
Research Article
Weak Solutions for a Sixth Order Cahn-Hilliard Type Equation
with Degenerate Mobility

Aibo Liu and Changchun Liu

Department of Mathematics, Jilin University, Changchun 130012, China

Correspondence should be addressed to Changchun Liu; liucc@jlu.edu.cn

Received 29 January 2014; Accepted 4 March 2014; Published 1 April 2014

Academic Editor: Ming Mei

Copyright © 2014 A. Liu and C. Liu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study an initial-boundary problem for a sixth order Cahn-Hilliard type equation, which arises in oil-water-surfactant mixtures.
An existence result for the problem with a concentration dependent diffusional mobility in three space dimensions is presented.

1. Introduction

We consider

𝑢
𝑡
− div [𝑚 (𝑢) (𝑘∇Δ2𝑢 + ∇ (−𝑎 (𝑢) Δ𝑢 − 𝑎

󸀠
(𝑢)

2

|∇𝑢|
2

+𝑓 (𝑢)))] = 0,

(1)

inΩ×(0, 𝑇), whereΩ ⊂ R3 is a boundeddomain,𝑚(𝑢) = |𝑢|𝑛,
𝑛 > 1 is mobility, 𝑘 > 0, 𝑎(𝑢) = 𝑎

1
𝑢
2
+ 𝑎
2
, and 𝑎

1
> 0, 𝑎

2

are constants [1]. From the physical consideration, we prefer
to consider a typical case of the volumetric free energy 𝐹(𝑢);
that is, 𝐹󸀠(𝑢) = 𝑓(𝑢), in the following form [1, 2]:

(𝐻1) 𝐹 (𝑢) = (𝑢 + 1)
2
(𝑢
2
+ ℎ
0
) (𝑢 − 1)

2
. (2)

Equation (1) is supplemented by the boundary value condi-
tions

𝑢|
𝜕Ω
= Δ𝑢|

𝜕Ω
= Δ
2
𝑢|
𝜕Ω
= 0, 𝑡 > 0 (3)

and the initial value condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) . (4)

Equation (1) is the sixth order parabolic equation which
describes dynamics of phase transitions in ternary oil-water-
surfactant systems [2]. Here 𝑢(𝑥, 𝑡) is the scalar order param-
eter which is proportional to the local difference between

oil and water concentrations. Pawłow and Zajączkowski [2]
proved that the initial-boundary value problem (1)–(4) with
𝑚(𝑢) = 1 admits a unique global smooth solution which
depends continuously on the initial datum.Wang and Liu [3]
proved that the solutions of problem (1)–(4) with 𝑚(𝑢) =

1 might not be classical globally. In other words, in some
cases, the classical solutions exist globally, while in some
other cases, such solutions blow up at a finite time. They also
discussed the existence of global attractor. Liu and Wang [4]
considered the optimal control problem for the problem (1)–
(4) with 𝑚(𝑢) = 1. They proved the existence of optimal
solution. The optimality system is also established. Since
the mobility depends on the concentration in general, the
equation with nonlinear main part reflects even more exactly
the physical reality comparing to the one with linear main
part. Schimperna and Pawłow [5] studied (1) with viscous
term Δ𝑢

𝑡
,𝑚(𝑢) = 1 and logarithmic potential

𝐹 (𝑟) = (1 − 𝑟) log (1 − 𝑟) + (1 + 𝑟) log (1 + 𝑟) − 𝜆
2

𝑟
2
,

𝜆 > 0.

(5)

They investigated the behavior of the solutions to the sixth
order system as the parameter 𝛾 tends to 0. The uniqueness
and regularization properties of the solutions have been
discussed. Liu [6] studied the problem (1)–(4) and he proved
the existence of classical solutions for two dimensions and
𝑚(𝑠) ∈ 𝐶

1+𝛼
(R),𝑀

1
≤ 𝑚(𝑠), |𝑚󸀠(𝑠)|2 ≤ 𝑀

2
𝑚(𝑠).
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In this paper, we study the problem (1)–(4) with degener-
ate concentration dependent mobility. The main difficulties
for treating the problem are caused by the degeneracy of the
principal part, nonlinearity of the fourth order term, and the
lack ofmaximumprinciple. Ourmethod is based onGalerkin
approximation and Simon’s compactness results.

This paper is organized as follows. In Section 2, using
Galerkin approximation, we prove the existence of the weak
solution for positive mobility. In Section 3, we prove the
existence of the weak solution for degenerate case.

2. Existence for Positive Mobilities

In this section, we study the Cahn-Hilliard equation with
a mobility which is bounded away from zero. We prove
existence of weak solutions.

