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We study the pricing of total return swap (TRS) under the contagion models with counterparty risk and the interest rate risk. We
assume that interest rate followsHeath-Jarrow-Morton (HJM) forward interest ratemodel and obtain the Libormarket interest rate.
The cases where default is related to the interest rate and independent of interest rate are considered. Using the methods of change
of measure and the “total hazard construction,” the joint default probabilities are obtained. Furthermore, we obtain the closed-form
formulas of TRS under different contagion models, respectively.

1. Introduction

Total return swap (TRS), as a type of credit derivatives
and a financing and leverage tool, is an important off-
balance sheet tool, particularly for hedge funds and for
banks seeking additional fee income. The corporate bonds
and their credit derivatives are typically financial tools in
the markets which undertake and avoid the credit risk of
the companies. Therefore, the key of management of credit
risk is the fair pricing of credit derivatives. Especially after
2007 financing crisis, the contagion effect of credit risk
has attracted huge attention of financial market regulators
and financial institutions. To price credit derivatives, default
contagion models are developed rapidly in order to make
them more realistic after the subprime mortgage crisis.

The approaches of modeling the pricing of credit
derivatives are mainly the value-of-the-firm (or structural)
approach and the intensity-based approach (or reduced form
approach). The structural model is based on the work of
Merton [1], Black and Cox [2], and Geske [3]: the default
occurs when the firm assets are insufficient to meet payments
on debt or the value of the firm asset falls below a prespecified
level.

Reduced-form models are developed by Artzner and
Delbaen [4], Duffie et al. [5], Jarrow and Turnbull [6], and

Madan and Unal [7]. Duffie and Lando [8] show that a
reduced-formmodel can be obtained from a structuralmodel
with incomplete accounting information.The simplest type of
reduced-form model is where the default time or the credit
migration is the first jump of an exogenously given jump
process with an intensity. In Jarrow et al. [9], the intensity
for credit migration is constant; see also Litterman and Iben
[10] for a Markov chain model of credit migration. In the
papers by Duffie et al. [5], Duffie and Singleton [11], and
Lando [12], the intensity of default is a random process. The
common feature of the reduced-form models is that default
cannot be predicted and can occur at any time. Therefore,
reduced-form models have been used to price a wide variety
of instruments. In recent years, some papers on estimating
the parameters of these models are given by Collin-Dufresne
and Solnik [13] and Duffee [14]. Jarrow and Yu [15] set up
a reduced-form model in which estimation can be based on
bond prices as well as credit default swap prices. A systematic
development of mathematical tools for reduced-formmodels
has been given by Elliott et al. [16]. Jamshidian [17] develops
change of numeraire methodology for reduced-formmodels.

A TRS is a bilateral financial contract between a total
return payer and a total return receiver. One party (the total
return payer) pays the total return of a reference security (or
reference securities) and receives a form of payment from
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Figure 1: The structure of TRS.

the other party (the receiver of the total rate of return).
Often payment is a floating rate payment, a spread to
LIBOR.The reference assets can be indices, bonds (emerging
market, sovereign, bank debt, mortgage-backed securities,
or corporate), loans (term or revolver), equities, real estate
receivables, lease receivables, or commodities. Ye and Zhuang
[18] consider the pricing of TRS only when reference asset
defaults; they obtain TRS pricing formula when default is
independent of the interest rate. When default is related to
the interest rate, using the hybrid model given in Das and
Sundaram [19], they model default time and the interest rate
and give the Monte Carlo simulation result.

In this paper, we consider the counterparty default
contagion risk between total return receiver (firm 𝐵) and
the reference asset (firm 𝐶) and study two-firm contagion
models. The cash flow of a TRS in this model is provided by
Figure 1.

Suppose that firm 𝐴 (a corporate bond investing firm,
credit protection buyer) holds a corporate bond (reference
asset) issued by firm 𝐶 (a corporate bond issuer) (refer to 2A
in Figure 1), and firm𝐶 is subject to default. At bondmaturity,
if firm 𝐶 does not default, it will pay the bond principle and
interest to firm 𝐴 (refer to 2B). On the other hand, to hedge
the default risk of firm𝐶, firm𝐴 and firm𝐵 (credit protection
seller, subject to default also) enter into a TRS contract. If firm
𝐶 has no default, firm 𝐴 will make its total return to firm 𝐵

(refer to 2C), and, in exchange, firm 𝐵 gives the Libor plus a
spread 𝑠 to𝐴 (refer to 2D). Firm 𝐵 promises to compensate𝐴
for its loss in the event of default of firm 𝐶 (refer to 2E).

The structure of this paper is organized as follows. In
Section 2, we give the basic setup and HJM forward interest
rate model. In Section 3, we study the two-firm contagion
models when default is independent of stochastic interest rate
and obtain the closed-form formulas of TRS. In Section 4, we
consider the case that default is related to interest rate. Using
the “total hazard” approach, joint survival probabilities are
derived and analytic formulas are obtained under two-firm
contagion models. Section 5 is the conclusion.

2. Basic Setup and HJM Forward
Interest Rate Model

We consider a filtered probability space (Ω,F, {F
𝑡
}
𝑇
∗

𝑡=0
, 𝑃)

which is an uncertain economy with a time horizon of
𝑇
∗, satisfying the usual conditions of right-continuity and

completeness with respect to 𝑃-null sets, where F = F
𝑇
∗

and 𝑃 is an equivalent martingale measure under which

discounted bond prices are martingales. We assume the
existence and uniqueness of 𝑃 so that bond markets are
complete and there is no arbitrage, as shown in discrete time
case by Harrison and Kreps [20] and in continuous time case
by Harrison and Pliska [21]. Subsequent specifications of the
model are all under the equivalent martingale measure (or
risk neutral measure) 𝑃.

On this probability space there is an R𝑑-valued process
𝑋
𝑡
, which presents 𝑑 dimensional economy-wide state vari-

ables. In this paper, we consider the only one state variable
which is the interest rate denoted by 𝑟

𝑡
. There are also two

point processes, 𝑁𝑖 (𝑖 = 𝐵, 𝐶), initialized at 0, representing
the default processes of the firm 𝐵 and firm 𝐶, respectively,
such that the default of the firm 𝑖 occurs when𝑁𝑖 jumps from
0 to 1.

According to the information contained in the state
variables and the default processes, the enlarged filtration is
defined by

F
𝑡
= F
𝑟

𝑡
∨F
𝐵

𝑡
∨F
𝐶

𝑡
, (1)

where

F
𝑟

𝑡
= 𝜎 (𝑟

𝑠
, 0 ≤ 𝑠 ≤ 𝑡) ,

F
𝑖

𝑡
= 𝜎 (𝑁

𝑖

𝑠
, 0 ≤ 𝑠 ≤ 𝑡) , 𝑖 = 𝐵, 𝐶,

(2)

are the filtrations generated by 𝑟
𝑡
and 𝑁𝑖

𝑡
(𝑖 = 𝐵, 𝐶), resp-

ectively.
Let

G
𝐵

𝑡
= F
𝐵

𝑡
∨F
𝑟

𝑇
∗ ∨F

𝐶

𝑇
∗ = F

𝐵

𝑡
∨G
−𝐵

0
,

G
𝐶

𝑡
= F
𝐶

𝑡
∨F
𝑟

𝑇
∗ ∨F

𝐵

𝑇
∗ = F

𝐶

𝑡
∨G
−𝐶

0
,

(3)

where

G
−𝐵

0
= F
𝑟

𝑇
∗ ∨F

𝐶

𝑇
∗ , G

−𝐶

0
= F
𝑟

𝑇
∗ ∨F

𝐵

𝑇
∗ . (4)

G−𝑖
0
(𝑖 = 𝐵, 𝐶) contains complete information on the state

variables and the default processes of all firms up to time 𝑇∗
other than that of the 𝑖th firm.

