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A nonlinear mathematical model for hydroturbine governing system (HTGS) has been proposed. All essential components of
HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed
model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics
of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, time
waveforms, phase space trajectories, Lyapunov exponent, chaotic attractors, and Poincare maps. Good correlation can be found
between the model predictions and theoretical analysis. The simulation results provide a reasonable explanation for the sustained
oscillation phenomenon commonly seen in operation of hydroelectric generating set.

1. Introduction

Many hydropower plants have been built [1–3] worldwide
to harness the energy of falling or running water for elec-
tricity purpose. An important part of hydropower plant
is the hydraulic turbine governing system (HTGS), which
serves to maintain safe, stable, and economical operation
of hydropower generating unit [4]. The HTGS is in nature
a complex nonlinear, multivariable, time-varying, and non-
minimum phase system, which involves the interactions
between hydraulic system, mechanical system, and electrical
system [5].The complex dynamic behaviors of the HTGS sig-
nificantly influence the operation conditions of hydroelectric
generating set. For instance, oscillatory problems in hydro-
electric generating units were reported to be closely related
to the possible Hopf bifurcation and chaotic oscillatory
behaviors in HTGS [6–9]. In the absence of a model to con-
veniently predict the dynamic behaviors of the system,means
to address the practical operational issues of hydroelectric
generating units, that is, sustained oscillation phenomenon
[6, 10], have to be limited.

The literature review reveals that considerable research
efforts have been devoted to the modeling of each indi-
vidual part of the HTGS [11]. For instance, elastic model

and nonelastic model [12, 13] for the conduit system have
been adopted in long pipeline and short pipeline systems,
respectively. In addition, various hydroturbine models were
also available in [10, 14–26]. While Sanathanan [14] claimed
that the output of hydroturbine was proportional to hydraulic
head and volume flow, Hannett et al. [15] approximated
this term by its first-order Taylor formula and Kishor et al.
[16, 17] proposed six detailed expressions about these six
transfer coefficients with turbine speed and head, which
were shown to provide reasonably accurate predictions for
HTGS with small disturbance. X. Liu and C. Liu [10] studied
small disturbance stability of hydropower plant with complex
conduit with a linear turbine model, but they fell short of
including elastic water-hammer effects. Bakka et al. made
significant contributions to modeling, simulation [18–22],
and control [23–26] of wind turbine system, which stimulates
modeling of hydroturbine in this paper.

In regards to the power generator, models with different
orders could also be found in [27–29]. While higher order
power generator models typically represent better accuracy,
the overall computational efficiency would be greatly sacri-
ficed especially in case of the modeling of a fully coupled
governing system. To compromise with the computational
efficiency, the power generator model has to be selected
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carefully such that it provides accurate approximation with
acceptable computational effort.

Aside from the abovementioned models for individual
part of the HTGS, investigations on bifurcation and chaos for
theHTGS at the system level were reported only in a few stud-
ies [6, 30, 31]. For instance, Konidaris and Tegopoulos [31]
investigated the oscillatory problems in hydraulic generating
units; Mansoor et al. [6] successfully reproduced an oscilla-
tory phenomenonwhose causes were difficult to be identified
with limited recorded data. He also proposed a methodology
to improve the stability of the control system. While these
studies were instrumental in identifying and documenting
the oscillations in hydraulic generating units, neither of them
noticed the effects of Hopf bifurcation on the oscillatory
behaviors. Ling and Tao [30] first reported the influence of
bifurcation phenomenon on the sustained oscillations in his
study of Hopf bifurcation behavior of HTGS with saturation.
However, his model was oversimplified by employing first-
order model for the power generator and the PI governing
system. Chen et al. [32] developed a novel nonlinear dy-
namical model for hydroturbine governing system with a
surge tank and studied exhaustively the influences of different
parameters for the first time. However, they failed to include
adequate theoretical analysis and description on bifurcation.
Determination of the existence and detailed calculation of
Hopf bifurcation were also not considered in their work.

The above literature review shows that numerous well-
developed models for each individual part of HTGS are
available, but investigations of bifurcation and chaotic oscil-
lations in HTGS with a fully coupled model of the system
are rarely seen. As such, this paper aims to develop a fully
coupled nonlinear dynamical model for HTGS and investi-
gate the bifurcation and chaotic oscillatory behaviors of the
HTGS. In addition, a theorem for existence determination of
Hopf bifurcation for four-dimensional nonlinear system has
been proposed for convenient prediction of the bifurcation
of critical points, which would otherwise be impractical
especially for high-dimensional systems due to tremendous
computational demand by conventional analysis methods,
that is, Lyapunov-Schmidt (L-S) method, center manifold
method [33, 34], or normal form theory [35].

There are three main contributions of this paper com-
pared with prior works. First, a new four-dimensional fully
coupled nonlinear mathematical model of HTGS was pre-
sented and the parameters were from a practical power sta-
tion, which made the work more consistent with actual
project compared with [10, 30] work. Second, the theorem
for stability, Hopf bifurcation, and dynamic quality analysis of
four-dimensional system that can avoid excessive and tedious
calculations was firstly introduced in the paper, providing a
new approach for HTGS analysis and computation. Third,
nonlinear dynamical behaviors of the above system with
different parameters were studied in detail and necessary
numerical simulation results were presented.