Consider the following sixth order Cahn-Hilliard equa-
tion:

𝑢
𝑡
= div (𝑚 (𝑢) ∇𝜔) ,

𝜔 = 𝑘Δ
2
𝑢 − 𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢) ,

(6)

with the boundary conditions

𝑢|
𝜕Ω
= Δ𝑢|

𝜕Ω
= Δ
2
𝑢|
𝜕Ω
= 0, 𝑡 > 0 (7)

and the initial value

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) . (8)

In this section, we assume Ω is a bounded domain with
Lipschitz boundary and𝑚 such that

(i) 𝑚(𝑠) ∈ 𝐶(𝑅, 𝑅+) and there is 𝑚
1
> 0 such that 𝑚

1
≤

𝑚(𝑠).
Under these assumptions we can state the following

theorem.

Theorem 1. Suppose 𝑢
0
∈ 𝐻
2
(Ω). Then there exists a pair of

functions (𝑢, 𝜔) such that

(1) 𝑢 ∈ 𝐿∞(0, 𝑇;𝐻2(Ω)) ∩ 𝐶([0, 𝑇]; 𝐿2(Ω)),
(2) 𝑢
𝑡
∈ 𝐿
2
(0, 𝑇; (𝐻

1
(Ω))

󸀠

),
(3) 𝑢(0) = 𝑢

0
,

(4) 𝜔 ∈ 𝐿2(0, 𝑇;𝐻1(Ω)),

which satisfies equation (1) in the following weak sense:

∫

𝑇

0

⟨𝜉(𝑡), 𝑢
𝑡
(𝑡)⟩
𝐻
1
,(𝐻
1
)
󸀠𝑑𝑡 = −∫

Ω
𝑇

𝑚(𝑢) ∇𝜔∇𝜉 𝑑𝑥 𝑑𝑡, (9)

for all 𝜉 ∈ 𝐿2(0, 𝑇;𝐻1(Ω)), and

∫

Ω

𝜔𝜙𝑑𝑥 = 𝑘∫

Ω

Δ𝑢Δ𝜙𝑑𝑥

+∫

Ω

(−𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢))𝜙𝑑𝑥,

(10)

for all 𝜙 ∈ 𝐻2(Ω), and almost all 𝑡 ∈ [0, 𝑇].

Proof. To prove the theorem we apply a Galerkin approxima-
tion. Let {𝜙

𝑖
}
𝑖∈𝑁

be the eigenfunctions of the Laplace operator
with Neumann boundary conditions; that is,

−Δ𝜙
𝑖
= 𝜆
𝑖
𝜙
𝑖
, in Ω,

∇𝜙
𝑖
⋅ 𝑛 = 0, on 𝜕Ω.

(11)

The eigenfunction 𝜙
𝑖
is orthogonal in the 𝐿2(Ω), 𝐻1(Ω),

and 𝐻2(Ω) scalar product. We normalize the 𝜙
𝑖
such that

(𝜙
𝑖
, 𝜙
𝑗
)
𝐿
2
(Ω)

= 𝛿
𝑖𝑗
. Furthermore we assume without loss of

generality that 𝜆
1
= 0. Now we consider the following

Galerkin ansatz for (6):

𝑢
𝑁
(𝑡, 𝑥) =

𝑁

∑

𝑖=1

𝑐
𝑁

𝑖
(𝑡) 𝜙
𝑖
(𝑥) , 𝜔

𝑁
(𝑡, 𝑥) =

𝑁

∑

𝑖=1

𝑑
𝑁

𝑖
(𝑡) 𝜙
𝑖
(𝑥) ,

(12)

∫

Ω

𝜕
𝑡
𝑢
𝑁
𝜙
𝑗
𝑑𝑥 = −∫

Ω

𝑚(𝑢
𝑁
) ∇𝜔
𝑁
∇𝜙
𝑗
𝑑𝑥, 𝑗 = 1, 2, . . . , 𝑁,

(13)

∫

Ω

𝜔
𝑁
𝜙
𝑗
𝑑𝑥

= 𝑘∫

Ω

Δ𝑢
𝑁
Δ𝜙
𝑗
𝑑𝑥

+ ∫

Ω

( − 𝑎 (𝑢
𝑁
) Δ𝑢
𝑁

−

𝑎
󸀠
(𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝑁
))𝜙
𝑗
𝑑𝑥,

(14)

𝑢
𝑁
(0) =

𝑁

∑

𝑖=1

(𝑢
0
, 𝜙
𝑖
)
𝐿
2
(Ω)
𝜙
𝑖
. (15)

This gives an initial value problem for a system of ordinary
differential equations for (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑁
):

𝜕
𝑡
𝑐
𝑁

𝑗
= −

𝑁

∑

𝑘=1

𝑑
𝑁

𝑘
∫

Ω

𝑚(

𝑁

∑

𝑖=1

𝑐
𝑁

𝑖
𝜙
𝑖
)∇𝜙
𝑘
∇𝜙
𝑗
𝑑𝑥,

𝑑
𝑁

𝑗

= 𝑘𝜆
2

𝑗
𝑐
𝑁

𝑗
+ ∫

Ω

𝑎(

𝑁

∑

𝑖=1

𝑐
𝑁

𝑖
𝜙
𝑖
)𝜆
𝑗
𝑐
𝑁

𝑗
𝑑𝑥

+ ∫

Ω

(−

𝑎
󸀠
(∑
𝑁

𝑖=1
𝑐
𝑁

𝑖
𝜙
𝑖
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁

∑

𝑖=1

𝑐
𝑁

𝑖
∇𝜙
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑓(

𝑁

∑

𝑖=1

𝑐
𝑁

𝑖
𝜙
𝑖
))

× 𝜙
𝑗
𝑑𝑥,

𝑐
𝑁

𝑗
(0) = (𝑢

0
, 𝜙
𝑗
)
𝐿
2
(Ω)
.