Let 𝜏𝑖 denote the default time of firm 𝑖; namely, 𝜏𝑖 is the
first jump time of𝑁𝑖, which can be defined as

𝜏
𝑖
= inf {𝑡 : ∫

𝑡

0

𝜆
𝑖

𝑠
𝑑𝑠 ≥ 𝐸

𝑖
} , (5)

where {𝐸𝑖} (𝑖 = 𝐵, 𝐶) is independent of 𝑟
𝑡
(𝑡 ∈ [0, 𝑇

∗
]).

According to the Doob-Meyer decomposition, we have
that

𝑀
𝑖

𝑡
= 𝑁
𝑡
− ∫

𝑡∧𝜏
𝑖

0

𝜆
𝑖

𝑠
𝑑𝑠 (6)

is a (𝑃,F
𝑡
)-martingale.

Due to the impact of counterparty risk, the default inten-
sities 𝜆𝐵

𝑡
and 𝜆𝐶

𝑡
of firms 𝐵 and 𝐶 are no longer independent

under the conditionF𝑟
𝑡
. The conditional survival probability
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and the unconditional survival probability of firm 𝑖 are given
by

𝑃 (𝜏
𝑖
> 𝑡 | G

−𝑖

0
) = exp(−∫

𝑡

0

𝜆
𝑗

𝑠
𝑑𝑠) , 𝑡 ∈ [0, 𝑇] , (7)

𝑃 (𝜏
𝑖
> 𝑡) = 𝐸 [exp(−∫

𝑡

0

𝜆
𝑖

𝑠
𝑑𝑠)] , 𝑡 ∈ [0, 𝑇] , (8)

respectively.
As a type of market risk, interest rate risk analysis is

almost always based on simulating movements in one or
more yield curves using the Heath-Jarrow-Morton (HJM)
framework to ensure that the yield curvemovements are both
consistent with current market yield curves and such that
no riskless arbitrage is possible. HJM model was developed
in early 1992 by Heath et al. [22]. In this paper, we assume
the default free interest rate is stochastic forward interest rate
𝑓(𝑡, 𝑇), which follows the HJM model

𝑑𝑓 (𝑡, 𝑇) = 𝛼 (𝑡, 𝑇) 𝑑𝑡 + 𝜎 (𝑡, 𝑇) 𝑑𝑊
𝑡
, 0 ≤ 𝑡 ≤ 𝑇, (9)

where𝛼(𝑡, 𝑇) is the drift term and𝜎(𝑡, 𝑇) is the volatility term,
and they are both stochastic. For every fixed time 𝑇, they are
adapted processes toF

𝑡
.

The arbitrage free condition [23] shows that the Brown
movement under each real probability measure can be
transformed into the Brownmovement under the risk neutral
measure. For simplification, in this paper, we assume the
Brown movement 𝑊

𝑡
is standard under the risk neutral

measure 𝑃, where 𝛼(𝑡, 𝑇) satisfies

𝛼 (𝑡, 𝑇) = 𝜎 (𝑡, 𝑇) 𝜎
∗
(𝑡, 𝑇) = 𝜎 (𝑡, 𝑇) ∫

𝑇

𝑡

𝜎 (𝑡, V) 𝑑V. (10)

The solution of (9) is

𝑓 (𝑡, 𝑇) = 𝑓 (0, 𝑇) + ∫

𝑡

0

𝛼 (𝑢, 𝑇) 𝑑𝑢 + ∫

𝑡

0

𝜎 (𝑢, 𝑇) 𝑑𝑊
𝑢
, (11)

where 𝑓(0, 𝑇) is the initial forward interest rate curve, which
is known.

At time 𝑡 the instantaneous interest rate 𝑟
𝑡
= 𝑓(𝑡, 𝑡).

𝐷(𝑡) = exp(− ∫𝑡
0
𝑟
𝑢
𝑑𝑢) is the discounted process. Let 𝐵(𝑡, 𝑇)

be the time-𝑡 value of a zero-coupon bond with face value 1 at
maturity 𝑇; we have

𝐵 (𝑡, 𝑇) = exp(−∫
𝑇

𝑡

𝑓 (𝑡, V) 𝑑V) , 0 ≤ 𝑡 ≤ 𝑇 ≤ 𝑇. (12)

Under the risk neutral measure 𝑃, 𝐵(𝑡, 𝑇) satisfies the follow-
ing differential equation:

𝑑𝐵 (𝑡, 𝑇) = 𝑟
𝑡
𝐵 (𝑡, 𝑇) 𝑑𝑡 − 𝜎

∗
(𝑡, 𝑇) 𝐵 (𝑡, 𝑇) 𝑑𝑊

𝑡
. (13)

Denote 𝐿(𝑡, 𝑇) to be the time-𝑡 locked investment yield
curve from 𝑇 to 𝑇 + 𝛿; then,

𝐿 (𝑡, 𝑇) =
𝐵 (𝑡, 𝑇) − 𝐵 (𝑡, 𝑇 + 𝛿)

𝛿𝐵 (𝑡, 𝑇 + 𝛿)
. (14)

For 0 ≤ 𝑡 < 𝑇, 𝐿(𝑡, 𝑇) is called forward Libor interest rate,
and, for 𝑡 = 𝑇, 𝐿(𝑡, 𝑇) is called spot Libor interest rate. 𝛿 is
the duration of Libor, normally 0.25 year or half year.

In the next two sections of this paper, we discuss the
pricing of TRS with default risk and interest rate risk under
different contagion models.

3. TRS Valuation When Default Is
Independent of the Interest Rate

Assume that reference asset 𝐶 is a defaultable coupon bond
with face value 1 and the same maturity 𝑇 with TRS contract.
𝑇
0
, 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
are bond interest payment dates, where 0 =

𝑇
0
< 𝑇
1
< ⋅ ⋅ ⋅ < 𝑇

𝑛
= 𝑇, for 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑇

𝑖+1
− 𝑇
𝑖
= Δ𝑇,

𝑛Δ𝑇 = 𝑇.
Denote 𝐶

𝑖
to be the time-𝑇

𝑖
cash flow of TRS payer,

where 𝐶
1
, . . . , 𝐶

𝑛−1
are the interest payments at time 𝑇

𝑖
(𝑖 =

1, . . . , 𝑛 − 1) and 𝐶
𝑛
is the sum of interest payment and value-

added of the bond at time𝑇
𝑛
= 𝑇, which are all determined at

𝑇
0
= 0. Let𝑀 be notional principal, and 𝛿 is the maturity of

Libor interest rate, the same with bond’s payment cycle Δ𝑇,
namely, 𝛿 = Δ𝑇. For simplification, the default recovery rate
of reference asset 𝐶 is 0.