The paper is outlined as follows. First, the formulations of
a fully coupled nonlinear dynamical model will be presented.
Next, the investigations of the Hopf bifurcation and chaotic
behaviors of the system will be described. Finally, a brief
conclusion will be given.

2. Nonlinear Mathematical Model of HTGS

HTGS consists of five parts, that is, conduit system, hydro-
turbine, governor, electrohydraulic servo system, and power
generator. Model for each individual part has been well
developed. Water from reservoir enters tunnel first and then
flows through penstock before reaching turbine gate. Next,
it flows into scroll casing to promote the hydroturbine to
rotate. The power generator and hydroturbine are connected
by a shaft coupling. Water that flows into the hydroturbine
can be regulated by wicket gates, which are controlled by the
governor system. The governor system operates accordingly
given the deviation between electric demand and developed
torque [35].

2.1. Conduit System Model. A no-elastic model [28] is em-
ployed for the conduit system in this study. The unsteady
flow partial differential equations in pressure pipes can be
described as

Momentum equation: 𝜕𝐻

𝜕𝑥
+

1

𝑔𝐴

𝜕𝑄

𝜕𝑡
+

𝑓𝑄
2

2𝑔𝐷𝐴2
= 0,

Continuity equation: 𝜕𝑄

𝜕𝑥
+

𝑔𝐴

𝑎2

𝜕𝐻

𝜕𝑡
= 0,

(1)

where 𝐷, 𝑓, 𝐴 are parameters of the penstock. They denote
the diameter, head loss, and area of the pipeline, respectively.
𝐻, 𝑄 are hydraulic head and turbine flow in penstock in
operating condition, 𝑎 is pressure wave velocity, and 𝑥 is the
length from upstream.

The head and flow equation between two sections of
penstock can be deduced from (1). It can be described as [28]

[
𝐻
𝐴
(𝑠)

𝑄
𝐴
(𝑠)

] = [

[

𝑐ℎ (𝑟Δ𝑥) − 𝑍
𝑐
𝑠ℎ (𝑟Δ𝑥)

−
𝑠ℎ (𝑟Δ𝑥)

𝑍
𝑐

𝑐ℎ (𝑟Δ𝑥)
]

]

[
𝐻
𝐵
(𝑠)

𝑄
𝐵
(𝑠)

] .

(2)

Subscripts 𝐵,𝐴 are symbols of upstream and downstream
section of pipeline, respectively. 𝑟 and 𝑍

𝑐
are the composite

equations of parameters of the penstock, 𝑟 = √𝐿𝐶𝑠2 + 𝑅𝐶𝑠,
𝑍
𝑐
= 𝑟/𝐶𝑠.
𝐿, 𝑅, 𝐶 can be written as

𝐿 =
𝑄
0

𝑔𝐴𝐻
0

, 𝐶 =
𝑔𝐴𝐻
0

(𝑎2𝑄
0
)
, 𝑅 =

(𝑓𝑄
2

0
)

(𝑔𝐷𝐴2𝐻
0
)
. (3)

Providing that the head loss is negligible, 𝑟 and 𝑍
𝑐
can be

rewritten as follows:

𝑟 =
1

𝑎
𝑠, 𝑍

𝑐
= 2ℎ
𝑤
, ℎ

𝑤
=

𝑎𝑄
0

(2𝑔𝐴𝐻
0
)
. (4)

With the hydraulic friction losses being trivial and
𝐻
𝐵
(𝑠) = 0 (tunnel connects with reservoir directly), the head

and flow function is simplified as follows:

𝐻
𝐴
(𝑠)

𝑄
𝐴
(𝑠)

= −𝑍
𝑐

𝑠ℎ (𝑟Δ𝑥)

𝑐ℎ (𝑟Δ𝑥)
= −𝑍
𝑐
𝑡ℎ (𝑟Δ𝑥) . (5)
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It can be seen from (5) that the water hammer transfer
function is a nonlinear hyperbolic tangent function, which
was inconvenient to use and should be expanded by series.
Substituting (4) into (5), the equation for the water strike
transfer function 𝐺

ℎ
(𝑠) at point 𝐴 is obtained as

𝐺
ℎ
(𝑠) = −2ℎ

𝑤
𝑡ℎ (0.5𝑇

𝑟
𝑠)

= −2ℎ
𝑤

∑
𝑛

𝑖=0
((0.5𝑇

𝑟
𝑠)
2𝑖+1

/ (2𝑖 + 1)!)

∑
𝑛

𝑖=0
((0.5𝑇

𝑟
𝑠)
2𝑖

/ (2𝑖)!)

.

