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This paper considers the pricing of turbo warrants under a hybrid stochastic and local volatility model. The model consists of
the constant elasticity of variance model incorporated by a fast fluctuating Ornstein-Uhlenbeck process for stochastic volatility.
The sensitive structure of the turbo warrant price is revealed by asymptotic analysis and numerical computation based on the
observation that the elasticity of variance controls leverage effects and plays an important role in characterizing various phases of
volatile markets.

1. Introduction

Turbowarrants, which appeared first inGermany in late 2001,
have experienced a considerable growth in Northern Europe
and Hong Kong. They are special types of knockout barrier
options in which the rebate is calculated as another exotic
option. For one thing, this contract has a low vega so that
the option price is less sensitive to the change of the implied
volatility of the security market, and for another, it is highly
geared owing to the possibility of knockout. Closed form
expression for the price has been presented by Eriksson [1]
under geometric Brownianmotion (GBM) for the underlying
security.

It is well-known that the assumption of the GBM for the
underlying security price in the Black-Scholesmodel [2] does
not capture many empirical lines of evidence appeared in
financial markets.Maybe, the twomost significant shortcom-
ings of the model’s assumption lie in flat implied volatility,
whereas the volatility fluctuates depending uponmarket con-
ditions and the underestimation of extreme moves, yielding
tail risk. So, there have been a lot of alternative underlying
models developed to extend the GBM and overcome these
problems. Local volatilitymodels are one type of them, where
the volatility depends on the price level of the underlying
security itself. The most well-known local volatility model
is the constant elasticity of variance (CEV) model in which
the volatility is given by a power function of the underlying

security price. It has been proposed by Cox [3] and Cox
and Ross [4]. Another version of volatility models has been
developed by assuming security’s volatility to be a random
process governed by another state variables such as the
tendency of volatility to revert to some long-run mean value,
the variance of the volatility process itself, and so forth.
This type of models is called (pure) stochastic volatility
models. The models developed by Heston [5] and Fouque
et al. [6] are popular ones among others in this category.
Also, there is another type of generalized models for the
underlying security which have been developed in terms of
Levy processes which may have discontinuous paths. The
model by Carr et al. [7] is a well-known one of this kind
among others.

Even if those models have been developed to overcome
the major shortcomings of the Black-Scholes model, there
still remain limitations. For instance, volatility and underly-
ing risky asset price changes are perfectly correlated either
positively or negatively in the CEVmodel, whereas empirical
studies indicate no definite correlation all the time. Also, the
dynamics of the implied volatility surface created by the CEV
modelmay have an opposite direction to the observedmarket
dynamics as shown by Hagan et al. [8]. Stochastic volatility
models usually do not take into account the relationship
between volatility and underlying price (the leverage or
inverse leverage effects) directly. Much of computing time
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tends to be required for the implementation of Levy type of
models. So, recently, one has begun to see a trend of develop-
ing some sort of hybrid formulation in asset pricing. A hybrid
stochastic and local volatility model created by Choi et al. [9]
is among those alternative hybrid models for pricing options.
This newhybridmodel is equippedwith the stochastic volatil-
ity and CEV terms in the volatility part. From the hybrid
nature of the volatility, one can remove the hedging instability
created by theCEVmodel aswell as capture the leverage effect
fit to the corresponding market. To date, there have been a
number of applications of this hybrid model to the pricing
of derivatives. Refer to Choi et al. [9] and Bock et al. [10] for
European options and Lee et al. [11] for Asian options.

This paper is concernedwith the pricing of turbowarrants
which has been studied by several authors for different
models of security price in recent years. The pricing of
turbo warrants has been studied by Eriksson [1] under the
Black-Scholes model,Wong and Chan [12] under a stochastic
volatility model, Domingues [13] under the CEV model, and
Wong and Lau [14] under a jump diffusion model. This work
studies the pricing of a turbowarrant under the hybrid setting
of stochastic and local volatility provided by [9]. In particular,
the main concern is given to the sensitivity of the turbo
warrant to the elasticity parameter and parameters driving
the stochastic volatility. The choice to price a turbo warrant
with this kind of hybrid model is justified as follows. Turbo
warrants are barrier options with the rebate whose value is
computed by another path dependent option. They can be
very sensitive to the change in volatility under stochastic
volatility models as pointed out by [12], which is contrary
to the case of the Black-Scholes model. However, a frequent
criticism of stochastic volatility models for path dependent
options is that they do not produce deltas precise enough for
hedging purposes. So, relevant industry experts recommend
using a hybrid stochastic local volatility model of their own
development for the best pricing of option products. Refer to
Tataru and Travis [15]. Since the elasticity of variance controls
leverage effects and plays an important role in characterizing
various phases of volatile markets as described in Kim et al.
[16], it is worth investigating the sensitivity of the price to
elasticity parameter under a hybrid structure of the stochastic
volatility and the constant elasticity of variance.