At time 0, for TRS payment leg, the discounted expecta-
tion of the cash flow 𝐹

𝐵
is

𝐸 [𝐹
𝐵
] = 𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] . (15)

At time 0, for TRS recipient leg, the discounted expecta-
tion of the cash flow 𝐹

𝐶
is

𝐸 [𝐹
𝐶
] = 𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀 (𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) + 𝑠) 1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

+ 𝐸 [𝐷 (𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
] ,

(16)

where 𝐸 is the expectation under risk neutral measure 𝑃, 𝜃 is
the length of settlement period, and 𝜏𝐶 + 𝜃 is settlement date.
𝐿(𝑇
𝑖−1
, 𝑇
𝑖−1
) is time-𝑇

𝑖−1
locked 𝑇

𝑖
-Libor interest rate. 𝑠 is the

TRS spread and𝐷(⋅) is the discounted factor.
We assume the market is complete; namely, there is no

arbitrage.Therefore, according to the arbitrage-free principle,
we have

𝐸 [𝐹
𝐵
] = 𝐸 [𝐹

𝐶
] . (17)
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The general pricing formula of TRS is derived as

𝑠 = (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

−𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

×(𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

−1

−

𝐸 [𝐷 (𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
]

𝐸 [∑
𝑛

𝑖=1
𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

.

(18)

3.1. TRS Valuation under Two-Firm Looping Default Conta-
gion Model. In this subsection we assume that the default
intensities of credit protection seller 𝐵 and reference asset 𝐶
are given, respectively, by

𝜆
𝐵

𝑡
= 𝑏
0
+ 𝑏
1
1
{𝜏
𝐶
≤𝑡}
, (19)

𝜆
𝐶

𝑡
= 𝑐
0
+ 𝑐
1
1
{𝜏
𝐵
≤𝑡}
, (20)

where 𝑏
0
and 𝑏
0
are nonnegative, satisfying 𝑏

0
+ 𝑏
1
> 0 and

𝑐
0
+ 𝑐
1
> 0.

With the result in Leung and Kwok [24], the joint survival
probability and the joint density of default time (𝜏𝐵, 𝜏𝐶) are
given by

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
)

=

{{{{{

{{{{{

{

𝑒
−𝑏
0
𝑡
1
−𝑐
0
𝑡
2 [
𝑐
0
𝑒
−𝑏
1
(𝑡
1
−𝑡
2
)
− 𝑏
1
𝑒
−𝑐
0
(𝑡
1
−𝑡
2
)

𝑐
0
− 𝑏
1

] , 𝑡
2
≤ 𝑡
1

𝑒
−𝑏
0
𝑡
1
−𝑐
0
𝑡
2 [
𝑐
0
𝑒
−𝑐
1
(𝑡
2
−𝑡
1
)
− 𝑐
1
𝑒
−𝑏
0
(𝑡
2
−𝑡
1
)

𝑏
0
− 𝑐
1

] , 𝑡
2
> 𝑡
1
,

(21)

𝑓 (𝑡
1
, 𝑡
2
)

=

{

{

{

𝑓
1
(𝑡
1
, 𝑡
2
) = 𝑐
0
(𝑏
0
+ 𝑏
1
) 𝑒
−(𝑏
0
+𝑏
1
)𝑡
1
−(𝑐
0
−𝑏
1
)𝑡
2 , 𝑡
2
≤ 𝑡
1

𝑓
2
(𝑡
1
, 𝑡
2
) = 𝑏
0
(𝑐
0
+ 𝑐
1
) 𝑒
−(𝑐
0
+𝑐
1
)𝑡
2
−(𝑏
0
−𝑐
1
)𝑡
1 , 𝑡
2
> 𝑡
1
,

(22)

respectively.
When the default process and the interest rate process are

independent, by computing formula (18), we can obtain the
following result.

Theorem 1. With the default intensity process (19)-(20) and
HJM interest rate model (9), the price 𝑠 of TRS is given by

𝑠 =
∑
𝑛

𝑖=1
(𝐶
𝑖
− 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
)) 𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝑒−(𝑏0+𝑐0)𝑇𝑖

−

𝑐
0
𝑒
−(𝑏
0
+𝑏
1
)𝜃
∫
𝑇

0
𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V

∑
𝑛

𝑖=1
𝛿𝑀𝑒−(𝑏0+𝑐0)𝑇𝑖

.

(23)

Proof. By the arbitrage free principle, the price formula (18)
becomes

𝑠 = (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

−𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

× (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

−1

−

𝐸 [𝐷 (𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
]

𝐸 [∑
𝑛

𝑖=1
𝐷(𝑇
𝑖
)𝑀1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

.

(24)

To obtain the analytic solution of 𝑠, we need to compute the
following three expectation values:

𝐾
1
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

𝐾
2
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

𝐾
3
:= 𝐸 [𝐷 (𝜏

𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
] ,

(25)

where

𝐾
1
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐸[exp(−∫
𝑇
𝑖

0

𝑟
𝑢
𝑑𝑢)]𝐸 [1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

exp(−∫
𝑇
𝑖

0

𝑓 (0, 𝑢) 𝑑𝑢)𝐸 [1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐵 (0, 𝑇
𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖 ,

𝐾
2
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐵 (0, 𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖 ,

𝐾
3
= 𝐸 [𝐷 (𝜏

𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
]

= 𝐸 [𝐸 [𝐷 (𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}

| F
𝑟

𝑇
∗]]

= 𝐸 [𝐵 (0, 𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
]
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= ∫

𝑇

0

∫

∞

V+𝜃
𝐵 (0, V + 𝜃) 𝑓

2
(𝑢, V) 𝑑𝑢 𝑑V

= ∫

𝑇

0

𝐵 (0, V + 𝜃)∫
∞

V+𝜃
𝑐
0
(𝑏
0
+ 𝑏
1
) 𝑒
−(𝑏
0
+𝑏
1
)𝑡
1
−(𝑐
0
−𝑏
1
)𝑡
2𝑑𝑢 𝑑V

= 𝑐
0
𝑒
−(𝑏
0
+𝑏
1
)𝜃
∫

𝑇

0

𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V.

(26)

Substitute𝐾
1
,𝐾
2
, and𝐾

3
into formula (24), and we obtain

𝑠 =
∑
𝑛

𝑖=1
(𝐶
𝑖
− 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
)) 𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝑒−(𝑏0+𝑐0)𝑇𝑖

−

𝑐
0
𝑒
−(𝑏
0
+𝑏
1
)𝜃
∫
𝑇

0
𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V

∑
𝑛

𝑖=1
𝛿𝑀𝑒−(𝑏0+𝑐0)𝑇𝑖

.

(27)

We complete the proof.

Remark 2. From (23), we can conclude that when the length
𝜃 of settlement period is zero, the swap rate 𝑠 is only related
to the systematic factors 𝑏

0
and 𝑐
0
, irrelative to the default

contagion between two firms.