(6)

Typically, there are the two models, 𝑖 = 0, 1, as follows:

𝐺
ℎ
(𝑠) = −2ℎ

𝑤
𝑡ℎ (0.5𝑇

𝑟
𝑠) = −2ℎ

𝑤

(1/48) 𝑇
3

𝑟
𝑠
3
+ (1/2) 𝑇

𝑟
𝑠

(1/8) 𝑇2
𝑟
𝑠2 + 1

,

(7)

𝐺
ℎ
(𝑠) = −2ℎ

𝑤
𝑡ℎ (0.5𝑇

𝑟
𝑠) = −𝑇

𝑤
𝑠, (8)

where 𝑇
𝑟
= 2Δ𝑥/𝑎, 𝑇

𝑤
= 𝐿𝑄

0
/𝐴𝑔𝐻

0
. Equations (6) to (8)

represent three kinds of water hammer models: the first two
models are called elastic water hammer model and the last
one is rigid water hammer model that is employed in the
paper. In the above equations, the pipeline is assumed to have
constant cross-sectional area over the full length, which is
impossible in actual engineering. Relevant parameters in the
field are obtained by the following formulas:

𝐿 =

𝑛

∑

𝑖=1

𝐿
𝑖
, 𝐴 =

∑
𝑛

𝑖=1
𝐿
𝑖

∑
𝑛

𝑖=1
(𝐿
𝑖
/𝐴
𝑖
)
, 𝑇

𝑟
=

𝑛

∑

𝑖=1

2𝐿
𝑖

𝑎
𝑖

,

𝑇
𝑤
=

∑
𝑛

𝑖=1
(𝐿
𝑖
/𝐴
𝑖
) 𝑄
0

𝑔𝐻
0

(9)

where 𝐿
𝑖
, 𝐴
𝑖
, 𝑎
𝑖
denote the length, cross-sectional area, and

the velocity of pipeline 𝑖, respectively, and there are 𝑛 pipes in
total.

2.2. TurbineModel of RigidWater Hammer. For small pertur-
bation around the rated operating point, the equation of the
turbine can be represented as below:

𝑚
𝑡
= 𝑒
𝑥
𝑥 + 𝑒
𝑦
𝑦 + 𝑒
ℎ
ℎ,

𝑞 = 𝑒
𝑞𝑥
𝑥 + 𝑒
𝑞𝑦
𝑦 + 𝑒
𝑞ℎ
ℎ.

(10)

The six constants of hydroturbine 𝑒
𝑥
, 𝑒
𝑦
, 𝑒
ℎ
, 𝑒
𝑞𝑥
, 𝑒
𝑞𝑦
, 𝑒
𝑞ℎ

are the partial derivatives of the torque and flow with respect
to turbine speed, guide vane, and head, respectively. These
constants may vary as the operating point changes.

In the dynamic models of the turbine and conduit system
[12, 14] where the relative deviation is used to represent the
state variables, the relationship between turbine torque and
its output power is

𝑃
𝑚

= 𝑚
𝑡
+ Δ𝜔. (11)

u y mtGt(s)
1

1 + Tys

Servomotor Turbine and conduit system

Figure 1: Dynamic model of turbine and conduit system.

As the unit speed changes little, the speed deviationΔ𝜔 =

0, leading to 𝑃
𝑚

= 𝑚
𝑡
. Then the transfer function of the

turbine and conduit system is

𝐺
𝑡
(𝑠) = 𝑒

𝑦

1 + 𝑒𝐺
ℎ
(𝑠)

1 − 𝑒
𝑞ℎ
𝐺
ℎ
(𝑠)

, (12)

where 𝐺
ℎ
(𝑠) is transfer function of conduit system defined in

(6).
In case of rigid water hammer, the coefficient 𝑛 in (6) is

0 and the dynamic equation for the turbine output torque, as
shown in Figure 1, becomes

�̇�
𝑡
=

1

𝑒
𝑞ℎ
𝑇
𝑤

[−𝑚
𝑡
+ 𝑒
𝑦
𝑦 −

𝑒𝑒
𝑦
𝑇
𝑤

𝑇
𝑦

(𝑢 − 𝑦)] . (13)

2.3. Generator Model. A synchronous generator [36], which
connected to an infinite bus through a transmission line, is
considered as the target system. The second-order nonlinear
dynamical model, after making standard considerations, can
be written as

̇𝛿 = 𝜔
0
𝜔,

�̇� =
1

𝑇
𝑎𝑏

(𝑚
𝑡
− 𝑚
𝑒
− 𝐾𝜔) ,

(14)

where 𝛿, 𝜔, 𝐾, and 𝑇
𝑎𝑏
denote the rotor angle, relative speed

deviation, damping coefficient, andmechanical starting time,
respectively. The electromagnetic torque of the generator 𝑚

𝑒

is equal to its electromagnetic power 𝑃
𝑒
:

𝑚
𝑒
= 𝑃
𝑒
. (15)

The electromagnetic power can be calculated with the
following formula:

𝑃
𝑒
=

𝐸


𝑞
𝑉
𝑠

𝑥
𝑑𝑥∑

sin 𝛿 +
𝑉
2

𝑠

2

𝑥


𝑑𝑥∑
− 𝑥
𝑞𝑥∑

𝑥
𝑑𝑥∑

𝑥
𝑞𝑥∑

sin 2𝛿, (16)

where the effects of speed deviations, damping coefficient,
and torque variations are all included in the analysis of the
generator dynamic characteristics

𝑥


𝑑∑
= 𝑥


𝑑
+ 𝑥
𝑇
+

1

2
𝑥
𝐿
,

𝑥
𝑞∑

= 𝑥
𝑞
+ 𝑥
𝑇
+

1

2
𝑥
𝐿
.

(17)

Equations (14) to (17) are the simplified second-order
nonlinear generator model based on the turbine model of
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rigid water hammer, which has been widely applied in non-
linear controller design and stability analysis of HTGS. It is
often used for the stability characteristics and dynamic qual-
ity analysis of HTGS from the perspective of power system.
Higher order nonlinear generator model could be employed
according to research needs.