This paper is structured as follows. Section 2 provides a
review on the decomposition of the price of turbo warrants
call option and establish a partial differential equation (PDE)
for the price based on the hybrid model (called the SVCEV
model) of [9]. In Section 3, asymptotic analysis is given
for the PDE under the assumption of fast mean reverting
stochastic volatility. Section 4 solves the approximate price
by using the finite difference method and investigates the
price behavior and compares it with the ones corresponding
to a stochastic volatility model as well as the CEV model.
Section 5 concludes.

2. Model Formulation

The contract concerned in this paper is defined as follows.
A turbo call warrant for an underlying asset, whose price at

time 𝑡 is given by 𝑆
𝑡
, pays the option possessor (𝑆

𝑇
− 𝐾)
+ at

maturity 𝑇 on the understanding that a specified barrier𝐻 ≥

𝐾 has not been passed by 𝑆
𝑡
at any time prior to the maturity.

Let us define 𝜏
𝐻
as the first time that the asset price hits the

barrier𝐻, that is, 𝜏
𝐻
= inf{𝑡 | 𝑆

𝑡
≤ 𝐻}.The contract is useless

and a new contract begins if 𝜏
𝐻
≤ 𝑇. The new contract is a

call option whose payoff is given by the difference between
𝑚
𝑇0

𝜏𝐻
:= min

𝜏𝐻≤𝑡≤𝜏𝐻+𝑇0
𝑆
𝑡
and the strike price 𝐾 with time to

maturity 𝑇
0
. Thus the turbo call contract is given by

TC (𝑡, 𝑠) = 𝐸 [𝑒−𝑟(𝑇−𝑡)(𝑆
𝑇
− 𝐾)
+1
{𝜏𝐻>𝑇}

| 𝑆
𝑡
= 𝑠]

+ 𝐸 [𝑒
−𝑟(𝜏𝐻+𝑇0−𝑡)

(𝑚
𝑇0

𝜏𝐻
− 𝐾)
+

1
{𝜏𝐻≤𝑇}

| 𝑆
𝑡
= 𝑠] ,

(1)

where 𝐸 denotes the expectation with respect to a risk-
neural probability. The turbo call warrant denoted by (1) is
comprised of two parts. The first part looks like a down-and-
out barrier (DOC) call option with a zero rebate and the
second part is a down-and-in lookback (DIL) call option. So,
the price of each part is expressed as follows:

DOC(𝑡, 𝑠) = 𝐸 [𝑒−𝑟(𝑇−𝑡)(𝑆
𝑇
− 𝐾)
+1
{𝜏𝐻>𝑇}

| 𝑆
𝑡
= 𝑠] ,

DIL(𝑡, 𝑠, 𝑇
0
) = 𝐸 [𝑒

−𝑟(𝜏𝐻+𝑇0−𝑡)
(𝑚
𝑇0

𝜏𝐻
− 𝐾)
+

1
{𝜏𝐻≤𝑇}

| 𝑆
𝑡
= 𝑠] .

(2)

If LB(𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
) := 𝐸

𝜏𝐻
[𝑒
−𝑟𝑇0(𝑚

𝑇0

𝜏𝐻
− 𝐾)
+
] (nonstandard

lookback option) and LCfl(𝑡, 𝑠, 𝑚, 𝑇) denotes the price of the
floating strike lookback call on 𝑆

𝑡
= 𝑠with realizedminimum

𝑚 and time to maturity 𝑇, then one can obtain the following
result.