(16)
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By use of the Peano existence theorem, the initial value
problem has a local solution. Now, we set

𝐸 (𝑡) = ∫

Ω

(

𝑘

2

(Δ𝑢
𝑁
)

2

+

𝑎 (𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

+ 𝐹 (𝑢
𝑁
))𝑑𝑥.

(17)

In order to derive a priori estimates we differentiate the 𝐸(𝑡)
and get

𝑑

𝑑𝑡

𝐸 (𝑡) = ∫

Ω

(𝑘Δ𝑢
𝑁
Δ𝑢
𝑁

𝑡
+

𝑎
󸀠
(𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑢
𝑁

𝑡

+ 𝑎 (𝑢
𝑁
) ∇𝑢
𝑁
∇𝑢
𝑁

𝑡
+ 𝑓 (𝑢

𝑁
) 𝑢
𝑁

𝑡
)𝑑𝑥

= ∫

Ω

(𝑘Δ𝑢
𝑁
Δ𝑢
𝑁

𝑡
−

𝑎
󸀠
(𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑢
𝑁

𝑡

− 𝑎 (𝑢
𝑁
) Δ𝑢
𝑁
𝑢
𝑁

𝑡
+ 𝑓 (𝑢

𝑁
) 𝑢
𝑁

𝑡
)𝑑𝑥

= ∫

Ω

𝜔
𝑁
𝑢
𝑁

𝑡
𝑑𝑥 = −∫

Ω

𝑚(𝑢
𝑁
)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝜔
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥.

(18)

This implies

∫

Ω

(

𝑘

2

(Δ𝑢
𝑁
)

2

+

𝑎 (𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

+ 𝐹 (𝑢
𝑁
))𝑑𝑥

+ ∫

Ω
𝑇

𝑚(𝑢
𝑁
)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝜔
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡

= ∫

Ω

(

𝑘

2

(Δ𝑢
𝑁
(0))

2

+

𝑎 (𝑢
𝑁
(0))

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+𝐹 (𝑢
𝑁
(0)))𝑑𝑥 ≤ 𝐶.

(19)

The last inequality follows the fact that 𝑢
0
∈ 𝐻
2
(Ω).

On the other hand, we have

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ≤ 𝜀∫

Ω

(Δ𝑢
𝑁
)

2

𝑑𝑥 + 𝐶 (𝜀) ∫

Ω

(𝑢
𝑁
)

2

𝑑𝑥.

(20)

By the Young inequality

(𝑢
𝑁
)

2

≤ 𝜀(𝑢
𝑁
)

6

+ 𝐶
1𝜀
, (𝑢

𝑁
)

4

≤ 𝜀(𝑢
𝑁
)

6

+ 𝐶
2𝜀
. (21)

Combining the above inequalities and using 𝑎(𝑢) = 𝑎
1
𝑢
2
+𝑎
2
,

𝑎
1
> 0 yield

ess sup
0<𝑡<𝑇

‖𝑢(𝑡)‖
𝐻
2
(Ω)

≤ 𝐶. (22)

This estimate implies that the (𝐶𝑁
1
, . . . , 𝐶

𝑁

𝑁
) are bounded and

therefore a global solution to the initial value problem (6)
exists. By Gagliardo-Nirenberg inequality (noticing that we
consider only the three-dimensional case)

sup
Ω

|𝑢| ≤ 𝐶
1
‖Δ𝑢‖
3/4

𝐿
2 ‖𝑢‖
1/4

𝐿
2 ≤ 𝐶. (23)

If we denote by Π
𝑁

the projection of 𝐿2(Ω) onto span
𝜙
1
, . . . , 𝜙

𝑁
, we get

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω
𝑇

𝜕
𝑡
𝑢
𝑁
𝜙𝑑𝑥𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω
𝑇

𝜕
𝑡
𝑢
𝑁
Π
𝑁
𝜙𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

Ω
𝑇

𝑚(𝑢
𝑁
) ∇𝜔
𝑁
∇Π
𝑁
𝜙𝑑𝑥𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (∫

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑚 (𝑢
𝑁
) ∇𝜔
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡)

1/2

× (∫

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
∇Π
𝑁
𝜙
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡)

1/2

≤ 𝑀(∫

Ω
𝑇

𝑚(𝑢
𝑁
)

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝜔
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡)