2.4. Hydraulic Servo System Model. The servomotor, which
acts as the actuator, is used to amplify the control signals and
provide power to operate the guide vane. Its transfer function
can be written as

𝐺
𝑠
(𝑠) =

1

1 + 𝑇
𝑦
𝑠
, (18)

where 𝑇
𝑦
is the engager relay time constant.

2.5. GovernorModel. At present, a parallel PID controller [18,
20, 22–26] is widely used in hydraulic turbine governors [27,
30] in filed. Its transfer function is given as

𝐺
2
(𝑠) = (𝑘

𝑝
+

𝑘
𝑖

𝑠
+ 𝑘
𝑑
𝑠) . (19)

Substituting (19) into (18), the results can be written in
state-space form. At last, the mixed function can be obtained
as follows:

𝑑𝑦

𝑑𝑡
=

1

𝑇
𝑦

(−𝑘
𝑝
𝜔 − 𝑘
𝑖
∫Δ𝜔 − 𝑘

𝑑
�̇� − 𝑦) . (20)

Based on the discussions above, the differential equations
that coupled each individual part of the turbine nonlinear
control system can be written as

̇𝛿 = 𝜔
0
𝜔,

�̇� =
1

𝑇
𝑎𝑏

(𝑚
𝑡
− 𝐷𝜔 −

𝐸


𝑞
𝑉
𝑠

𝑥
𝑑𝑥∑

sin 𝛿

−
𝑉
2

𝑠

2

𝑥


𝑑𝑥∑
− 𝑥
𝑞𝑥∑

𝑥
𝑑𝑥∑

𝑥
𝑞𝑥∑

sin 2𝛿) ,

�̇�
𝑡
=

1

𝑒
𝑞ℎ
𝑇
𝑤

(− 𝑚
𝑡
+ 𝑒
𝑦
𝑦

−
𝑒𝑒
𝑦
𝑇
𝑤

𝑇
𝑦

(−𝑘
𝑝
𝜔 −

𝑘
𝑖

𝜔
0

𝛿 − 𝑘
𝑑
�̇� − 𝑦)) ,

̇𝑦 =
1

𝑇
𝑦

(−𝑘
𝑝
𝜔 −

𝑘
𝑖

𝜔
0

𝛿 − 𝑘
𝑑
�̇� − 𝑦) .

(21)

Equation (21) is the four-dimensional water-electrome-
chanical coupled model of HTGS that integrates the turbine
model of rigid water hammer, the water pipes linear model,
and the nonlinear dynamic generator model. Compared to
the linearmodel, it could reflect the complex nonlinear nature
problem within the system much better. Equation (21) could

be applied to analyze and simulate the dynamic characteris-
tics of the HTGS.

At the equilibrium point (0, 0, 0, 0), the following condi-
tion has to be satisfied:

𝜔 = 0,

𝑚
𝑡
= 𝑒
𝑦
𝑦,

𝑦 = −𝑘
𝑖

𝛿

𝜔
0

,

𝑒
𝑦
𝑘
𝑖

𝛿

𝜔
0

+
𝐸


𝑞
𝑉
𝑠

𝑥
𝑑𝑥∑

sin 𝛿 +
𝑉
2

𝑠

2

𝑥


𝑑𝑥∑
− 𝑥
𝑞𝑥∑

𝑥
𝑑𝑥∑

𝑥
𝑞𝑥∑

sin 2𝛿 = 0.

(22)

Equations (21) and (22) can be numerically solved to
investigate the nonlinear behaviors of HTGS such as Hopf
bifurcation points, bifurcation surface of PID adjustment co-
efficients, time domain response waveforms of state variables,
and Lyapunov exponent with MATLAB by using a variable-
step continuous solver based on the four-order Runge-Kutta
formula. Time step is 0.01 in the study.

3. The Existence of Dynamic Hopf Bifurcation

3.1. Existence Determination of Hopf Bifurcation. For a four-
dimensional nonlinear system, the criteria for the existence of
Hopf bifurcation are given in the following theorem. Mean-
while, the bifurcation value collection can also be determined
when Hopf bifurcation occurs.

Theorem 1. For a nonlinear system 𝑦 = 𝐹(𝑥, 𝜇), 𝑥 ∈ 𝑅
4, 𝜇 ∈

𝑅
1 is the bifurcation parameter, 𝑥 = 0 is the equilibrium point,

and the Jacobi matrix characteristic polynomial at the equilib-
rium point is

𝑓 (𝜆, 𝜇) = 𝜆
4
+ 𝑝
3
(𝜆) 𝜆
3
+ 𝑝
2
(𝜆) 𝜆
2
+ 𝑝
1
(𝜆) 𝜆 + 𝑝

0
(𝜆) .