Theorem 1. At 𝑡 < 𝜏
𝐻
, the model-free representation of the

turbo call warrant is given by

𝑇𝐶 (𝑡, 𝑠)

= 𝐷𝑂𝐶(𝑡, 𝑠)+𝐸 [𝑒
−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
𝐿𝐵 (𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
) | 𝑆
𝑡
= 𝑠]

= 𝐷𝑂𝐶(𝑡, 𝑠)+𝐸 [𝑒
−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
𝐿𝐵 (𝜏
𝐻
, 𝐻, 𝑇
0
) | 𝑆
𝑡
= 𝑠]

= 𝐷𝑂𝐶(𝑡, 𝑠)+𝐿𝐵 (𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
)𝐸 [𝑒
−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
| 𝑆
𝑡
= 𝑠] ,

(3)

where

𝐿𝐵 (𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
) = 𝐿𝐶

𝑓𝑙
(𝜏
𝐻
, 𝑆
𝜏𝐻
,min (𝑆

𝜏𝐻
, 𝐾) , 𝑇

0
)

− 𝐿𝐶
𝑓𝑙
(𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
) .

(4)

In particular, if 𝑆
𝑡
= 𝐻 (i.e., 𝑡 = 𝜏

𝐻
), then

𝑇𝐶 (𝑡,𝐻) = 𝐸
𝜏𝐻
[𝑒
−𝑟𝑇0

(𝑚
𝑇0

𝜏𝐻
− 𝐾)
+

] = 𝐿𝐵 (𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑇
0
) .

(5)

Proof. Refer to Domingues [13].
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This section constructs a pricing problem for turbo
warrants based upon a hybrid stochastic and local volatility
model given by [9]. Let 𝑆

𝑡
be the underlying asset price at time

𝑡 and𝑊∗
𝑡
and 𝑍∗

𝑡
independent Brownian motions. Then the

dynamics of 𝑆
𝑡
are given by

𝑑𝑆
𝑡
= (𝑟 − 𝑞) 𝑆

𝑡
𝑑𝑡 + 𝑓 (𝑌

𝑡
) 𝑆
𝜃/2

𝑡
𝑑𝑊
∗

𝑡
, (6)

𝑑𝑌
𝑡
= [

1

𝜖
(𝑚 − 𝑌

𝑡
) −

1

√𝜖
Λ (𝑌
𝑡
)] 𝑑𝑡 +

1

√𝜖
𝑑𝑍
∗

𝑡
(7)

under an equivalent martingale measure𝑄𝛾 with an arbitrary
adapted process 𝛾 to be determined, where 𝑟 (interest rate), 𝑞
(dividend yield rate), 𝜃 (elasticity parameter), 𝜖 (reciprocal of
rate ofmean reversion), and𝑚 are constants and𝑍∗

𝑡
= 𝜌𝑊

∗

𝑡
+

√1 − 𝜌
2
𝑍
∗

𝑡
, −1 ≤ 𝜌 ≤ 1, and Λ (market price of volatility

risk) is independent of 𝑆
𝑡
, and the function 𝑓 is assumed to

satisfy 0 < 𝑐
1
< 𝑓 < 𝑐

2
< ∞ for some positive constants 𝑐

1

and 𝑐
2
. Note that theOrnstein-Uhlenbeck (OU) process𝑌

𝑡
is a

Gaussian process which has an invariant distribution given by
N(𝑚, 1/2). We call the model (6) and (7) the SVCEV model
as in [9].

Now, under the SVCEV model above, the dependence of
the value𝑌

𝑡
= 𝑦 is added to the price of the turbo warrant call

option which yields

TC (𝑡, 𝑠, 𝑦) = DOC (𝑡, 𝑠, 𝑦) + DIL (𝑡, 𝑠, 𝑦, 𝑇
0
) , (8)

where DOC(𝑡, 𝑠, 𝑦) and DIL(𝑡, 𝑠, 𝑦, 𝑇
0
) are defined by (2)

with the additional dependence of 𝑦, respectively. Also,
𝑦-dependence is added to LB and LCfl. LB(𝐻, 𝑦, 𝑇0) =

LB(𝜏
𝐻
, 𝑆
𝜏𝐻
, 𝑦, 𝑇
0
) and LCfl(𝐻, 𝑦, 𝑇0) = LCfl(𝜏𝐻, 𝑆𝜏𝐻 , 𝑚, 𝑦, 𝑇0)

are used for briefness.
From now on, let 𝑃(𝑡, 𝑠, 𝑦) := TC(𝑡, 𝑠, 𝑦) for conve-

nience. Then, by the well-known Feynman-Kac formula (cf.
Øksendal [17]) on (8), 𝑃(𝑡, 𝑠, 𝑦) satisfies a PDE problem given
by

L
𝜖
𝑃 (𝑡, 𝑠, 𝑦) = 0, 0 ≤ 𝑡 < 𝑇, 𝑥 > 0,

𝑃 (𝑇, 𝑠, 𝑦) = 𝑠 − 𝐾,

𝑃 (𝜏
𝐻
, 𝐻, 𝑦) = LB (𝜏

𝐻
, 𝐻, 𝑦, 𝑇

0
) .