1/2

×
󵄩
󵄩
󵄩
󵄩
∇𝜙
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω
𝑇
)
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
∇𝜙
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω
𝑇
)
,

(24)

for all 𝜙 ∈ 𝐿2(0, 𝑇;𝐻1(Ω)). This implies
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝑡
𝑢
𝑁󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(0,𝑇;((𝐻

1
(Ω))
󸀠
)
≤ 𝐶. (25)

Using compactness results, (Simon [7] and Lions [8]) we
obtain for a subsequence (which we still denote by 𝑢𝑁)

𝑢
𝑁
󳨀→ 𝑢, weak∗ in 𝐿∞ (0, 𝑇;𝐻2 (Ω)) ,

𝑢
𝑁
󳨀→ 𝑢, strongly in 𝐶 ([0, 𝑇; 𝐿2 (Ω)]) ,

𝜕
𝑡
𝑢
𝑁
󳨀→ 𝑢, weakly in 𝐿2 (0, 𝑇; (𝐻1 (Ω))

󸀠

) ,

𝑢
𝑁
󳨀→ 𝑢, strongly in 𝐿2 (0, 𝑇; 𝐿∞ (Ω)) ,

a.e. in Ω
𝑇
.

(26)

It remains to show the convergence of 𝜔𝑁; choosing 𝑗 = 1 in
(14) gives

∫

Ω

𝜔
𝑁
𝑑𝑥

= ∫

Ω

(−𝑎 (𝑢
𝑁
) Δ𝑢
𝑁
−

𝑎
󸀠
(𝑢
𝑁
)

2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑁󵄨󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝑁
))𝑑𝑥.

(27)

By (19) and Poincaré inequality, we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
𝜔
𝑁󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(0,𝑇;𝐻

1
(Ω))

≤ 𝐶, (28)

and this implies 𝜔𝑁 → 𝜔 weakly in 𝐿2(0, 𝑇;𝐻1(Ω)).
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The strong convergence of 𝑢𝑁 in 𝐶([0, 𝑇; 𝐿
2
(Ω)]) and

the fact that 𝑢𝑁(0) → 𝑢
0
in 𝐿
2
(Ω) give 𝑢(0) = 𝑢

0
. By

𝜔
𝑁
→ 𝜔 weakly in 𝐿2(0, 𝑇;𝐻1(Ω)) and 𝜕

𝑡
𝑢
𝑁
→ 𝑢 weakly

in 𝐿2(0, 𝑇; (𝐻1(Ω))󸀠) we can pass limit in (9). Using (22), we
know (−𝑎(𝑢

𝑁
)Δ𝑢
𝑁
− (𝑎
󸀠
(𝑢
𝑁
)/2)|∇𝑢

𝑁
|
2
+ ℎ(𝑢

𝑁
)) ∈ 𝐿

2
(Ω).

Then we can pass the limit in (10).

3. Existence for the Degenerate Case

Our approach is to approximate the degenerate problem
by nondegenerate equations. By Theorem 1, we know the
existence of weak solution to the problem

𝑢
𝑡
= div (𝑚

𝜀
(𝑢) ∇𝜔) , in Ω

𝑇
,

𝜔 = 𝑘Δ
2
𝑢 − 𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢) , in Ω

𝑇
,

𝑢 = Δ𝑢 = Δ
2
𝑢 = 0, on 𝜕Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(29)

where𝑚
𝜀
(𝑢) = 𝑚(𝑢) + 𝜀.

We denote the solution by (𝑢
𝜀
, 𝜔
𝜀
); from now on we

assume either 𝜕Ω ∈ 𝐶
1,1 orΩ is convex.

Lemma2. Thesolution𝑢
𝜀
belongs to the space𝐿2(0, 𝑇;𝐻4(Ω))

and ∇Δ2𝑢
𝜀
∈ 𝐿
2
(Ω
𝑇
).

Proof. Since

∫

Ω

𝜔
𝜀
𝜙𝑑𝑥 = 𝑘∫

Ω

Δ𝑢
𝜀
Δ𝜙𝑑𝑥

+ ∫

Ω

(−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+𝑓 (𝑢
𝜀
) ) 𝜙 𝑑𝑥,

(30)

for all 𝜙 ∈ 𝐻
2
(Ω), and almost all 𝑡 ∈ [0, 𝑇], from elliptic

regularity theory, we get 𝑢
𝜀
∈ 𝐿
2
(0, 𝑇;𝐻

4
(Ω)). By ∇𝜔 ∈

𝐿
2
(Ω
𝑇
), (22) and (23), we have

∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∇(−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ ℎ (𝑢
𝜀
))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥 𝑑𝑡

= ∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 2𝑎
󸀠
(𝑢
𝜀
) ∇𝑢
𝜀
Δ𝑢
𝜀
− 𝑎 (𝑢

𝜀
) ∇Δ𝑢

𝜀
+ ℎ
󸀠
(𝑢
𝜀
) ∇𝑢
𝜀

−

𝑎
󸀠󸀠
(𝑢
𝜀
)

2

∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥 𝑑𝑡

≤ 𝐶∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡 + 𝐶∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡

+ 𝐶∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
∇Δ𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡

+ 𝐶∬

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

3

𝑑𝑥 𝑑𝑡 ≤ 𝐶.