(23)

If 𝜇 = 0, the following conditions hold.
(1) The coefficient 𝑝

𝑖
> 0 (𝑖 = 0, 1, 2, 3),

𝑝
3
𝑝
2
𝑝
1
= 𝑝
2

3
𝑝
0
+ 𝑝
2

1
. (24)

(2)

𝑝


0
̸= (

𝑝
3
𝑝
0

𝑝
1

−
𝑝
1

𝑝
3

)
𝑝
3
𝑝


1
− 𝑝


3
𝑝
1

𝑝2
3

+
𝑝


2
𝑝
1

𝑝
3

, (25)

where ∗ = 𝑑
∗
/𝑑𝜇, when |𝜇| is sufficiently small, Hopf bifurca-

tion exists in one side of 𝜇 = 0, and the period of limit cycle can
be described as follows:

𝑇 = 2𝜋√
𝑝
3

𝑝
1

. (26)

This theorem is the direct algebraic criterion to determine
the existence of Hopf bifurcation for a four-dimensional system,
which can avoid excessive and tedious calculations. However,
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the theorem does not give bifurcation direction. Each point on
the surface that is determined by (24) is bifurcation critical
point when Hopf bifurcation occurs (the whole bifurcation
critical points constitute the entire bifurcation collection).
For example, periodic oscillation phenomenon, namely, Hopf
bifurcation, will occur, if the system parameters and the PID
parameters satisfy conditions 1 and 2 of the above theorem in a
certain operating condition.The surface determines the scope of
the system’s stability region also. In fact, from the perspective of
nonlinear dynamical systems structure stability analysis, when
the PID parameters can meet with some certain conditions, the
structure stability of the system will change dramatically and
then comes to the system structure instability, which leads to
complex nonlinear oscillations of the system.

3.2. Analysis and Simulation for Hopf Bifurcation. Taking a
practical power plant, for example, setting parameters 𝜔

0
=

314, 𝑇
𝑤

= 0.8 s, 𝑇
𝑎𝑏

= 9.0 s, 𝑇
𝑦

= 0.1 s, 𝐷 = 2, 𝐸
𝑞
= 1.35,

𝑉
𝑠
= 1, 𝑥

𝑑𝑥∑
= 1.15, 𝑥

𝑞𝑥∑
= 1.474, 𝑒

𝑞ℎ
= 0.5, 𝑒

𝑦
= 1.0,

and 𝑒 = 0.7, respectively, analyzes theoretical calculation and
simulation in the paper based on the data. The followings
are the system Jacobi matrix characteristic polynomial coef-
ficients at equilibrium point (0, 0, 0, 0):

𝑝
3
= 12.72 − 1.56 ∗ 𝐾

𝑑
;

𝑝
2
= 2.78 ∗ 𝐾

𝑑
− 1.56 ∗ 𝐾

𝑝
+ 62.07;

𝑝
1
= 2.78 ∗ 𝐾

𝑝
− 1.56 ∗ 𝐾

𝑖
+ 434.15;

𝑝
0
= 2.78 ∗ 𝐾

𝑖
+ 857.2.

(27)

It requires all the characteristic polynomial coefficients
𝑝
𝑖
> 0 (𝑖 = 0, 1, 2, 3) by condition 1 when using Theorem 1

to determine the existence of Hopf bifurcation. For example,
𝑝
3
> 0; then𝐾

𝑑
< 8.17857, which means that the Hopf bifur-

cation area is limited to the range of𝐾
𝑑
< 8.17857. Similarly,

the ranges of𝐾
𝑖
and𝐾

𝑝
can be obtained. After substituting 𝑝

𝑖

into (24), a three-parameter implicit polynomial is obtained,
and a space bifurcation surface can be made according to the
polynomial, as shown in Figure 2.

All the points on the surface are Hopf bifurcation critical
points that would lead to the amplitude oscillation of the unit;
stability region lies beneath the surface; PID parameters in
stability region ensure the stable and safe operation of units;
the instability region is located above surface in certain area.
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Figure 3: Curves of bifurcation points with 𝐾
𝑖
= 0, 1, 3.
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Figure 4: Bifurcation diagram of rotor speed 𝜔.

Values of the PID parameters that are above the surface or
on the surface should be avoided when a PID or a gain-
scheduling PID scheme is used in the system. Otherwise, the
Hopf bifurcation or undesirable oscillations may occur in the
governing system. Figure 2 can be used to study the relation-
ship between the stability of system and PID parameters, and
stable PID parameters could be chosen from it directly.When
taking 𝜇

𝑑
= 𝐾
𝑑
− 𝐾
𝑑
∗ or 𝜇

𝑝
= 𝐾
𝑝
− 𝐾
𝑝
∗ as the bifurcation

parameter, it can be calculated that the left hand side of (25) is
equal to zero, while the right hand side is not; thus condition
2 of the theorem holds.

According to Theorem 1, when |𝜇| is sufficiently small,
Hopf bifurcation phenomenon of the system will take place.
For example, when 𝐾

𝑖
∗ = 1 and 𝐾

𝑝
∗ = 2, the bifurcation

parameters 𝐾
𝑑1
∗ = 0.313 and 𝐾

𝑑2
∗ = 2.036 can be calculated

from (24). 𝐾
𝑑1
∗ and 𝐾

𝑑2
∗ can also be got by the intersection

values between the curve (𝐾
𝑖
= 1) and the line (𝐾

𝑝
= 2), as

shown in Figure 3. The curve (𝐾
𝑖
= 0, 1, 3) is the boundary

between stability region and limit cycle; point that located in
limit cycle, for example,𝐾

𝑖
= 1,𝐾

𝑑
= 2.5, and𝐾

𝑝
= 2, would

lead to the undesirable oscillation. Figure 3 is more intuitive
to tell the stale and unstable PID parameters compared with
Figure 2.