(9)

Here, if 𝜖 is positive and small, which corresponds to the
assumption of the fast mean reversion of the process 𝑌

𝑡
, then

the operator L𝜖 can be expressed by the following well-
ordered form:

L
𝜖
=
1

𝜖
L
0
+
1

√𝜖
L
1
+L
2
,

L
0
:=
1

2
𝜕
2

𝑦𝑦
+ (𝑚 − 𝑦) 𝜕

𝑦
,

L
1
:= 𝜌𝑓 (𝑦) 𝑠

𝜃/2
𝜕
2

𝑠𝑦
− Λ (𝑦) 𝜕

𝑦
,

L
2
:= 𝜕
𝑡
+
1

2
𝑓(𝑦)
2

𝑠
𝜃
𝜕
2

𝑠𝑠

+ (𝑟 − 𝑞) 𝑠𝜕
𝑠
− 𝑟 :=LCEV (𝑓 (𝑦)) .

(10)

Note that the operator (1/𝜖)L
0
is the infinitesimal generator

(market probability measure version) of the OU process 𝑌
𝑡

and acts only on the 𝑦 variable. Since the operator L
2

corresponds to the CEV operator for the turbo warrant, it is
denoted byLCEV also.

3. Approximation

Solution of the PDE (9) is not analytically available. So, this
section is devoted to value the turbo warrant by transforming
(9) into a system of PDEs (under the assumption that 𝜖 is
sufficiently small but positive) and solving the asymptotic
PDEs numerically.

Under the assumption of the fast mean reversion of the
process 𝑌

𝑡
, this paper takes the asymptotic expansion,

𝑃 = 𝑃
0
+ √𝜖𝑃

1
+ 𝜖𝑃
2
+ 𝜖√𝜖𝑃

3
+ ⋅ ⋅ ⋅ , (11)

and is interested in the first order approximation 𝑃
0
+ √𝜖𝑃

1
.

This work assumes a growth condition for each 𝑃
𝑖
, 𝑖 =

0, 1, 2, . . ., such that the derivative 𝜕𝑃
𝑖
/𝜕𝑦 does not grow

exponentially as much as (𝜕𝑃
𝑖
/𝜕𝑦) ∼ 𝑒

𝑦
2
/2 as 𝑦 → ∞.

First, a boundary condition on 𝑃
𝑖
, 𝑖 = 0, 1, is provided

as follows. Note that the first order approximation for the
floating lookback call option LCfl is given by

LCfl (𝜏𝐻, 𝐻,𝑚, 𝑦, 𝑇0) ≈ LC0fl (𝐻, 𝑇0) + √𝜖LC
1

fl (𝐻, 𝑇0) ,

(12)

where LC0fl(𝐻, 𝑇0) is the CEV price of LCfl with effec-
tive volatility 𝜎2 = ⟨𝑓

2
⟩, where 𝑓 is a function in (6)

and LC1fl(𝐻, 𝑇0) is the first corrected price of LCfl. Here,
LC0fl(𝐻, 𝑇0) and LC

1

fl(𝐻, 𝑇0) are independent of 𝑦 as in Wong
and Chan [18]. By plugging (12) into LB(𝜏

𝐻
, 𝑆
𝜏𝐻
, 𝑦, 𝑇
0
) =

LCfl(𝑆𝜏𝐻 ,min(𝑆
𝜏𝐻
, 𝐾), 𝑦, 𝑇

0
) − LCfl(𝑆𝜏𝐻 , 𝑆𝜏𝐻 , 𝑦, 𝑇0), one can

obtain the first order approximation:

𝑃 (𝜏
𝐻
, 𝐻, 𝑦) = LB (𝜏

𝐻
, 𝐻, 𝑦, 𝑇

0
) ≈ LB

0
(𝐻, 𝑇
0
)

+√𝜖LB
1
(𝐻, 𝑇
0
) ,

(13)

where LB
0
and LB

1
are independent of 𝑦 and time 𝑡.