(31)

Then we get

∇(−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ ℎ (𝑢
𝜀
)) ∈ 𝐿

2
(Ω
𝑇
) ,

(32)

which implies ∇Δ2𝑢
𝜀
∈ 𝐿
2
(Ω
𝑇
). Therefore, we get

∫

𝑇

0

⟨𝜉, 𝜕
𝑡
𝑢
𝜀
⟩
𝐻
1
,(𝐻
1
)
󸀠𝑑𝑡

= −∫

Ω
𝑇

𝑚
𝜀
(𝑢
𝜀
) ∇(𝑘Δ

2
𝑢
𝜀
− 𝑎 (𝑢

𝜀
) Δ𝑢
𝜀

−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ ℎ (𝑢
𝜀
))∇𝜉 𝑑𝑥 𝑑𝑡

(33)

for all 𝜉 ∈ 𝐿2(0, 𝑇;𝐻1(Ω)).

In the next step we prove the energy estimates.

Lemma 3. There exists an 𝜀
0
such that for all 0 < 𝜀 < 𝜀

0
, and

the following estimates hold with a constant C independent of
𝜀

(1) ess sup
0<𝑡<𝑇

∫

Ω

(

𝑘

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+

𝑎 (𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝐹 (𝑢
𝜀
)) 𝑑𝑥

+ ∫

Ω
𝑇

𝑚(𝑢
𝜀
)
󵄨
󵄨
󵄨
󵄨
∇𝜔
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡 ≤ 𝐶,

(2) ∫

Ω
𝑇

󵄨
󵄨
󵄨
󵄨
𝐽
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡 ≤ 𝐶, there 𝐽
𝜀
= 𝑚
𝜀
(𝑢
𝜀
) ∇𝜔
𝜀
.

(34)

Proof. The 𝜔
𝜀
= 𝑘Δ

2
𝑢
𝜀
+ (−𝑎(𝑢

𝜀
)Δ𝑢
𝜀
− (𝑎
󸀠
(𝑢
𝜀
)/2)|∇𝑢

𝜀
|
2
+

𝑓(𝑢
𝜀
)) ∈ 𝐿

2
(0, 𝑇;𝐻

1
(Ω)) is a valid test function in (33).

Therefore, we obtain

∫

𝑡

0

⟨𝑘Δ
2
𝑢
𝜀
+ (−𝑎 (𝑢

𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+𝑓(𝑢
𝜀
)) , 𝜕
𝑡
𝑢
𝜀
⟩

𝐻
1
,(𝐻
1
)
󸀠

𝑑𝑡

= −∫

Ω
𝑡

𝑚
𝜀
(𝑢
𝜀
) ∇
󵄨
󵄨
󵄨
󵄨
𝜔
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑡, for ∀𝑡 ∈ [0, 𝑇] .

(35)



Abstract and Applied Analysis 5

Define functions

𝑢
𝜀ℎ
(𝑡, 𝑥) :=

1

ℎ

∫

𝑡

𝑡−ℎ

𝑢
𝜀
(𝜏, 𝑥) 𝑑𝜏, (36)

where we set 𝑢
𝜀ℎ
(𝑡, 𝑥) = 𝑢

0
(𝑥) when 𝑡 ≤ 0. It is easily proved

that

Δ
2
𝑢
𝜀ℎ
󳨀→ Δ

2
𝑢
𝜀
, strongly in 𝐿2 (0, 𝑇;𝐻1 (Ω)) ,

(−𝑎 (𝑢
𝜀ℎ
) Δ𝑢
𝜀ℎ
−

𝑎
󸀠
(𝑢
𝜀ℎ
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝜀ℎ
))

󳨀→ (−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝜀
)) ,

strongly in 𝐿2 (0, 𝑇;𝐻1 (Ω)) ,

(37)

for at least a subsequence (ℎ → 0). Furthermore we can
show 𝜕

𝑡
𝑢
𝜀ℎ

→ 𝜕
𝑡
𝑢
𝜀
strongly in 𝐿2(0, 𝑇; (𝐻1(Ω))󸀠). For any

𝜉 ∈ 𝐿
2
(0, 𝑇;𝐻

1
(Ω)) we have

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝜉, 𝜕
𝑡
𝑢
𝜀ℎ
− 𝜕
𝑡
𝑢
𝜀
⟩
𝐿
2
(𝐻
1
),𝐿
2
((𝐻
1
)
󸀠
)
𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