3.2. TRS Valuation under Two-Firm Attenuation Contagion
Model. In this subsection, we consider the default contagion
to have the hyperbolic attenuation effect. Default intensities
of firms 𝐵 and 𝐶 have the following forms:

𝜆
𝐵

𝑡
= 𝑏
0
+

𝑏
2

𝑏
1
(𝑡 − 𝜏𝐶) + 1

1
{𝜏
𝐶
≤𝑡}
, (28)

𝜆
𝐶

𝑡
= 𝑐
0
+

𝑐
2

𝑐
1
(𝑡 − 𝜏𝐵) + 1

1
{𝜏
𝐵
≤𝑡}
, (29)

where 𝑏
0
, 𝑐
0
, 𝑏
1
, and 𝑐

1
are nonnegative, satisfying 𝑏

0
+ 𝑏
2
> 0

and 𝑐
0
+ 𝑐
2
> 0. 𝑏

2
and 𝑐
2
reflect the impact strength of the

counterparty and 𝑏
1
and 𝑐
1
show the attenuation speed of one

party default on the other party. For 𝑏
1
= 𝑐
1
= 0, the model

becomes the looping default model (19)-(20).
Under the above model, the analytic solutions of the joint

survival probability cannot be obtained. For simplification,
we assume 𝑏

2
= −𝑏
1
; then, (28) and (29) become, respectively,

𝜆
𝐵

𝑡
= 𝑏
0
−

𝑏
1

𝑏
1
(𝑡 − 𝜏𝐶) + 1

1
{𝜏
𝐶
≤𝑡}
, (30)

𝜆
𝐶

𝑡
= 𝑐
0
−

𝑐
1

𝑐
1
(𝑡 − 𝜏𝐵) + 1

1
{𝜏
𝐵
≤𝑡}
. (31)

According to the result in Bai et al. [25], with the
intensities (30)-(31), the joint survival probability and the
joint density function of (𝜏𝐵, 𝜏𝐶) are given by

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑏
1
(𝑡
1
− 𝑡
2
+
1

𝑏
1

−
1

𝑐
0

) 𝑒
−(𝑏
0
𝑡
1
+𝑐
0
𝑡
2
)

+
𝑏
1

𝑐
0

𝑒
−(𝑏
0
+𝑐
0
)𝑡
1 , 𝑡

2
≤ 𝑡
1

𝑐
1
(𝑡
2
− 𝑡
1
+
1

𝑐
1

−
1

𝑏
0

) 𝑒
−(𝑏
0
𝑡
1
+𝑐
0
𝑡
2
)

+
𝑐
1

𝑏
0

𝑒
−(𝑏
0
+𝑐
0
)𝑡
2 , 𝑡

2
> 𝑡
1
,

(32)

𝑓 (𝑡
1
, 𝑡
2
)

=

{{{{{{{{

{{{{{{{{

{

𝑓
1
(𝑡
1
, 𝑡
2
) = 𝑐
0
𝑏
0
𝑏
1
[𝑡
1
− 𝑡
2
+
1

𝑏
1

−
1

𝑏
0

]

×𝑒
−(𝑏
0
𝑡
1
+𝑐
0
𝑡
2
)
, t

2
≤ 𝑡
1

𝑓
2
(𝑡
1
, 𝑡
2
) = 𝑏
0
𝑐
0
𝑐
1
[𝑡
2
− 𝑡
1
+
1

𝑐
1

−
1

𝑐
0

]

×𝑒
−(𝑏
0
𝑡
1
+𝑐
0
𝑡
2
)
, 𝑡

2
> 𝑡
1
,

(33)

respectively.
Then the expression of 𝑠 is given by the following theorem.

Theorem 3. With the default intensities (30)-(31) and HJM
interest rate model (9), 𝑠 is given by

𝑠 =
∑
𝑛

𝑖=1
𝐶
𝑖
𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

−
∑
𝑛

𝑖=1
𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

−

𝑐
0
(1 + 𝑏

1
𝜃) 𝑒
−𝑏
0
𝜃
∫
𝑇

0
𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V

∑
𝑛

𝑖=1
𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

.

(34)

Proof. To compute (18), we need to only compute the follow-
ing three expectation values:

�̃�
1
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

�̃�
2
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

�̃�
3
:= 𝐸 [𝐷 (𝜏

𝐶
+ 𝛿) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝛿}
] ,

(35)
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where

�̃�
1
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐵 (0, 𝑇
𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖 ,

�̃�
2
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖 ,

�̃�
3
= 𝐸 [𝐷 (𝜏

𝐶
+ 𝛿) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝛿}
]

= 𝐸 [𝐸 [𝐷 (𝜏
𝐶
+ 𝛿) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝛿}

| F
𝑟

𝑇
∗]]

= 𝐸 [𝐵 (0, 𝜏
𝐶
+ 𝜃) 1

{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
+𝜃}
]

= ∫

𝑇

0

∫

∞

V+𝜃
𝐵 (0, V + 𝜃) 𝑓 (𝑢, V) 𝑑𝑢 𝑑V

= ∫

𝑇

0

𝐵 (0, V + 𝜃)

× ∫

∞

V+𝜃
𝑐
0
𝑏
0
𝑏
1
[𝑡
1
− 𝑡
2
+
1

𝑏
1

−
1

𝑏
0

] 𝑒
−(𝑏
0
𝑡
1
+𝑐
0
𝑡
2
)
𝑑𝑢 𝑑V

= 𝑐
0
(1 + 𝑏

1
𝜃) 𝑒
−𝑏
0
𝜃
∫

𝑇

0

𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V.

(36)

Substituting (36) into (18), we can have

𝑠 =
∑
𝑛

𝑖=1
𝐶
𝑖
𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

−
∑
𝑛

𝑖=1
𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒
−(𝑏
0
+𝑐
0
)𝑇
𝑖

∑
𝑛

𝑖=1
𝛿𝑀𝐵 (0, 𝑇

𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

−

𝑐
0
(1 + 𝑏

1
𝜃) 𝑒
−𝑏
0
𝜃
∫
𝑇

0
𝐵 (0, V + 𝜃) 𝑒−(𝑏0+𝑐0)V𝑑V

∑
𝑛

i=1 𝛿𝑀𝐵 (0, 𝑇
𝑖
) 𝑒−(𝑏0+𝑐0)𝑇𝑖

,

(37)

which is formula (34). The proof is complete.

Remark 4. Combining formula (34) with formula (23), we
can conclude that firm 𝐶’s default contagion on firm 𝐵 has
effect in the pricing of TRS (there is 𝑏

1
in formula (34)).

However, firm 𝐵’s default contagion on firm 𝐶 has no effect
in the pricing of TRS (there is no 𝑐

1
in (34)).Therefore, in the

complex contagion model, we can assume that the reference
asset is the primary firm, and the protection seller is the
secondary firm.

4. TRS Valuation When Default Is Related to
the Interest Rate

Empirical studies show that in the vast majority of cases
default is related to the interest rate or, in other words, credit
risk is related to interest rate risk. In this section, we assume
that their correlation is described by default intensities. For
simplification, we assume that the length 𝜃 of the reference
asset’s settlement period is zero.

4.1. TRS Valuation under Two-Firm Looping Default Conta-
gion Model. We consider that default intensities of firms 𝐵
and 𝐶 have the following form:

𝜆
𝐵

𝑡
= 𝑏
0
+ 𝑏𝑟
𝑡
+ 𝑏
1
1
{𝜏
𝐶
≤𝑡}
,

𝜆
𝐶

𝑡
= 𝑐
0
+ 𝑐𝑟
𝑡
+ 𝑐
1
1
{𝜏
𝐵
≤𝑡}
,

(38)

where 𝑏
0
, 𝑏
0
, 𝑏, and 𝑐 are nonnegative, satisfying 𝑏

0
+ 𝑏
1
> 0

and 𝑐
0
+𝑐
1
> 0. 𝑟
𝑡
= 𝑓(𝑡, 𝑡)and𝑓(𝑡, 𝑇) satisfies HJMmodel (9).