Consequently, the boundary conditions

𝑃
0
(𝑇, 𝑠, 𝑦) = 𝑠 − 𝐾,

𝑃
1
(𝑇, 𝑠, y) = 0,

𝑃
𝑖
(𝜏
𝐻
, 𝐻) = LB

𝑖
(𝐻, 𝑇
0
)

(14)

are obtained for 𝑃
𝑖
, 𝑖 = 0, 1.

The following lemma is extremely useful for the analysis
of interest in this work.

Lemma 2. LetL
0
be the operator given by (10). If solution to

the Poisson equation

L
0
𝜒 (𝑦) + 𝜙 (𝑦) = 0, (15)

exists, then condition ⟨𝜙⟩ = 0 must be satisfied, where
⟨⋅⟩ denotes the expectation with respect to the invariant
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Figure 1: The leading term and the first correction term of the turbo warrant call price is drawn under the SVCEV model with respect to
time to maturity and stock price. The parameters used here are 𝑆

0
= 10, 𝜃 = 1.8, 𝑟 = 0.05, 𝑞 = 0.03, 𝜎 = 0.125, 𝑇 = 1, 𝑇
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under the SVCEV model are drawn. The parameters used here are

𝑆
0
= 10, 𝜃 = 1.8, 𝑟 = 0.05, 𝑞 = 0.03, 𝜎 = 0.125, 𝑇 = 1, 𝑇

0
= 0.2,𝐻 = 9, and 𝐾 = 8.

distribution of 𝑌
𝑡
. Further, solutions of (15) are given by the

form

𝜒 (𝑦) = ∫

𝑡

0

𝐸
𝑦
[𝜙 (𝑌
𝑡
)] 𝑑𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (16)

Proof. Refer to Fouque et al. [19].

First, the leading term 𝑃
0
is obtained as follows.

Theorem 3. Under the assumed growth condition on 𝑃
𝑖
, the

leading term 𝑃
0
is independent of 𝑦 and is the CEV price given

by the solution of the PDE,

𝜕
𝑡
𝑃
0
+
1

2
𝜎
2
𝑠
𝜃
𝜕
2

𝑠𝑠
𝑃
0
+ (𝑟 − 𝑞)𝑠𝜕

𝑠
𝑃
0
− 𝑟𝑃
0
= 0, (17)
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Figure 3: The turbo warrant call prices under the CEV model and the first correction term of the SVCEV model are drawn. The parameters
used here are given by 𝑆

0
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0
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2
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3
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with the boundary condition:

𝑃
0
(𝑇, 𝑠) = 𝑠 − 𝐾,

𝑃
0
(𝜏
𝐻
, 𝐻) = 𝐿𝐵

0
(𝐻, 𝑇
0
)

= 𝐿𝐶
0

𝑓𝑙
(𝐻,𝐾, 𝑇

0
) − 𝐿𝐶

0

𝑓𝑙
(𝐻,𝐻, 𝑇

0
) ,

(18)

where 𝜎 = √⟨𝑓2⟩.

Proof. By substituting the expansion (11) into the PDE (9), we
have

1

𝜖
L
0
𝑃
0
+
1

√𝜖
(L
0
𝑃
1
+L
1
𝑃
0
)

+ (L
0
𝑃
2
+L
1
𝑃
1
+L
2
𝑃
0
)

+ √𝜖 (L
0
𝑃
3
+L
1
𝑃
2
+L
2
𝑃
1
) + ⋅ ⋅ ⋅ = 0,

(19)

and thus the following equations are satisfied.

L
0
𝑃
0
= 0, L

0
𝑃
1
+L
1
𝑃
0
= 0,

L
0
𝑃
2
+L
1
𝑃
1
+L
2
𝑃
0
= 0,

L
0
𝑃
3
+L
1
𝑃
2
+L
2
𝑃
1
= 0.

(20)

Then, from the growth condition applied to L
0
𝑃
0
= 0, 𝑃

0

becomes a function of only 𝑡 and 𝑠. So, 𝑃
0
= 𝑃
0
(𝑡, 𝑠).

Since each term of the operatorL
1
contains 𝑦-derivative

and𝑃
0
is 𝑦-independent,L

0
𝑃
1
+L
1
𝑃
0
= 0 leads toL

0
𝑃
1
= 0

and so 𝑃
1
also is a function of 𝑡 and 𝑠 only; 𝑃

1
= 𝑃
1
(𝑡, 𝑠).

