‖

𝐻
1 ≤ 𝑐

𝜀2 ,𝜀3
+ 𝑒

−𝜐2𝑡 (
V𝜏

𝐻
1 +

𝑢
𝜏

𝐻
1)

𝑡 ∈ (𝜏, 𝑇] .

(35)

In this section,we denote any positive constant by 𝑐whose
value may change from line to line. Equations (30), (35) and
the choice of 𝑇 (in Theorem 7) depending on ‖𝑢

0
‖

𝐿
2
(Ω)

+

‖V
0
‖

𝐿
2
(Ω)

, then (𝑢(𝑥, 𝑇), 𝑤(𝑥, 𝑇)) ∈ 𝑆; it is clear by a standard
argument that the solution (𝑢, 𝑤) to (1) can be extended up
to some 𝑇max ≤ ∞. With the same method as in the proof of
Lemma 8, for any finite 𝑇max,

𝑢 (𝑇max)


2

𝐿
2 +

V (𝑇max)


2

𝐿
2 ≤ 𝑐 + 𝑒

−𝜐𝑇max (
𝑢

0



2

𝐿
2 +

V0



2

𝐿
2) ,

𝑢 (𝑇max)
𝐻
1 +

V (𝑇max)
𝐻
1 ≤ 𝐶,

(36)
which implies that 𝑇max = +∞. The global existence of the
solution to (1) is obtained as the following theorem.

Theorem 9. Suppose that nonnegative functions 𝑢
0

∈ 𝐿
2

(Ω),
V

0
∈ 𝐿

2

(Ω); then there is a unique nonnegative global solution
(𝑢, V) to (1) satisfying

𝑢, V ∈ 𝐶 ([0, ∞) ; 𝐿
2

(Ω)) ⋂ 𝐶
1

((0, ∞) ; 𝐿
2

(Ω))

⋂ 𝐶 ((0, ∞) ; 𝐻
1

(Ω)) ,

‖𝑢 (𝑡)‖
2

𝐿
2 + ‖V (𝑡)‖

2

𝐿
2 ≤ 𝑒

−𝜐𝑡

(𝑐𝑡 + (
𝑢

0



2

𝐿
2 +

V0



2

𝐿
2)) ,

𝑡 ≥ 0,

‖𝑢 (𝑡)‖
𝐻
1 + ‖V (𝑡)‖

𝐻
1 ≤ 𝐶, 𝑡 > 𝑇

1
+ 1,

(37)
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where 𝐶 depends only on Ω, 𝑢
𝑇1
, V

𝑇1
, and 𝑇

1
= (1/

𝜐) ln(‖𝑢
0
‖

2

𝐿
2 + ‖𝑤

0
‖

2

𝐿
2).

5. Global Attractor

The existence of a global attractor to system (1) is given in this
section.

From the estimates in Lemma 8, there exists fixed con-
stant 𝑀 > 0 and 𝑇

1
= (1/𝜐) ln(‖𝑢

0
‖

2

𝐿
2 + ‖V

0
‖

2

𝐿
2) such that

‖𝑢(𝑡)‖
𝐿
2 + ‖V(𝑡)‖

𝐿
2 ≤ 𝑀, 𝑡 > 𝑇

1
. (38)

Denote the set 𝐵 = {(𝑢, V) ∈ 𝐿
2

(Ω) × 𝐿
2

(Ω) : ‖(𝑢, V)‖
𝐿
2
×𝐿
2 ≤

𝑀; 𝑢 ≥ 0, V ≥ 0} where 𝑀 is the constant in (38). The results
of Theorem 9 imply that the existence of a dynamical system
{𝑆(𝑡)}

𝑡≥0
which maps 𝑉 = {(𝑢, V) : (𝑢, V) ∈ 𝐿

2

× 𝐿
2

; 𝑢 ≥ 0, V ≥

0} into itself and satisfying (𝑢(𝑡), V(𝑡)) = 𝑆(𝑡)(𝑢
0
, V

0
). Since 𝐵

is bounded, by Lemma 8, there exists𝑇(𝐵) depending only on
𝐵 and |Ω| such that

𝑆 (𝑡) 𝐵 ⊂ 𝐵, 𝑡 ≥ 𝑇 (𝐵) , (39)

which implies that 𝐵 is a bounded absorbing set of the
semigroup {𝑆(𝑡)}

𝑡≥0
.