UsingWang andYe’s result [26], under themodel (38), the
joint conditional distribution of (𝜏𝐵, 𝜏𝐶) is given by

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
| F
𝑟

𝑇
∗)

= exp (−𝑐
0
𝑡
2
− 𝑐𝑅
0,𝑡
2

)

× [ exp (−𝑐
1
(𝑡
2
− 𝑡
1
)) − exp (− (𝑏

0
(𝑡
2
− 𝑡
1
) − 𝑏𝑅

𝑡
1
,𝑡
2

))

+ exp (−𝑏
0
𝑡
2
− 𝑏𝑅
0,𝑡
2

)

+ 𝑐
1
∫

𝑡
2

𝑡
1

exp (−𝑏
0
(𝑢 − 𝑡

1
) − 𝑐
1
(𝑡
2
− 𝑢) − 𝑏𝑅

𝑡
1
,𝑢
) 𝑑𝑢] ,

for 𝑡
1
< 𝑡
2
< 𝑇.

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
| F
𝑟

𝑇
∗)

= exp (−𝑏
0
𝑡
1
− 𝑏𝑅
0,𝑡
1

)

× [ exp (−𝑏
1
(𝑡
1
− 𝑡
2
)) − exp (− (𝑐

0
(𝑡
1
− 𝑡
2
) − 𝑐𝑅

𝑡
2
,𝑡
1

))

+ exp (−𝑐
0
𝑡
1
− 𝑐𝑅
0,𝑡
1

)

+ 𝑏
1
∫

𝑡
1

𝑡
2

exp (−𝑐
0
(𝑢 − 𝑡

2
) − 𝑏
1
(𝑡
1
− 𝑢) − 𝑐𝑅

𝑡
2
,𝑢
) 𝑑𝑢] ,

for 𝑡
2
< 𝑡
1
< 𝑇.

(39)
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The joint conditional density function is

𝑓 (𝑡
1
, 𝑡
2
| F
𝑟

𝑇
∗)

=

{{{{{{

{{{{{{

{

(𝑐
0
+ 𝑐𝑟
𝑡
2

) (𝑏
0
+ 𝑏
1
+ 𝑏𝑟
𝑡
1

)

×𝑒
−(𝑏
0
+𝑏
1
)𝑡
1
−(𝑐
0
−𝑏
1
)𝑡
2
−𝑏𝑅
0,𝑡
1

−𝑐𝑅
0,𝑡
2 , 𝑡
2
≤ 𝑡
1

(𝑏
0
+ 𝑏𝑟
𝑡
1

) (𝑐
0
+ 𝑐
1
+ 𝑐𝑟
𝑡
2

)

×𝑒
−(𝑏
0
−𝑐
1
)𝑡
1
−(𝑐
0
+𝑐
1
)𝑡
2
−𝑏𝑅
0,𝑡
1

−𝑐𝑅
0,𝑡
2 , 𝑡
2
> 𝑡
1
,

(40)

where 𝑅
0,𝑢

= ∫
𝑢

0
𝑟V 𝑑V is the cumulative interest rate process

andF𝑟
𝑇
∗ is the filter generated by 𝑟

𝑡
up to 𝑇∗.

When default is related to interest rate, computing expec-
tations in formula (18) becomes complicated. We give the
following lemma first.

Lemma 5. The interest rate process is given by (9), 𝑅
𝑡,𝑠

=

∫
𝑠

𝑡
𝑟
𝑢
𝑑𝑢, for 𝑡 < 𝑠. Denote

𝐺
1
(𝑚
1
; 𝑡
0
, 𝑡
1
) = 𝐸 [exp (−𝑚

1
𝑅
𝑡
0
,𝑡
1

)] ,

𝐺
2
(𝑚
1
, 𝑚
2
; 𝑡
0
, 𝑡
1
, 𝑡
2
) = 𝐸 [exp (−𝑚

1
𝑅
𝑡
0
,𝑡
1

− 𝑚
2
𝑅
𝑡
1
,𝑡
2

)] ;

(41)

then,

𝐺
1
(𝑚
1
; 𝑡
0
, 𝑡
1
)=exp(−𝑚

1
∫

𝑡
1

𝑡
0

𝑓 (𝑡
0
, 𝑢) 𝑑𝑢

−𝑚
1
∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢

+
𝑚
2

1

2
∫

𝑡
1

𝑡
0

(∫

𝑡
1

𝑠

𝜎 (𝑠, 𝑢) 𝑑𝑢)

2

𝑑𝑠) ,

(42)

𝐺
2
(𝑚
1
, 𝑚
2
; 𝑡
0
, 𝑡
1
, 𝑡
2
)

= exp(−𝑚
1
∫

𝑡
1

𝑡
0

𝑓 (𝑡
0
, 𝑢) 𝑑𝑢

− 𝑚
1
∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢)

⋅ exp(−𝑚
2
∫

𝑡
2

𝑡
1

𝑓 (𝑡
1
, 𝑢) 𝑑𝑢

− 𝑚
2
∫

𝑡
2

𝑡
1

∫

𝑢

𝑡
1

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢)

⋅ exp(
𝑚
2

1

2
∫

𝑡
1

𝑡
0

(∫

𝑡
1

𝑠

𝜎 (𝑠, 𝑢) 𝑑𝑢)

2

𝑑𝑠

+
𝑚
2

2

2
∫

𝑡
2

𝑡
1

(∫

𝑡
2

𝑠

𝜎 (𝑠, 𝑢) 𝑑𝑢)

2

𝑑𝑠) .

(43)

Proof. Consider

𝑅
𝑡
0
,𝑡
1

= ∫

𝑡
1

𝑡
0

𝑓 (𝑡
0
, 𝑢) 𝑑𝑢 + ∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢

+ ∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝜎 (𝑠, 𝑢) 𝑑𝑊
𝑠
𝑑𝑢

= ∫

𝑡
1

𝑡
0

𝑓 (𝑡
0
, 𝑢) 𝑑𝑢 + ∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢

+ ∫

𝑡
1

𝑡
0

∫

𝑡
1

𝑠

𝜎 (𝑠, 𝑢) 𝑑𝑢 𝑑𝑊
𝑠
.

(44)

We can deduce
𝐸 [−𝑚

1
𝑅
𝑡
0
,𝑡
1

] = −𝑚
1
𝐸 [𝑅
𝑡
0
,𝑡
1

]

= −𝑚
1
∫

𝑡
1

𝑡
0

𝑓 (𝑡
0
, 𝑢) 𝑑𝑢 − ∫

𝑡
1

𝑡
0

∫

𝑢

𝑡
0

𝛼 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢,

Var [−𝑚
1
𝑅
𝑡
0
,𝑡
1

] = 𝑚
2

1
∫

𝑡
1

𝑡
0

(∫

𝑡
1

𝑠

𝜎 (𝑠, 𝑢) 𝑑𝑢)

2

𝑑𝑠.

(45)

By using the formula

𝐸 [exp (−𝑚
1
𝑅
𝑡
0
,𝑡
1

)]

= exp(𝐸 [−𝑚
1
𝑅
𝑡
0
,𝑡
1

] +
1

2
Var [−𝑚

1
𝑅
𝑡
0
,𝑡
1

]) .

(46)

And substituting (45),(46) into (47), we can obtain (43).
Formula (43) can be rewritten as
𝐺
2
(𝑚
1
, 𝑚
2
; 𝑡
0
, 𝑡
1
, 𝑡
2
)

= 𝐸 [exp (−𝑚
1
𝑅
𝑡
0
,𝑡
1

− 𝑚
2
𝑅
𝑡
1
,𝑡
2

)]

= 𝐸 [exp (−𝑚
1
𝑅
𝑡
0
,𝑡
1

) 𝐸
𝑡
1

[exp (−𝑚
2
𝑅
𝑡
1
,𝑡
2

)]]

= 𝐸 [exp (−𝑚
1
𝑅
𝑡
0
,𝑡
1

) 𝐿
1
(𝑚
2
; 𝑡
1
, 𝑡
2
)] .