Next,L
0
𝑃
2
+L
1
𝑃
1
+L
2
𝑃
0
= 0 in (20) reduces toL

0
𝑃
2
+

L
2
𝑃
0
= 0 because each term of the operator L

1
contains

𝑦-derivative and 𝑃
1
is 𝑦-independent. Then by Lemma 2 one

has ⟨L
2
⟩𝑃
0
= 0, where

⟨L
2
⟩ = 𝜕
𝑡
+
1

2
⟨𝑓
2
⟩ 𝑠
𝜃
𝜕
2

𝑠𝑠
+ (𝑟 − 𝑞) 𝑠𝜕

𝑠
− 𝑟𝐼, (21)

where 𝐼 is the identity operator. Hence, 𝑃
0
(𝑡, 𝑠) is equal to the

CEV option price with the effective volatility 𝜎.

Next, the term 𝑃
1
is obtained as follows.

Theorem 4. Under the assumed growth condition on 𝑃
𝑖
, the

correction term𝑃
1
is independent of 𝑦 and given by the solution

of the PDE

𝜕
𝑡
𝑃
1
+
1

2
𝜎
2
𝑠
𝜃
𝜕
2

𝑠𝑠
𝑃
1
+ (𝑟 − 𝑞) 𝑠𝜕

𝑠
𝑃
1
− 𝑟𝑃
1

= 𝑊
3
𝑠
𝜃/2 𝜕

𝜕𝑠
(𝑠
𝜃 𝜕
2
𝑃
0

𝜕𝑠
2
) +𝑊

2
𝑠
𝜃 𝜕
2
𝑃
0

𝜕𝑠
2

(22)

with the boundary condition:

𝑃
1
(𝑇, 𝑠) = 0,

𝑃
1
(𝜏
𝐻
, 𝐻) = 𝐿𝐵

1
(𝐻, 𝑇
0
)

= 𝐿𝐶
1

𝑓𝑙
(𝐻,𝐾, 𝑇

0
) − 𝐿𝐶

1

𝑓𝑙
(𝐻,𝐻, 𝑇

0
) ,

(23)

where𝑊
3
and𝑊

2
are given by

𝑊
3
=
𝜌]
√2

⟨𝑓𝜓
󸀠
⟩ , 𝑊

2
= −

]
√2

⟨Λ𝜓
󸀠
⟩ , (24)

respectively. Here, 𝜓 is defined as the solution of the Poisson
equationL

0
𝜓 = 𝑓

2
− ⟨𝑓
2
⟩.
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Figure 4: The prices of the turbo warrant call and the European vanilla call are drawn against 𝜎 under the CEV and SVCEV models. The
parameters used here are 𝑆
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Proof. The 𝑦-independence of 𝑃
1
has been obtained in the

proof of Theorem 3. Applying Lemma 2 to the equation
L
0
𝑃
3
+L
1
𝑃
2
+L
2
𝑃
1
= 0 in (20) leads to ⟨L

1
𝑃
2
+L
2
𝑃
1
⟩ = 0.

Combining this onewith the resultL
0
𝑃
2
+L
2
𝑃
0
= 0 obtained

in the middle of proof of Theorem 3 yields the PDE (22) for
𝑃
1
(𝑡, 𝑠).

Now, we need to solve the PDEs (17) and (22) for 𝑃
0
and

𝑃
1
, respectively, for the approximation of interest. By using

the result of Davydov and Linetsky [20], we obtain 𝑃
0
=

TCCEV analytically as follows:

𝑃
0
(𝑡, 𝑠) = DOCCEV (𝑡, 𝑠)

+ [LCCEV
fl (𝐻,𝐾, 𝑇

0
) − LCCEV

fl (𝐻,𝐻, 𝑇
0
)]

× DRCEV (𝑡, 𝑠) ,

(25)
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where DOCCEV is the well-known CEV pricing formula (cf.
[20]) and LCCEV

fl and DRCEV are given by

LCfl (𝑠, 𝑚, 𝑇0) = 𝑒
−𝑞𝑇0

𝑠 − 𝑒
−𝑟𝑇0

𝑚

+ 𝑒
−𝑟𝑇0

∫

𝑚

0

Q (𝑚
𝑇0

𝜏𝐻
≤ 𝜉) 𝑑𝜉,

DRCEV (𝑡, 𝑠) = 𝐸 [𝑒
−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
] ,

(26)

respectively. Here, under the CEV model with the volatility
coefficient 𝜎, Q(𝑚𝑇0

𝜏𝐻
≤ 𝜉) and 𝐸[𝑒−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
] are given by