Next, by the Sobolev embedding theorem, the asymptoti-
cal compactness of the semigroup {𝑆(𝑡)}

𝑡≥0
is shown and then

the existence of a global attractor to system (1) is given.

Theorem 10. Assume that 𝑓(𝑢, V) satisfying hypothesis. Then
the problem (1) has a global attractor which is a compact
invariant set and attracts every bounded set in 𝑉.

Proof. If (𝑢
𝑛
, V

𝑛
) is bounded in 𝑉, assume that there exists

𝑅 such that ‖(𝑢
𝑛
, V

𝑛
)‖

𝑉
≤ 𝑅. Then by Lemma 8, there is a

constant 𝑇
1
(𝑅) (depending on 𝑅) such that

(𝑢
𝑛

(𝑡) , V𝑛

(𝑡)) = 𝑆 (𝑡) (𝑢
𝑛
, V

𝑛
) ⊂ 𝐵, 𝑡 ≥ 𝑇

1
(𝑅) , (40)

where𝐵 is the absorbing set given in (39) and 𝑛 = 1, 2, . . .. For
any sequence 𝑡

𝑛
(𝑡

𝑛
→ +∞ as 𝑛 → ∞), there is 𝑁(𝑅) such

that, for any 𝑛 > 𝑁(𝑅), 𝑡
𝑛

≥ 𝑇
1
(𝑅) + 1, and

(𝑢
𝑛

(𝑡
𝑛
) , V𝑛

(𝑡
𝑛
))

= 𝑆 (𝑡
𝑛

− 𝑇
1

(𝑅) − 1) (𝑆 (𝑇
1

(𝑅) + 1) (𝑢
𝑛
, V

𝑛
)) .

(41)

Since the two embedding 𝐻
1

(Ω) → 𝐿
2

(Ω) are compact,
from the estimates in Theorem 9, it is clear that {𝑢

𝑛

(𝑡
𝑛
)} lies

in a compact set in 𝐿
2

(Ω) and {V𝑛

(𝑡
𝑛
)} lies in a compact set in

𝐿
2

(Ω). Hence, {𝑆(𝑡
𝑛
)(𝑢

𝑛
, V

𝑛
)|

Ω
: 𝑛 = 1, 2 . . .} is precompact in

𝐿
2

(Ω) × 𝐿
2

(Ω), which implies that {𝑆(𝑡)}
𝑡≥0

is asymptotically
compact. We have obtained the bounded absorbing set of
{𝑆(𝑡)}

𝑡≥0
.Then by Proposition 1, we obtain the existence of the

global attractor to (1).
From the estimates in Theorem 9, it is easy to know

that the solution of system (1) is exponential decay in space
𝐿

2

(Ω) × 𝐿
2

(Ω) if the forcing term 𝑓 is zero. So the global
attractor reduces to the single point (0,0).

6. Conclusions and Discussion

In this paper, by the semigroup method and fixed-point
theorem, we construct a local solution of system (1) and
then discuss its regularity by a priori estimate method. We
also study the asymptotic behavior of solution and show
the existence of global uniformly bounded solution to the
system in a bounded domain Ω ⊂ 𝑅

𝑛. Some estimates and
asymptotic compactness of the solutions are proved. To prove
the compactness of the semigroup, we used the fact that
Sobolev embedding is compact in bounded domains. As a
result, we establish the existence of the global attractor in
𝐿

2

(Ω) × 𝐿
2

(Ω) and prove that the solution converges to stable
steady states if the forcing term 𝑓 is zero.