(47)

Similar to the computation of (42), (43) can be obtained, and
we omit it here.

Since the length 𝜃 of settlement period for reference asset
𝐶 is 0; namely, if firm 𝐵 has no default, 𝐵 pays compensation
for 𝐶’s loss immediately once 𝐶 defaults, thus (18) becomes

𝑠 = (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

−𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

×(𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

−1

−

𝐸 [𝐷 (𝜏
𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
]

𝐸 [∑
𝑛

𝑖=1
𝐷(𝑇
𝑖
)𝑀1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

.

(48)

The price 𝑠 of TRS is given by the theorem below.
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Theorem 6. With default intensities (38) and HJMmodel (9),
the price 𝑠 of TRS is given by

𝑠 =
∑
𝑛

𝑖=1
𝐶
𝑖
exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

− (

𝑛

∑

𝑖=1

M (𝐺
2
(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

𝑖−1
, 𝑇
𝑖
, 𝑡
2
)

−𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖
)))

× (

𝑛

∑

𝑖=1

𝛿𝑀 exp (− (𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏+ 𝑐) ; 0, 𝑇

𝑖
))

−1

−

(𝑐/ (1 + 𝑏 + 𝑐)) (1 − 𝑒
−(𝑏+𝑐)𝑇

⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇))

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

−((𝑐
0
−
𝑐 (𝑏
0
+𝑐
0
)

1+𝑏+𝑐
)×∫

T

0

𝑒
−(𝑏
0
+𝑐
0
)V
⋅ 𝐺
1
(1+𝑏 +𝑐; 0, V) 𝑑V)

× (

𝑛

∑

𝑖=1

𝛿𝑀 exp (− (𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏+𝑐) ; 0, 𝑇

𝑖
))

−1

.

(49)

Proof. Consider

𝑠 = (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

− 𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

× (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

−1

−

𝐸 [𝐷 (𝜏
𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
]

𝐸 [∑
𝑛

𝑖=1
𝐷(𝑇
𝑖
)𝑀1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

.

(50)

To compute (48), we need to only deduce the following three
expectation values:

�̂�
1
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

�̂�
2
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

�̂�
3
:= 𝐸 [𝐷 (𝜏

𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
] ,

(51)

where

�̂�
1
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

𝐸 [𝑒
−𝑅
0,𝑇
𝑖 ⋅ 𝐸 [1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

𝐸 [exp (− (𝑏
0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ exp (− (1 + 𝑏 + 𝑐) 𝑅

0,𝑇
𝑖

)]

=

𝑛

∑

𝑖=1

exp (− (𝑏
0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
) ,

�̂�
2
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]] .

(52)

Substituting the expression (14) of Libor interest rate 𝐿(𝑡, 𝑇)
into the formula above, we have

�̂�
2
=

𝑛

∑

𝑖=1

𝐸 [𝐸 [𝑒
−𝑅
0,𝑇
𝑖

1

𝛿
(𝑒
𝑅
𝑇
𝑖−1
,𝑇
𝑖−1
+𝛿 − 1) 1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

𝐸 [
1

𝛿
(𝑒
−𝑅
0,𝑇
𝑖−1 − 𝑒

−𝑅
0,𝑇
𝑖 ) 𝐸 [1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

1

𝛿
(𝐺
2
(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

𝑖−1
, 𝑇
𝑖
)

−𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖
)) ,

(53)

�̂�
3
= 𝐸 [𝐷 (𝜏

𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
]

= 𝐸 [𝐸 [𝐷 (𝜏
𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
| F
𝑟

𝑇
∗]]

= 𝐸 [∫

𝑇

0

∫

∞

V
𝑒
−𝑅
0,V𝑓 (𝑢, V | F𝑟

𝑇
∗) 𝑑𝑢 𝑑V]

= 𝐸[∫

𝑇

0

(𝑐
0
+ 𝑐𝑟V) 𝑒

−(𝑐
0
−𝑏
1
)V−(1+𝑐)𝑅

0,V

× ∫

∞

V
(𝑏
0
+ 𝑏
1
+ 𝑏𝑟
𝑢
) 𝑒
−(𝑏
0
+𝑏
1
)𝑢−𝑏𝑅

0,𝑢𝑑𝑢 𝑑V]



Abstract and Applied Analysis 9

= 𝐸[(𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

×∫

𝑇

0

exp (− (𝑏
0
+𝑐
0
) V) exp (− (1+𝑏+𝑐) 𝑅

0,V) 𝑑V

+
𝑐

1 + 𝑏 + 𝑐

× ( (1 − exp (− (𝑏
0
+ 𝑐
0
) 𝑇 − (1 + 𝑏 + 𝑐) 𝑅

0,𝑇
)) ]

=
𝑐

1 + 𝑏 + 𝑐
(1 − exp (− (𝑏

0
+ 𝑐
0
) 𝑇)

⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇))

+ (𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

× ∫

𝑇

0

exp (− (𝑏
0
+ 𝑐
0
) V) ⋅ 𝐺

1
(1 + 𝑏 + 𝑐; 0, V) 𝑑V.

(54)

Thus, substituting (52)–(54) into (48), we obtain

𝑠 =
∑
𝑛

𝑖=1
𝐶
𝑖
exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

− (

𝑛

∑

𝑖=1

𝑀(𝐺
2
(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

𝑖−1
, 𝑇
𝑖
)

−𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖
)))

×(

𝑛

∑

𝑖=1

𝛿𝑀 exp (− (𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏+𝑐) ; 0, 𝑇

𝑖
))

−1

−

(𝑐/ (1 + 𝑏 + 𝑐)) (1 − 𝑒
−(𝑏+𝑐)𝑇

⋅ 𝐺
1
(1 + b + 𝑐; 0, 𝑇))

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

− ((𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

× ∫

𝑇

0

𝑒
−(𝑏
0
+𝑐
0
)V
⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, V) 𝑑V)

×(

𝑛

∑

𝑖=1

𝛿𝑀 exp (−(𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏+𝑐) ; 0, 𝑇

𝑖
))

−1

.

(55)

The proof is complete.

Remark 7. From the expression (49), the price 𝑠 of TRS is
related to the default free interest rate risk (because there are 𝑏
and 𝑐). So the interest rate risk is not negligible in the pricing
of credit derivatives.

4.2. TRS Valuation under Two-Firm Attenuation Contagion
Model. In this subsection, besides that default is related
to interest rate, we assume that default contagion has the
hyperbolic attenuation effect. Default intensities of firms 𝐵
and 𝐶 are described as follows:

𝜆
𝐵

𝑡
= 𝑏
0
+ 𝑏𝑟
𝑡
+

𝑏
2

𝑏
1
(𝑡 − 𝜏𝐶) + 1

1
{𝜏
𝐶
≤𝑡}
,

𝜆
𝐶

𝑡
= 𝑐
0
+ 𝑐𝑟
𝑡
+

𝑐
2

𝑐
1
(𝑡 − 𝜏𝐵) + 1

1
{𝜏
𝐵
≤𝑡}
,

(56)

where 𝑏
0
, 𝑐
0
, 𝑏, 𝑐, 𝑏

1
, and 𝑐

1
are nonnegative, satisfying 𝑏

0
+𝑏
2
>

0 and 𝑐
0
+𝑐
2
> 0. When 𝑏

1
= 𝑐
1
= 0, model is simplified to the

looping default model (38).
To obtain the analytic solution of 𝑠, we consider the

following simplified model:

𝜆
𝐵

𝑡
= 𝑏
0
+ 𝑏𝑟
𝑡
−

𝑏
1

𝑏
1
(𝑡 − 𝜏𝐶) + 1

1
{𝜏
𝐶
≤𝑡}
,

𝜆
𝐶

𝑡
= 𝑐
0
+ 𝑐𝑟
𝑡
−

𝑐
1

𝑐
1
(𝑡 − 𝜏𝐵) + 1

1
{𝜏
𝐵
≤𝑡}
.