Figure 4 is the bifurcation diagram of unit speed𝜔.When
𝐾
𝑝

= 2, 𝐾
𝑖
= 1, and 𝐾

𝑑
is the bifurcation parameter, there

are two bifurcation points in the figure; that is, 𝐾
𝑑1

= 0.313



6 Journal of Applied Mathematics

Table 1: Changes of system properties with the bifurcation parameter𝐾
𝑑
.

Bifurcation parameter
𝐾
𝑑

𝐾
𝑑
< 𝐾
𝑑1
∗ 𝐾

𝑑
= 𝐾
𝑑1
∗ = 0.313 𝐾

𝑑1
∗ < 𝐾

𝑑
< 𝐾
𝑑2
∗ 𝐾

𝑑
= 𝐾
𝑑2
∗ = 2.036 𝐾

𝑑
> 𝐾
𝑑2
∗

Jacobi matrix
eigenvalues

Two complex
conjugate eigenvalues,
negative real part one
and positive real part

one

−2.46

−9.77

−4.5𝑒 − 5 ± 5.98𝑖

Two complex
conjugate eigenvalues
with negative real

parts

−2.76

−6.80

−2.7𝑒 − 6 ± 6.77𝑖

Two complex
conjugate eigenvalues,
negative real part one
and positive real part

one

Property Stable limit cycle center of bifurcation
in a supercritical state

Stable focus, stable
domain

Center of bifurcation
in a supercritical state Stable limit cycle

𝛿

t (s)

0

0

0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

T = 1.053 s

(a)

T = 1.053 s
𝜔 0

×10−3

5

−5

t (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(b)

Figure 5: Time waveforms of 𝛿 and 𝜔 with 𝐾
𝑖
= 1, 𝐾

𝑝
= 2, and 𝐾

𝑑
= 0.309.

and 𝐾
𝑑2

= 2.036 as presented calculated by the Matcont
software. It is observed that the system is stable and system
state variable𝜔will converge to the equilibrium point 0 when
𝐾
𝑑1

< 𝐾
𝑑
< 𝐾
𝑑2
; it will converge to a stable limit cycle when

𝐾
𝑑
< 𝐾
𝑑1

or 𝐾
𝑑
> 𝐾
𝑑2
, and the amplitude of the limit cycle

oscillation corresponds to the ordinate value of limit cycle
curve. The bifurcation thresholds 𝐾

𝑑1
and 𝐾

𝑑2
in Figure 4

are consistent with the intersection values in Figure 3 and
the results calculated from (24) as shown in Figure 2. Table 1
shows the properties of the system and the changes of Jacobi
matrix eigenvalues with different 𝐾

𝑑
. When the system is in

stable domain (𝐾
𝑑1
∗ < 𝐾

𝑑
< 𝐾
𝑑2
∗), all eigenvalues of Jacobi

matrix have negative real parts and the system tends to be
stable. As the parameter changes to the critical bifurcation
point (𝐾

𝑑1
∗ , 𝐾
𝑑2
∗), the eigenvalues of Jacobi matrix have

complex conjugate eigenvalues with zero (−4.5𝑒−5, −2.7𝑒−6)

real part; that is, the system is in a supercritical state. When
𝐾
𝑑

< 𝐾
𝑑1
∗ or 𝐾

𝑑
> 𝐾
𝑑2
∗ , the matrix has two complex

conjugate eigenvalues; one has a negative real part and the
other has a positive real part, system state variables cannot
converge to the equilibrium point at this time, and the system
is in stable amplitude oscillation (limit cycle) in this region.

Table 1 provides theoretical 𝑒 explanation for the phe-
nomenon that occurs in Figure 4. Dynamic behaviors of
nonlinear systems in critical bifurcation point on both sides
can be seen from Figure 4 and Table 1 clearly. Furthermore, it
can be obtained from simulation and theoretical analysis that
the farther from the two bifurcation points (𝐾

𝑑1
∗ = 0.313

and 𝐾
𝑑2
∗ = 2.036) and the nearer to middle place the 𝐾

𝑑

is, the quicker the convergence rate is and the more stable
the system is. In practical applications, value of𝐾

𝑑
should be

between two critical places and the farther the better, which

will be verified by the simulation results in Figures 5, 6, 7,
and 8.

Time domain response waveforms of 𝛿 and 𝜔 after sta-
bilization can be seen in Figure 5 where the PID parameters
are 𝐾

𝑖
= 1, 𝐾

𝑝
= 2, and 𝐾

𝑑
= 0.309, which are in limit

cycle area in Figure 3, indicating that system state variables
𝛿 and 𝜔 will converge to a stable limit cycle. The motion of
the system at this value of adjustment coefficients is sustained
periodic oscillation and the oscillations amplitude of 𝜔 is the
limit cycle curve ordinate value at point𝐾

𝑑
= 0.309, as can be

seen from Figure 4. In addition, the oscillation cycle of 𝛿 and
𝜔 at bifurcation point is about 1.053 s.Meanwhile, it can be got
that 𝑝

3
= 12.24, 𝑝

1
= 438.15 easily from (27), so the period of

limit cycle𝑇 = 1.050 s can be calculated from (26) at theHopf
bifurcation point, which is consistent with the simulation
result.These results indicate that the governing systemmakes
a periodic vibration and further reveal that the system is not
able to be stable. Similarly, the waveforms of 𝛿 and 𝜔 for the
value of 𝐾

𝑑
= 0.6, 0.8, 1.15, which are beneath the limit cycle

curve (𝐾
𝑖
= 1), namely, the stable parameters, are presented

in Figures 6 to 8. After a period of time, each state (𝛿 and
𝜔) will converge to equilibrium point 0 and the system keeps
steady at these values of adjustment coefficients; the biggest 𝛿
and𝜔 value are 0.5, 0.01, respectively. It is observed that when
value of𝐾

𝑑
is farther from the two critical points (𝐾

𝑑1
= 0.313

and 𝐾
𝑑2

= 2.036) and nearer to middle place (1.175), the
convergence rate is quicker and the system is more stable.