The hypothesis of the nonlinear function can be more
general. For the case of unbounded domains or partly
dissipative system, the dynamical system (1) is not compact.
Then, using the similar idea in [11], we should decompose the
semigroup into two parts such that one part asymptotically
tends to zero and the other part is compact. But the lack of
compactness of Sobolev embedding introduces some extra
difficulties. In general, the space domain should be bounded
in a biological process.

The arguments in the previous sections can be applied
to more general reaction diffusion systems. As we discussed
in the introduction, in order to understand further the miR-
17-92 involving in the network with Myc and E2F, scientists
plan to model this network with mathematical model. By
using the mathematical model, the researchers can detect the
key points regulating main properties of biological system
and find the methods to solve the different diseases. In order
to explain the cancer mechanism induced by miR-17-94,
Aguda et al. [1] gave theODEmodel and investigated different
possible designs of the silencing mechanism exerted by miR-
17-94; the network is described by the following equations:

𝜕𝑝

𝜕𝑡
= 𝛼 +

𝑘
1
𝑝

2

𝑎 + 𝑝2 + 𝑏𝑚
− 𝛿𝑝,

𝜕𝑚

𝜕𝑡
= 𝛽 + 𝑘

2
𝑝 − 𝛾𝑚.

(42)

Shen et al. [2] modified the system and added the diffusion
to the system and obtained the reaction-diffusing system as
follows:

𝜕𝑝

𝜕𝑡
= 𝛼 +

𝑘
1
𝑝

2

𝑎 + 𝑝2 + 𝑏𝑚
− 𝛿𝑝 + 𝐷

1
Δ𝑝,

𝜕𝑚

𝜕𝑡
= 𝛽 + 𝑘

2
𝑝 − 𝛾𝑚 + 𝐷

2
Δ𝑚,

(43)

where 𝑝(𝑥, 𝑡) represents the density of the protein module
(Myc and the E2Fs) and 𝑚(𝑥, 𝑡) denotes the miRNA cluster.
𝛼, 𝛽, 𝛿, 𝑎, 𝑏, and 𝑘

𝑖
are nonnegative parameters. Let 𝑏

0
=

(1/𝛾)(𝛽 + (𝑘
2
𝛼/𝛿)), by the translation transformation 𝑢 =

𝑝 − (𝛼/𝛿), V = 𝑚 − 𝑏
0
, the cancer network system (43) is

changed into a special case of system (1).
From the estimates in Theorem 9, it is easy to know

that the solution of system (1) is exponential decay in
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Figure 1: The spotted patterns prevail over the two-dimensional space. And [(a)–(d)] are, respectively, at time 0, 10, 500, 1000. Parameter
values and initial perturbation, respectively, are 𝛿 = 0.3, 𝛾 = 0.2, 0.1 sin(𝑥𝑦), 0.1 cos(𝑥𝑦).

space 𝐿
2

(Ω) × 𝐿
2

(Ω) if the forcing term 𝑓 is zero. So the
global attractor reduces to the single point (0,0). Since the
translation transformation 𝑢 = 𝑝 − (𝛼/𝛿), V = 𝑚 − 𝑏

0
, which

means that the solutions of the cancer network converges
to stable steady states as 𝑘

1
= 0. From the analysis of the

local solution in Section 3, the solution of the system (43) is
nonnegative for any nonnegative initial value.Then, for 𝑘

1
̸= 0

condition, we have 0 ≤ 𝑘
1
𝑝

2

/(𝑎 + 𝑝
2

+ 𝑏𝑚) ≤ 𝑘
1
. Let

𝑝
0

= sup
𝑥∈Ω

𝑝
0

(𝑥) , 𝑚
0

= sup
𝑥∈Ω

𝑚
0

(𝑥) ,

𝑝
0

= inf
𝑥∈Ω

𝑝
0

(𝑥) , 𝑚
0

= inf
𝑥∈Ω

𝑚
0

(𝑥) .