(57)

By the result in [27], the joint conditional survival probability
of (𝜏𝐵, 𝜏𝐶) under the model (57) is given by

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
| F
𝑟

𝑇
∗)

= (𝑐
1
(𝑡
2
− 𝑡
1
) + 1) 𝑒

−(𝑐
0
𝑡
2
+𝑐𝑅
0,𝑡
2

)

+ 𝑒
−(𝑏
0
+𝑐
0
)𝑡
2 exp (− (𝑏 + 𝑐) 𝑅

0,𝑡
2

)

− 𝑐
1
𝑒
−𝑐
0
𝑡
2 ∫

𝑡
2

𝑡
1

𝑒
−𝑏
0
(𝑠−𝑡
1
) exp (−𝑐𝑅

0,𝑡
2

− 𝑏𝑅
𝑡
1
,𝑠
) 𝑑𝑠

− 𝑒
−𝑏
0
(𝑡
2
−𝑡
1
)−𝑐
0
𝑡
2 exp (−𝑐𝑅

0,𝑡
2

− 𝑏𝑅
𝑡
1
,𝑡
2

)

for 𝑡
1
≤ 𝑡
2
≤ 𝑇,

𝑃 (𝜏
𝐵
> 𝑡
1
, 𝜏
𝐶
> 𝑡
2
| F
𝑟

𝑇
∗)

= (𝑏
1
(𝑡
1
− 𝑡
2
) + 1) 𝑒

−(𝑏
0
𝑡
1
+𝑏𝑅
0,𝑡
1

)

+ 𝑒
−(𝑏
0
+𝑐
0
)𝑡
1 exp (− (𝑏 + 𝑐) 𝑅

0,𝑡
1

)

− 𝑏
1
𝑒
−𝑏
0
𝑡
1 ∫

𝑡
1

𝑡
2

𝑒
−𝑐
0
(𝑠−𝑡
2
) exp (−𝑏𝑅

0,𝑡
1

− 𝑐𝑅
𝑡
2
,𝑠
) 𝑑𝑠

− 𝑒
−𝑐
0
(𝑡
1
−𝑡
2
)𝑏
0
𝑡
1 exp (−𝑏𝑅

0,𝑡
1

− 𝑐𝑅
𝑡
2
,𝑡
1

)

for 𝑡
2
≤ 𝑡
1
≤ 𝑇,

(58)
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and the joint conditional density function is given by

𝑓 (𝑡
1
, 𝑡
2
| F
𝑟

𝑇
∗)

=

{{{{{{

{{{{{{

{

(𝑏
0
+ 𝑏𝑟
𝑡
1

) [(𝑐
0
+ 𝑐𝑟
𝑡
2

) (𝑐
1
(𝑡
2
− 𝑡
1
) + 1) − 𝑐

1
]

×𝑒
−𝑏
0
𝑡
1
−𝑐
0
𝑡
2
−𝑏𝑅
0,𝑡
1

−𝑐𝑅
0,𝑡
2 , 𝑡

1
≤ 𝑡
2

(c
0
+ 𝑐𝑟
𝑡
2

) [(𝑏
0
+ 𝑏𝑟
𝑡
1

) (𝑏
1
(𝑡
1
− 𝑡
2
) + 1) − 𝑏

1
]

×𝑒
−𝑏
0
𝑡
1
−𝑐
0
𝑡
2
−𝑏𝑅
0,𝑡
1

−𝑐𝑅
0,𝑡
2 . 𝑡

2
≤ 𝑡
1
.

(59)

Under the model (57), the price formula of 𝑠 is given by

𝑠 = (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝐶
𝑖
1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

− 𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀𝐿 (𝑇

𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

× (𝐸[

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
])

−1

−

𝐸 [𝐷 (𝜏
𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
]

𝐸 [

𝑛

∑

𝑖=1

𝐷(𝑇
𝑖
) 𝛿𝑀1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

.

(60)

Combining with Lemma 5, we can obtain the price 𝑠 of
TRS, and the result is the following theorem.

Theorem 8. With default intensities (57) and HJM interest
rate model (9), the price 𝑠 of TRS is given by

𝑠 =
∑
𝑛

𝑖=1
𝐶
𝑖
exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

− (

𝑛

∑

𝑖=1

𝑀(𝐺
2
(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

𝑖−1
, 𝑇
𝑖
)

− 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖
)))

× (

𝑛

∑

𝑖=1

𝛿𝑀 exp (− (𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏 +𝑐) ; 0, 𝑇

𝑖
))

−1

−

(𝑐/ (1 + 𝑏 + 𝑐)) (1 − 𝑒
−(𝑏+𝑐)𝑇

⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇))

∑
𝑛

𝑖=1
𝛿𝑀 exp (− (𝑏

0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
)

− ((𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

× ∫

𝑇

0

𝑒
−(𝑏
0
+𝑐
0
)V
⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, V) 𝑑V)

×(

𝑛

∑

𝑖=1

𝛿𝑀 exp (−(𝑏
0
+𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1+𝑏+𝑐) ; 0, 𝑇

𝑖
))

−1

.

(61)

Proof. From (60), to obtain the analytic solution of 𝑠, we need
to only compute three expectation values:

𝐾
1
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

𝐾
2
:=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
] ,

𝐾
3
:= 𝐸 [𝐷 (𝜏

𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
] ,

(62)

where

𝐾
1
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐸 [𝐸 [𝐷 (𝑇
𝑖
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

𝐸 [𝑒
−𝑅
0,𝑇
𝑖 ⋅ 𝐸 [1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

exp (− (𝑏
0
+ 𝑐
0
) 𝑇
𝑖
) ⋅ 𝐺
1
((1 + 𝑏 + 𝑐) ; 0, 𝑇

𝑖
) ,

𝐾
2
=

𝑛

∑

𝑖=1

𝐸 [𝐷 (𝑇
𝑖
) 𝐿 (𝑇
𝑖−1
, 𝑇
𝑖−1
) 1
{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
]

=

𝑛

∑

𝑖=1

𝐸 [𝐸 [
1

𝛿
𝑒
−𝑅
0,𝑇
𝑖 (𝑒
𝑅
𝑇
𝑖−1
,𝑇
𝑖−1
+𝛿 − 1) 1

{𝜏
𝐵
∧𝜏
𝐶
>𝑇
𝑖
}
| F
𝑟

𝑇
∗]]

=

𝑛

∑

𝑖=1

1

𝛿
(𝐺
2
(1 + 𝑏 + 𝑐, 𝑏 + 𝑐; 0, 𝑇

𝑖−1
, 𝑇
𝑖
)

− 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇

𝑖
)) ,

𝐾
3
= 𝐸 [𝐷 (𝜏

𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
]

= 𝐸 [𝐸 [𝐷 (𝜏
𝐶
) 1
{𝜏
𝐶
≤𝑇}
1
{𝜏
𝐵
>𝜏
𝐶
}
| F
𝑟

𝑇
∗]]

= 𝐸[(𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

× ∫

𝑇

0

exp (− (𝑏
0
+ 𝑐
0
) V)
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× exp (− (1+𝑏 +𝑐) 𝑅
0,V) 𝑑V

+
𝑐

1 + 𝑏 + 𝑐

× (1 − exp (− (𝑏
0
+ 𝑐
0
) 𝑇 − (1 + 𝑏 + 𝑐) 𝑅

0,𝑇
) ]

= (𝑐
0
−
𝑐 (𝑏
0
+ 𝑐
0
)

1 + 𝑏 + 𝑐
)

× ∫

𝑇

0

exp (− (𝑏
0
+ 𝑐
0
) V) ⋅ 𝐺

1
(1 + 𝑏 + 𝑐; 0, V) 𝑑V

+
𝑐

1 + 𝑏 + 𝑐
(1 − exp (− (𝑏

0
+ 𝑐
0
) 𝑇)

⋅ 𝐺
1
(1 + 𝑏 + 𝑐; 0, 𝑇)) .