Q (𝑚
𝑇0

𝑡
≤ 𝜉) =L

−1

𝑇0 ,𝜆
{
1

𝜆

𝜙
𝜆
(𝐻)

𝜙
𝜆
(𝜉)

} ,

𝐸 [𝑒
−𝑟(𝜏𝐻−𝑡)1

{𝜏𝐻≤𝑇}
] =L

−1

𝑇,𝜆
{
1

𝜆

𝜙
𝑟+𝜆

(𝑠)

𝜙
𝑟+𝜆

(𝐻)
} ,

(27)

respectively, with the Laplace transformL, where 𝜆 > 0 and

𝜙
𝜆
(𝑠)

=

{{{{{

{{{{{

{

𝑠
𝛼+(1/2)

𝑒
(𝜃/2)𝑥

𝑊
𝑘,𝑚̃

(𝑥) , 𝛼 < 0, 𝑟 − 𝑞 ̸= 0,

𝑠
𝛼+(1/2)

𝑒
(𝜃/2)𝑥

𝑀
𝑘,𝑚̃

(𝑥) , 𝛼 > 0, 𝑟 − 𝑞 ̸= 0,

𝑠
(1/2)

𝐾]̃ (√2𝜆𝑧̃) , 𝛼 < 0, 𝑟 − 𝑞 = 0,

𝑠
(1/2)

𝐼] (√2𝜆𝑧̃) , 𝛼 > 0, 𝑟 − 𝑞 = 0,

𝑥 =

󵄨󵄨󵄨󵄨
𝑟 − 𝑞

󵄨󵄨󵄨󵄨

𝜎
2
|𝛼|

𝑠
−2𝛼
, 𝑧̃ =

𝑠
−𝛼

𝜎 |𝛼|
, 𝜃 = sign (𝛼 (𝑟 − 𝑞)) ,

𝑚̃ =
1

4 |𝛼|
, 𝑘 = 𝜃 (

1

2
+
1

4𝛼
) −

𝜆

2
󵄨󵄨󵄨󵄨
𝛼 (𝑟 − 𝑞)

󵄨󵄨󵄨󵄨

, ]̃ =
1

2 |𝛼|
.

(28)

Here, the functions𝑀
𝑘,𝑚
(𝑥) and𝑊

𝑘,𝑚
(𝑥) are the well-known

Whittaker functions and 𝐼](𝑥) and 𝐾](𝑥) are the modified
Bessel functions.

Next, the first correction term √𝜖𝑃
1
is required to be

solved from the PDE (22). Apparently, it is difficult to solve
(22) analytically. It requires the use of a numerical computing
method. Here, we use the finite difference scheme of the
Crank-Nicolsonmethod to compute the first correction term
√𝜖𝑃
1
. The truncation error for the solution is O((Δ𝑡)

2
) +

O((Δ𝑠)
2
), where Δ𝑡 = 0.01 and Δ𝑠 = 0.18.

Figure 1 shows the behavior of both the leading term
and the first correction term. One can notice from the
correction term that the stochastic volatility of the SVCEV
model tends to lower the CEV turbo warrant price as the
stock price approaches the barrier. However, the impact of the
stochastic volatility decreases as time to maturity decreases.
More detailed implications of the SVCEVmodel for the turbo
warrant price are described in the following section.

From the results ofTheorems 3 and 4, we formally obtain
the first order approximation:

𝑃 (𝑡, 𝑠, 𝑦) ≈ 𝑃
0
(𝑡, 𝑠) + √𝜖𝑃

1
(𝑡, 𝑠) , (29)

where𝑃
0
and𝑃
1
are independent of the unobservable variable

𝑦. In terms of accuracy of the approximation, we note that the
error estimates for barrier and lookback options have been
obtained byPark andKim [21] for theCEVmodel. Essentially,
the required estimate for the present SVCEV model can be
given by a combination of the result of [21] for the CEVmodel
and the error estimate obtained by Fouque et al. [22] for the
stochastic volatilitymodel.The detailed proof is omitted here.