=

1

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

⟨𝜉, ∫

𝑡

𝑡−ℎ

(𝜕
𝑡
𝑢
𝜀
(𝜏) − 𝜕

𝑡
𝑢
𝜀
(𝑡))𝑑𝜏⟩

𝐻
1
,(𝐻
1
)
󸀠

𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

⟨𝜉, ∫

0

−ℎ

(𝜕
𝑡
𝑢
𝜀
(𝑡 + 𝑠) − 𝜕

𝑡
𝑢
𝜀
(𝑡)) 𝑑𝜏⟩𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

ℎ

∫

0

−ℎ

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

0

∫

Ω

∇𝜉 ⋅ (𝐽
𝜀
(𝑡 + 𝑠) − 𝐽

𝜀
(𝑡)) 𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
∇𝜉
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω
𝑇
)
sup
−ℎ≤𝑠≤0

󵄩
󵄩
󵄩
󵄩
𝐽
𝜀
(⋅ + 𝑠) − 𝐽

𝜀
(⋅)
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω
𝑇
)
.

(38)

Since

sup
−ℎ≤𝑠≤0

󵄩
󵄩
󵄩
󵄩
𝐽
𝜀
(⋅ + 𝑠) − 𝐽

𝜀
(⋅)
󵄩
󵄩
󵄩
󵄩𝐿
2
(Ω
𝑇
)
󳨀→ 0, as ℎ 󳨀→ 0, (39)

it follows that

𝜕
𝑡
𝑢
𝜀ℎ
󳨀→ 𝜕
𝑡
𝑢
𝜀
, strongly in 𝐿2 (0, 𝑇; (𝐻1)

󸀠

) . (40)

Using 𝜕
𝑡
𝑢
𝜀ℎ
∈ 𝐿
2
(Ω
𝑇
) we have for almost all 𝑡 ∈ [0, 𝑇]

∫

𝑡

0

⟨𝑘Δ
2
𝑢
𝜀ℎ
+ (−𝑎 (𝑢

𝜀ℎ
) Δ𝑢
𝜀ℎ
−

𝑎
󸀠
(𝑢
𝜀ℎ
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

+𝑓 (𝑢
𝜀ℎ
) ) , 𝜕
𝑡
𝑢
𝜀ℎ
⟩

𝐻
1
,(𝐻
1
)
󸀠

𝑑𝑡

= ∫

𝑡

0

∫

Ω

(𝑘Δ
2
𝑢
𝜀ℎ
+ (−𝑎 (𝑢

𝜀ℎ
) Δ𝑢
𝜀ℎ
−

𝑎
󸀠
(𝑢
𝜀ℎ
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

+𝑓 (𝑢
𝜀ℎ
) )) 𝜕

𝑡
𝑢
𝜀ℎ
𝑑𝑥 𝑑𝑡

= 𝜕
𝑡
∫

𝑡

0

∫

Ω

(

𝑘

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

+

𝑎 (𝑢
𝜀ℎ
)

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

+ 𝐹 (𝑢
𝜀ℎ
)) 𝑑𝑥 𝑑𝑡

= ∫

Ω

(

𝑘

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

(𝑡) +

𝑎 (𝑢
𝜀ℎ
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀ℎ

󵄨
󵄨
󵄨
󵄨

2

(𝑡) + 𝐹 (𝑢
𝜀ℎ
(𝑡))) 𝑑𝑥

− ∫

Ω

𝑘

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
0

󵄨
󵄨
󵄨
󵄨

2

+

𝑎 (𝑢
0
)

2

|∇𝑢 (0)|
2
+ 𝐹 (𝑢

0
) 𝑑𝑥.

(41)

Pass to the limit ℎ → 0 in the equation, where we apply the
convergence properties of 𝑢

𝜀ℎ
. Hence, we get

∫

Ω

(

𝑘

2

󵄨
󵄨
󵄨
󵄨
Δ𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+

𝑎 (𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝐹 (𝑢
𝜀
)) 𝑑𝑥

+ ∫

Ω
𝑇

𝑚(𝑢
𝜀
)
󵄨
󵄨
󵄨
󵄨
∇𝜔
𝜀

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ≤ 𝐶,

(42)

and (2) follows easily from (1), and this finishes the proof of
Lemma 3.

Theorem 4. Let either 𝜕Ω ∈ 𝐶
1,1 or Ω convex and suppose

that 𝑢
0
∈ 𝐻
1
(Ω). Then there exists a pair (𝑢, 𝐽) such that

(1) 𝑢 ∈ 𝐿
2
(0, 𝑇;𝐻

4
(Ω)) ∩ 𝐿

∞
(0, 𝑇;𝐻

2
(Ω)) ∩

𝐶([0, 𝑇]; 𝐿
2
(Ω)),

(2) 𝑢
𝑡
∈ 𝐿
2
(0, 𝑇; (𝐻

1
(Ω))