Figures 9 and 10 show the phase space orbits of the system
variables. It can be observed that the closed orbits limit cycles
for these parameters formed in a certain region in the phase
space orbit when 𝜇

𝑑
= 0.002; thus 𝐾

𝑖
= 1, 𝐾

𝑝
= 2, and 𝐾

𝑑
=

2.038. The system shows a diffused and nonlinear growth
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Figure 6: Time waveforms of 𝛿 and 𝜔 with 𝐾
𝑖
= 1, 𝐾

𝑝
= 2, 𝐾

𝑑
= 0.6.

𝛿 0

1

0.5

−0.5

−1

t (s)
0 50 100 150 200 250

(a)

𝜔

−0.02

−0.01

0

0.01

0.02

t (s)
0 50 100 150 200 250

(b)

Figure 7: Time waveforms of 𝛿 and 𝜔 with 𝐾
𝑖
= 1, 𝐾

𝑝
= 2, and 𝐾

𝑑
= 0.8.
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Figure 8: Time waveforms of 𝛿 and 𝜔 with 𝐾
𝑖
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= 1.15.
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oscillations curve. Hopf bifurcation occurs and the system
tends to be a stable oscillation state where −0.06 < 𝑚

𝑡
< 0.06,

−0.04 < 𝜔 < 0.04, −1 < 𝛿 < 1, −0.04 < 𝑦 < 0.04, indicating
that the system is in sustained periodic oscillation state; this
value of the differential adjustment coefficient cannot be
used in practical applications. Therefore, when the turbine
regulating system uses PID (or gain scheduling PID) strategy,
the values of adjustment coefficients should be beneath the
limit cycle curve. Otherwise, there may be a sustained and
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Figure 10: Phase orbit of𝑚
𝑡
, 𝜔, and 𝑦.

stable oscillations, instead of tending to be stable, and the
governing system would lose stability finally, leading to an
unstable control.

4. Analysis and Simulation for Chaos

When 𝐾
𝑑

> 2.5, with the continually increasing of 𝐾
𝑑
,

unit speed 𝜔 on bifurcation diagram remains as a single
rising curve until 𝐾

𝑑
= 5.72. The bifurcation diagram gets
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an intricate pattern when 𝐾
𝑑

> 5.72, the system state
parameters converge neither to the equilibrium point nor
to a stable limit cycle, and it undergoes a random motion
without any rules, namely, the chaotic motion.There are rich
and complex nonlinear dynamical behaviors in this area, as
shown in Figure 11.

Lyapunov exponent is a quantitative indicator to measure
the systemdynamic behavior, which indicates the average rate
of convergence or divergence of the system in phase space
among different adjacent tracks. The existence of chaotic
dynamics for the system can be judged intuitively by the
largest Lyapunov exponent depending onwhether it is greater
than 0 or not. The system chaotic motion can be obtained
by Lyapunov exponent with different 𝐾

𝑑
, as presented in

Figure 12. When 𝐾
𝑑

≦ 5.72, the largest Lyapunov exponent
LEl is zero, indicating that the system is in periodic motion
state (limit cycle). In the vicinity of 5.72 ≦ 𝐾

𝑑
≦ 6.0, LE1

changes between 0 and 1, and thus, the systemmovement state
alternates between periodic motion and chaotic motion; LE1
and LE2 are both greater than zero till 𝐾

𝑑
= 8.0 and means

chaotic motion that leads to the unstable state of the control
system exists.

Figure 13 shows the system stability domain, limit cycles,
and chaotic region of the system when 𝐾

𝑖
= 1.0, There are

three different areas in the Fig, namely, the stable region,
limit cycle, and chaos region, respectively; boundary between
periodic motion and chaotic zone is determined by the three
PID parameters especially𝐾

𝑑
when the maximum Lyapunov

exponent LEl is greater than zero.
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Chaotic motion of nonlinear systems can generate attrac-
tors in the phase space with unique nature. The original
stable periodic motion turns to instability after entering into
the chaotic region. Chaotic attractor has a complex motion
internal with countless unstable periodic orbits studded in
it. Overall, the system trajectories are always stretching and
varying within a certain range and quite disordered in some
part, leading to the chaotic strange attractor. When𝐾

𝑝
= 2.0,

𝐾
𝑖
= 1.0, and 𝐾

𝑑
= 6.5, chaotic attractors that are similar to

the one with scroll structure in Chua’s circuit [37] generate
in the 𝛿, 𝜔,𝑚

𝑡
and 𝛿, 𝜔, 𝑦 phase space, as shown in Figures

14 and 15. It is observed that they have the characteristic
of being globally bounded, but being local unstable, which
would do great harm to the HTGS in operation, further
reveals that the system would lose stability finally. Figure 16
is the time domain response waveforms of 𝛿 and 𝜔, result
shows that the system makes a disordered and aperiodic
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oscillation, and behaviors of the system are hardly to be
predicted. The rotor angle 𝛿 and turbine speed 𝜔 have left
their original position largely, oscillating between −50 and 50
−0.1 to 0.1, respectively, with a randomperiod, and the system
is in a chaos, which means that this value of the differential
adjustment coefficient should be avoided.