(44)

Then there are a supersolution 𝑝(𝑥, 𝑡) and a subsolution
𝑝(𝑥, 𝑡) to the first equation of the system (43) which read as
follows:

𝑝 (𝑥, 𝑡) =
𝛼 + 𝑘

1

𝛿
+ (𝑝

0
−

𝛼 + 𝑘
1

𝛿
) 𝑒

−𝛿𝑡

,

𝑝 (𝑥, 𝑡) =
𝛼

𝛿
+ (𝑝

0

−
𝛼

𝛿
) 𝑒

−𝛿𝑡

,

(45)

where𝑝(𝑥, 𝑡) and𝑝(𝑥, 𝑡) are the solutions of the two following
equations, respectively:

𝑑𝑝 (𝑥, 𝑡)

𝑑𝑡
= 𝛼 + 𝑘

1
− 𝛿𝑝 (𝑥, 𝑡) , 𝑡 > 0,

𝑝 (𝑥, 0) = 𝑝
0

≥ 0,
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𝑑𝑝 (𝑥, 𝑡)

𝑑𝑡
= 𝛼 − 𝛿𝑝 (𝑥, 𝑡) , 𝑡 > 0,

𝑝 (𝑥, 0) = 𝑝
0

≥ 0.

(46)

By comparison principle, we see the solution of the system
(43) 𝑝(𝑥, 𝑡) satisfying 𝑝(𝑥, 𝑡) ≤ 𝑝(𝑥, 𝑡) ≤ 𝑝(𝑥, 𝑡) for any 𝑡 > 0.
So

lim
𝑡 → ∞

𝑝 (𝑥, 𝑡) = 𝐶
1

(𝑥) ∈ [
𝛼

𝛿
,

𝛼 + 𝑘
1

𝛿
] , (47)

which implies that there exists a sufficiently large 𝑇 such that
𝛼/𝛿 ≤ 𝑝(𝑥, 𝑡) ≤ (𝛼 + 𝑘

1
)/𝛿 for 𝑡 > 𝑇. With the same

analysis, we know that there exist a supersolution 𝑚(𝑥, 𝑡) and
a subsolution 𝑚(𝑥, 𝑡) to the second equation of the system
(43) which read as follows:

𝑚 (𝑥, 𝑡) = 𝑏
1

+ (𝑚
0

− 𝑏
1
) 𝑒

−𝛾𝑡

,

𝑚 (𝑥, 𝑡) = 𝑏
0

+ (𝑚
0

− 𝑏
0
) 𝑒

−𝛾𝑡

,

(48)

where 𝑏
0

= (1/𝛾)(𝛽 + (𝑘
2
𝛼/𝛿)) and 𝑏

1
= 𝑏

0
+ (𝑘

1
𝑘

2
/𝛿). Then

we have that

lim
𝑡 → ∞

𝑚 (𝑥, 𝑡) = 𝐶
2

(𝑥) ∈ [𝑏
0
, 𝑏

1
] . (49)

The above analysis means that the attractor of the system (43)
is a stable steady states or limit cycle.

Next, we will give the numerical test to the gene network
model. The gene network model is simulated numerically in
two spatial dimensions. Our numerical simulations employ
the zero-flux boundary conditions. We set time step and
space step as 0.02 and 1 and select coefficients of diffusion
(𝐷

1
, 𝐷

2
) = (1, 1); we choose parameters (𝑎, 𝑏) = (1, 1),

(𝑘
1
, 𝑘

2
, 𝛼, 𝛽) = (1, 0.1, 𝛿, 𝛾).

The numerical simulation shows that the behavior of the
solution to system (43) is a stable steady states or limit cycle
(see Figures 1(c) and 1(d)). The numerical simulations agree
with analytical results.
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