󸀠

),
(3) 𝑢(0) = 𝑢

0
∇𝑢 ⋅ 𝑛 = 0 𝑜𝑛 𝜕Ω × (0, 𝑇),

(4) 𝐽 ∈ 𝐿2(Ω
𝑇
, 𝑅),

which satisfies 𝑢
𝑡
= −∇ ⋅ 𝐽 in 𝐿2(0, 𝑇; (𝐻1(Ω))󸀠); that is,

∫

𝑇

0

⟨𝜉 (𝑡) , 𝑢
𝑡
(𝑡)⟩
𝐻
1
,(𝐻
1
)
󸀠𝑑𝑡 = ∫

Ω
𝑇

𝐽 ⋅ ∇𝜉 𝑑𝑥 𝑑𝑡 (43)

for all 𝜉 ∈ 𝐿2(0, 𝑇;𝐻1(Ω)) and

𝐽 = −𝑚 (𝑢) ∇

⋅ (𝑘Δ
2
(𝑢) + (−𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢))) ,

(44)
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in the following weak sense:

∫

Ω
𝑇

𝐽 ⋅ 𝜂

= ∫

Ω
𝑇

[𝑘Δ
2
𝑢∇ ⋅ (𝑚 (𝑢) 𝜂) − 𝑚 (𝑢) ∇

× (−𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢)) ⋅ 𝜂] ,

(45)

for all 𝜂 ∈ 𝐿2(0, 𝑇;𝐻1(Ω, 𝑅3))∩𝐿∞(Ω
𝑇
, 𝑅
3
)which fulfill 𝜂⋅𝑛 =

0 on 𝜕Ω × (0, 𝑇).

Proof. From Lemma 2, we get
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩𝐿
2
(0,𝑇;𝐻

4
(Ω))

≤ 𝐶. (46)

Now we apply the compactness result [7] with 𝑋 = 𝐻
4
(Ω),

𝑌 = 𝐻
1
(Ω)(𝑌 = 𝐻

2
(Ω),𝐻

3
(Ω)), and 𝑍 = (𝐻

1
(Ω))

󸀠 to
conclude the existence of a subsequence of (𝑢

𝜀
)
𝜀
such that

𝑢
𝜀
󳨀→ 𝑢, strongly in 𝐿2 (Ω

𝑇
) ,

∇𝑢
𝜀
󳨀→ ∇𝑢, strongly in 𝐿2 (Ω

𝑇
) ,

∇Δ𝑢
𝜀
󳨀→ ∇Δ𝑢, strongly in 𝐿2 (Ω

𝑇
) ,

𝐷
2
𝑢
𝜀
󳨀→ 𝐷

2
𝑢, strongly in 𝐿2 (Ω

𝑇
) .

(47)

Furthermore using standard compactness properties we
obtain the convergence

𝜕
𝑡
𝑢
𝜀
󳨀→ 𝜕
𝑡
𝑢 weakly in 𝐿2 (0, 𝑇; (𝐻1 (Ω))

󸀠

) ,

Δ
2
𝑢
𝜀
󳨀→ Δ

2
𝑢 weakly in 𝐿2 (Ω

𝑇
) ,

𝐽
𝜀
󳨀→ 𝐽 weakly in 𝐿2 (Ω

𝑇
) .

(48)

It remains to show that 𝑢 fulfills the limit equation.The weak
convergence of 𝜕

𝑡
𝑢
𝜀
and 𝐽
𝜀
gives in the limit

∫

𝑇

0

⟨𝜉(𝑡), 𝑢
𝑡
(𝑡)⟩
𝐻
1
,(𝐻
1
)
󸀠𝑑𝑡 = ∫

Ω
𝑇

𝐽 ⋅ ∇𝜉 𝑑𝑥 𝑑𝑡 (49)

for all 𝜉 ∈ 𝐿
2
(0, 𝑇;𝐻

1
(Ω)). Now we have identified 𝐽.

Therefore, we want to pass to the limit in

∫

Ω
𝑇

𝐽
𝜀
⋅ 𝜂

= ∫

Ω
𝑇

𝑚
𝜀
(𝑢
𝜀
) ∇

× [𝑘Δ
2
𝑢
𝜀

+(−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝜀
))] 𝜂,

(50)

where 𝜂 ∈ 𝐿2(0, 𝑇;𝐻1(Ω, 𝑅3)) ∩ 𝐿∞(Ω
𝑇
, 𝑅
3
) with 𝜂 ⋅ 𝑛 = 0 on

𝜕Ω× (0, 𝑇) and the left hand side converges to ∫
Ω
𝑇

𝐽 ⋅ 𝜂. Since
∇Δ
2
𝑢
𝜀
may not have a limit in 𝐿2(Ω

𝑇
), we integrate the first

term on the right hand side of (50) by parts to get

𝑘∫

Ω
𝑇

𝑚
𝜀
(𝑢
𝜀
) ∇Δ
2
𝑢
𝜀
⋅ 𝜂 𝑑𝑥 𝑑𝑡

= −𝑘∫

Ω
𝑇

Δ
2
𝑢
𝜀
𝑚
𝜀
(𝑢
𝜀
) ∇𝜂 𝑑𝑥 𝑑𝑡

− 𝑘∫

Ω
𝑇

Δ
2
𝑢
𝜀
𝑚
󸀠

𝜀
(𝑢) ∇𝑢

𝜀
⋅ 𝜂 𝑑𝑥 𝑑𝑡 = 𝐼 + 𝐼𝐼.