Poincare maps are shown in Figures 17 and 18. It can be
seen that numerous intersections of the continuous trajectory
turn up in the Poincare maps on section of 𝜔 = 0 and𝑚

𝑡
= 0.

However, they neither fill with the entire phase space nor
distribute discretely in the 𝛿, 𝑦,𝑚

𝑡
and 𝛿, 𝜔, 𝑦 phase space

but occur in a certain region frequently, constituting a piece
of dense point just like cloud. These results indicate that the
system is in chaotic state and the system cannot tend to be
stable. Figures 11, 12, 13, 14, 15, 16, 17, and 18 verify the chaotic
and aperiodic movement of the system from mathematical
perspective.

5. Conclusion

In this paper, a fully coupled nonlinear mathematical model
for HTGS has been developed. Extensive investigations of the
nonlinear behaviors of an example HTGS were conducted
using the proposedmodel.The existence and stability ofHopf
bifurcation were studied first. Both the simulation results
and theoretical analysis predicted that Hopf bifurcation
would occur when the governor’s parameters satisfy certain
criteria. It was also found that the convergence rate and
stability of the system were closely related to the bifurcation
parameters, indicating that the PID adjustment coefficient
parameters have to be carefully selected to guarantee the
safe and stable operation of hydroelectric generating unit.
Relevant stability ranges of PID adjustment coefficients for
the exampleHTGSwere presented in the paper. In addition to
the study of Hopf bifurcation, chaotic behaviors of the system
were also investigated extensively using different methods.
It was found that in certain region of PID parameter space,
chaos phenomenon would occur and lead to the chaotic
oscillatory and unstable control of the system,which has been
identified as a cause of decreased availability and reduced
stability of the system. The above investigations on Hopf
bifurcation and chaos phenomenon of the example HTGS
clearly illustrated the complex nonlinear nature of the system.
The simulation results based on the proposed model were
shown to have good correlation with the theoretical analysis
predictions.Themodel presented in this study for the analysis
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Figure 17: Poincare map with 𝜔 = 0.
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of the dynamic behaviors of HTGS can be further extended
to a more sophisticated system.

Some related topics, such as data-driven framework [38],
chaos control, and Hopf Bifurcation in HTGS with nonlinear
saturation, would be considered in the future work to achieve
more practical oriented results.

Nomenclature

𝐻(𝑠): Laplace transform of ℎ, p.u.
𝑄(𝑠): Laplace transform of 𝑞, p.u.
𝑄
0
: Initial turbine flow of turbine, m3/s

𝐻
0
: Initial hydraulic head of turbine, m

𝑔: Gravitational acceleration
𝑙: Penstock length, m
𝐴: Penstock area, m2
𝐷: Penstock diameter, m
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𝑓: Head loss coefficient, p.u.
𝑎: Pressure wave velocity, m/s
𝑇
𝑟
: Elastic time constant, s

𝑇
𝑤
: Water starting time, s

𝑦: Incremental deviation of guide vane/wicket
gate position, p.u.

𝑒
𝑥
, 𝑒
𝑦
, 𝑒
ℎ
: Partial derivatives of turbine torque with

respect to head, guide vane, and speed, p.u.
𝑒
𝑞𝑥
, 𝑒
𝑞𝑦
, 𝑒
𝑞ℎ
: Partial derivatives of the flow with respect to
head, guide vane, and turbine speed, p.u.

𝛿: Rotor angle, rad
𝜔: Turbine/rotor speed, rad/s
𝜔
0
: Base angular speed, rad/s

Δ𝜔: Speed deviation
𝐸


𝑞
: Transient electric potential of 𝑞-axis, p.u.

𝑉
𝑠
: Infinite bus voltage, p.u.

𝑥


𝑑𝑥∑
: Transient reactance of 𝑑-axis, p.u.

𝑥


𝑞𝑥∑
: Synchronous reactance of 𝑞-axis, p.u.

𝑥


𝑑
: Direct axis transient reactance, p.u.

𝑥
𝑞
: Quadrature axis reactance, p.u.

𝑥
𝑇
: Transformer short circuit reactance, p.u.

𝑥
𝐿
: Transmission line reactance, p.u.

𝑇
𝑎𝑏
: Mechanical starting time, s

𝑚
𝑡
: Mechanical torque of turbine, N.m

𝑚
𝑒
: Electrical torque, N.m

𝐾: Damping factor, p.u.
𝑃
𝑒
: Terminal active power

𝑃
𝑚
: Output power

𝑇
𝑦
: Engager relay time constant

𝐾
𝑝
: Proportional adjustment coefficient

𝐾
𝑖
: Integral adjustment coefficient

𝐾
𝑑
: Differential adjustment coefficient.
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