(63)

Substituting expressions (63) of 𝐾
1
, 𝐾
2
, and 𝐾

3
into (60), we

can obtain (61). We complete the proof.

Remark 9. From formulas (49) and (61), we conclude that
if the length 𝜃 of the reference asset’s settlement period is
0, the price 𝑠 of TRS is only related to interest rate risk and
systematic risk.

5. Conclusion

In this paper, we mainly study the pricing of TRS under the
framework of two-firm contagion models and HJM forward
interest rate model. We obtain the analytic price expressions
of TRS, respectively, based on whether the default is related
to the interest rate. From these expressions, we claim that
both default risk and the default-free interest rate risk have
effects on the valuation of TRS.Moreover, the contagion effect
between the reference asset and the protection seller is not
ignorable. Therefore, the models in our paper have certain
practical significance.Wewill further discuss other contagion
models and interest rate models and compare them with the
models in this paper by using Monte Carlo simulation.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research was supported by the National Natural Science
Foundation of China under Grants no. 11326168 and no.
11171215 and Yangcai Project (no. YC-XK-13106).

References

[1] R. C. Merton, “On the pricing of corporate debt: the risk
structure of interest rates,” The Journal of Finance, vol. 29, no.
2, pp. 449–470, 1974.

[2] F. Black and J. C. Cox, “Valuing corporate securities: some
effects of bond indenture provisions,” The Journal of Finance,
vol. 31, no. 2, pp. 351–367, 2007.

[3] R. Geske, “The valuation of corporate liabilities as compound
options,”The Journal of Financial andQuantitative Analysis, vol.
12, no. 4, pp. 541–552, 1977.

[4] P. Artzner and F. Delbaen, “Default risk insurance and incom-
plete markets,”Mathematical Finance, vol. 5, no. 3, pp. 187–195,
1995.

[5] D. Duffie, M. Schroder, and C. Skiadas, “Recursive valuation
of defaultable securities and the timing of resolution of uncer-
tainty,”TheAnnals of Applied Probability, vol. 6, no. 4, pp. 1075–
1090, 1996.

[6] R. A. Jarrow and S. M. Turnbull, “Pricing options on financial
securities subject to default risk,”The Journal of Finance, vol. 50,
no. 1, pp. 53–86, 1995.

[7] D. B. Madan and H. Unal, “Pricing the risks of default,” Review
of Derivatives Research, vol. 2, no. 2-3, pp. 121–160, 1998.

[8] D. Duffie and D. Lando, “Term structures of credit spreads with
incomplete accounting information,” Econometrica, vol. 69, no.
3, pp. 633–664, 2001.

[9] R. A. Jarrow, D. Lando, and S. M. Turnbull, “A Markov model
for the term structure of credit risk spreads,” The Review of
Financial Studies, vol. 10, no. 2, pp. 481–523, 1997.

[10] R. B. Litterman and T. Iben, “Corporate Bond Valuation and
Term Structure of Credit Spreads, Financial Anal,”The Journal
of Portfolio Management, vol. 17, no. 3, pp. 52–64, 1991.

[11] D. Duffie and K. J. Singleton, “Modeling term structures of
defaultable bonds,” Review of Financial Studies, vol. 12, no. 4,
pp. 687–720, 1999.

[12] D. Lando, “On cox processes and credit risky securities,” Review
of Derivatives Research, vol. 2, no. 2-3, pp. 99–120, 1998.

[13] P. Collin-Dufresne and B. Solnik, “On the term structure of
default premia in the swap and LIBOR markets,” The Journal
of Finance, vol. 56, no. 3, pp. 1095–1115, 2001.

[14] G. R. Duffee, “Estimating the price of default risk,” Review of
Financial Studies, vol. 12, no. 1, pp. 197–226, 1999.

[15] R. A. Jarrow and F. Yu, “Counterparty risk and the pricing of
defaultable securities,”The Journal of Finance, vol. 56, no. 5, pp.
1765–1799, 2001.

[16] R. J. Elliott, M. Jeanblanc, and M. Yor, “On models of default
risk,”Mathematical Finance, vol. 10, no. 2, pp. 179–195, 2000.

[17] F. Jamshidian,Valuation of Credit Default Swaps and Swaptions,
NIB Capital Bank, The Hague, The Netherlands, 2003.

[18] Z. X. Ye andR.X. Zhuang, “Pricing of total return swap,”Chinese
Journal of Applied Probability and Statistics, vol. 28, no. 1, pp. 79–
86, 2012.

[19] S. R. Das and R. K. Sundaram, “An integrated model for hybrid
securities,” Management Science, vol. 53, no. 9, pp. 1439–1451,
2007.

[20] J. M. Harrison and D. M. Kreps, “Martingales and arbitrage
in multiperiod securities markets,” Journal of Economic Theory,
vol. 20, no. 3, pp. 381–408, 1979.

[21] J.M.Harrison and S. R. Pliska, “Martingales and stochastic inte-
grals in the theory of continuous trading,” Stochastic Processes
and Their Applications, vol. 11, no. 3, pp. 215–260, 1981.

[22] D. Heath, R. Jarrow, andA.Morton, “Bond pricing and the term
structure of interest rates: a new methodology for contingent
claims valuation,” Econometrica, vol. 60, no. 1, pp. 77–105, 1992.

[23] S. E. Shreve, Stochastic Calculus for Finance: Continuous-Time
Models, Springer, New York, NY, USA, 2004.



12 Abstract and Applied Analysis

[24] S. Y. Leung and Y. K. Kwok, “Credit default swap valuation with
counterparty risk,”TheKyoto Economic Review, vol. 74, no. 1, pp.
25–45, 2005.

[25] Y.-F. Bai, X.-H. Hu, and Z.-X. Ye, “A model for dependent
default with hyperbolic attenuation effect and valuation of
credit default swap,” Applied Mathematics and Mechanics, vol.
28, no. 12, pp. 1643–1649, 2007.

[26] A.-J. Wang and Z.-X. Ye, “The pricing of credit risky securities
under stochastic interest rate model with default correlation,”
Applications of Mathematics, vol. 58, no. 6, pp. 703–727, 2013.

[27] R.-L. Hao and Z.-X. Ye, “The intensity model for pricing
credit securities with jump diffusion and counterparty risk,”
Mathematical Problems in Engineering, vol. 2011, Article ID
412565, 16 pages, 2011.