(51)

It is easily proved that𝑚
𝜀
(𝑢
𝜀
) → 𝑚(𝑢) uniformly. Hence, we

have

𝑚
𝜀
(𝑢
𝜀
) 󳨀→ 𝑚 (𝑢) a.e. in Ω

𝑇
. (52)

SinceΔ2𝑢
𝜀
→ Δ
2
𝑢weakly in𝐿2(Ω

𝑇
) and𝑚

𝜀
(𝑢
𝜀
) is uniformly

bounded, we conclude

𝑘∫

Ω
𝑇

Δ
2
𝑢
𝜀
𝑚
𝜀
(𝑢
𝜀
) ∇𝜂 𝑑𝑥 𝑑𝑡 󳨀→ 𝑘∫

Ω
𝑇

Δ
2
𝑢 (𝑚 (𝑢) ∇𝜂) 𝑑𝑥 𝑑𝑡,

as 𝜀 󳨀→ 0.

(53)

Now we pass to the limit in 𝐼𝐼. We consider the case 𝑛 > 1. As
for𝑚(𝑢), we have𝑚󸀠

𝜀
(𝑢
𝜀
) → 𝑚

󸀠
(𝑢) uniformly, which gives

𝑚
󸀠

𝜀
(𝑢
𝜀
) 󳨀→ 𝑚

󸀠
(𝑢) , a.e. in Ω

𝑇
. (54)

By using

∇𝑢
𝜀
󳨀→ ∇𝑢, in 𝐿2 (Ω

𝑇
) , and a.e. in Ω

𝑇
, (55)

and the fact that𝑚󸀠
𝜀
(𝑢
𝜀
) is uniformly bounded, a generalized

version of the Lebesgue convergence theorem yields

𝑚
󸀠

𝜀
(𝑢
𝜀
) ∇𝑢
𝜀
󳨀→ 𝑚

󸀠
(𝑢) ∇𝑢, in 𝐿2 (Ω

𝑇
) . (56)

Hence

𝑘∫

Ω
𝑇

Δ
2
𝑢
𝜀
𝑚
󸀠

𝜀
(𝑢) ∇𝑢

𝜀
⋅ 𝜂 𝑑𝑥 𝑑𝑡

󳨀→ 𝑘∫

Ω
𝑇

Δ
2
𝑢𝑚
󸀠
(𝑢) ∇𝑢 ⋅ 𝜂 𝑑𝑥 𝑑𝑡,

(57)

where we use the fact that 𝜂 ∈ 𝐿∞(Ω
𝑇
).

To complete the proof of Theorem 4 we have to show

∫

Ω
𝑇

𝑚
𝜀
(𝑢
𝜀
) ∇(−𝑎 (𝑢

𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝜀
))

⋅ 𝜂 𝑑𝑥 𝑑𝑡

󳨀→ ∫

Ω
𝑇

𝑚(𝑢) ∇(−𝑎 (𝑢) Δ𝑢 −

𝑎
󸀠
(𝑢)

2

|∇𝑢|
2
+ 𝑓 (𝑢))

⋅ 𝜂 𝑑𝑥 𝑑𝑡.

(58)
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In fact, we have

∇(−𝑎 (𝑢
𝜀
) Δ𝑢
𝜀
−

𝑎
󸀠
(𝑢
𝜀
)

2

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

+ 𝑓 (𝑢
𝜀
))

= −𝑎
󸀠
(𝑢
𝜀
) ∇𝑢
𝜀
Δ𝑢
𝜀
− 𝑎 (𝑢

𝜀
) ∇Δ𝑢

𝜀
−

𝑎
󸀠󸀠
(𝑢
𝜀
)

2

∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨
∇𝑢
𝜀

󵄨
󵄨
󵄨
󵄨

2

− 𝑎
󸀠
(𝑢
𝜀
) (∇𝑢
𝜀
⋅ ∇) ∇𝑢

𝜀
+ 𝑓
󸀠
(𝑢
𝜀
) .

(59)

On the other hand, we know

𝑚
𝜀
(𝑢
𝜀
) 󳨀→ 𝑚 (𝑢) , uniformly,

∇𝑢
𝜀
󳨀→ ∇𝑢 strongly in 𝐿2 (Ω

𝑇
) ,

∇Δ𝑢
𝜀
󳨀→ ∇Δ𝑢 strongly in 𝐿2 (Ω

𝑇
) ,

𝐷
2
𝑢
𝜀
󳨀→ 𝐷

2
𝑢 strongly in 𝐿2 (Ω

𝑇
) .

(60)

Hence, when 𝜀 → 0, the right hand side of the inequality
tends to zero. Similarly, we can pass to the limit, and this
finishes the proof of Theorem 4.
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limites nonlinéaires, Dunod, Paris, France, 1969.