4. Implications

The pricing of turbo warrants under the SVCEV model is
more interesting than either the CEV or stochastic volatility
models. In this section, we analyze the sensitivity of the
turbo warrant call option with respect to several involved
parameters, in particular, the elasticity parameter 𝜃, under the
SVCEV model. We note that the case of SVCEV with 𝜃 = 2

corresponds to the stochastic volatility (SV) model of [6] and
the case of CEV with 𝜃 = 2 is the same as the Black-Scholes
(BS) model in the following arguments.

Figure 2 plots the turbo warrant call price with respect to
the parameters 𝑊

2
and 𝑊

3
under the SVCEV and the CEV

price for 𝜃 = 1.8. As seen from (24),𝑊
2
is a parameter related

to the market price of volatility risk and 𝑊
3
is a parameter

related to the correlation of the stock price and the fast-mean
reverting process. It can be seen from Figure 2 that the price
of the turbo warrant call increases as𝑊

2
increases, whereas

the price decreases as 𝑊
3
increases. This behavior appears

more sensitively near the barrier.
Figure 3 shows that the turbo warrant call price under the

CEV model and the first correction term under the SVCEV
model are drawn with respect to the stock price for different
values 𝜃. The stochastic volatility impact on the CEV price
becomesmore apparent as 𝜃 increases. It is interesting to note
that the impact begins to show a nonmonotonic behavior
with respect to the stock price as 𝜃 becomes larger than 2.
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Figure 6: The sensitivity of the turbo warrant call and the European vanilla call to𝑊
2
is drawn under the SVCEV model for different values

of 𝜃. The parameters used here are 𝑆
0
= 10, 𝑟 = 0.05, 𝑞 = 0.03, 𝑇 = 1, 𝑇

0
= 0.2,𝐻 = 9, 𝐾 = 8, 𝜎 = 0.125, and𝑊

3
= 0.0004.

Figure 4 plots the functional behavior of the European
vanilla call and the turbo warrant call prices with respect
to the effective volatility 𝜎. It is interesting to note that the
European vanilla option is overpriced, whereas the turbo
warrant is underpriced in the SVCEV model with respect to
the CEV one. In general, the European vanilla price increases
as the effective volatility𝜎 rises. However, it becomes opposite
for the turbo warrant case as shown in Figure 4. The turbo
call price under the Black-Scholes model may not be much
less sensitive to the change in volatility than the European
vanilla call option as shown in [14]. But the degree of the
sensitivity depends on the value of the elasticity parameter

𝜃. As shown in Figure 4, the lower 𝜃 is, the more sensitively
the turbo warrant price behaves with respect to the change in
volatility.

Figure 5 shows the sensitivity difference between the
CEV and SVCEV models for the turbo warrant price to
the change of the elasticity parameter 𝜃. Apparently, the
stochastic volatility of the SVCEV model lowers the price
level of the CEV turbo warrant regardless of the 𝜃 level. As
𝜃 increases, this impact tends to become larger.

Figures 6 and 7 show the sensitivity of the turbo warrant
call and the European vanilla call against 𝑊

2
and 𝑊

3
under

the SVCEV Model. The turbo warrant call is always cheaper
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Figure 7: The sensitivity of the turbo warrant call and the European vanilla call to𝑊
3
is drawn under the SVCEV model. The parameters

used here are 𝑆
0
= 10, 𝑟 = 0.05, 𝑞 = 0.03, 𝑇 = 1, 𝑇

0
= 0.2,𝐻 = 9, 𝐾 = 8, 𝜎 = 0.125, and𝑊

2
= −0.01.

than the European vanilla call as expected. Figure 6 shows
that as 𝑊

2
increases, the price of the turbo warrant call

increases, whereas the price of the vanilla call decreases. The
European vanilla call is more sensitive to𝑊

2
than the turbo

warrant as 𝜃 increases. Figure 7 shows that the price of the
turbo warrant call drops moderately while the price of the
vanilla call rises very slowly as𝑊

3
increases.

5. Conclusion

In this paper, we have examined the price change behavior
of a turbo warrant with respect to the involved parameters

(effective volatility, elasticity, the market price of volatility
risk, and the correlation between stock price and volatility)
under the SVCEV model. The hybrid nature of the model
enables us to find the rich sensitivity structure of the turbo
warrant price in various ways depending upon the stochastic
volatility as well as the elasticity of variance. This paper not
only shows the stochastic volatility effect on the CEV price
of the turbo warrant but also the impact of the elasticity
of variance on the stochastic volatility price. Moreover, a
comparison analysis of the turbo warrant contract and the
European vanilla option has been performed effectively based
on the hybrid model.
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