
Research Article
The Degree Analysis of an Inhomogeneous Growing Network
with Two Types of Vertices

Huilin Huang

College of Mathematics and Information Science, Wenzhou University, Zhejiang 325035, China

Correspondence should be addressed to Huilin Huang; huilin huang@sjtu.org

Received 11 March 2014; Accepted 27 April 2014; Published 12 May 2014

Academic Editor: Derui Ding

Copyright © 2014 Huilin Huang.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider an inhomogeneous growing network with two types of vertices.The degree sequences of two different types of vertices
are investigated, respectively. We not only prove that the asymptotical degree distribution of type 𝑠 for this process is power law
with exponent 2 + ((1 + 𝛿) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)) /𝛼𝑞

𝑠
, but also give the strong law of large numbers for degree sequences of two different

types of vertices by using a different method instead of Azuma’s inequality. Then we determine asymptotically the joint probability
distribution of degree for pairs of adjacent vertices with the same type and with different types, respectively.

1. Introduction

Recently there has been much interest in studying inhomo-
geneous large-scale networks and attempting to model their
topological properties. The classical random graph models
are generally homogeneous, in the sense that all the vertices
come in the same type (for static random graphs, see [1];
for growing random graphs, see [2, 3]). In contrast, many
large real-world graphs are highly 0 inhomogeneous. In fact,
vertices of many real networks are born of difference, and
this difference by birth may influence the evolving of the net-
works to some extent. In order to depict such phenomenon,
Söderberg [4] presented a class of inhomogeneous random
graph models of order 𝑁, by means of a straightforward
generalization of the classic E-R model to a situation where
verticesmay come in different types, such that the probability
that an edge arises depends on the types of its pair of terminal
vertices. Bollobás et al. [5], based on the work of Söderberg
[4], introduce a model of an inhomogeneous random graph
with conditional independence between the edges; moreover
various results have been proved. Their model also includes
some special cases such as theCHKNSmodel [6] andTurova’s
model [7–10]. Recently, van der Hofstad [11] studies the
critical behavior of inhomogeneous random graphs where
edges are present independently but with unequal edge
occupation probabilities and shows that this critical behavior

depends sensitively on the asymptotic properties of their
degree sequence. For more substantial details about such
inhomogeneous random graph, we can see van der Hofstad
[12]. Most of those models are static and do not involve the
effect of preferential attachment. Papadopoulos et al. [13]
point out that it is very important to study inhomogeneous
growing networks which combine the effects of popularity
and similarity. There are also many papers studying syn-
chronization control of dynamical networks; see [14] and the
references therein.

In this paper, our main purpose is to define an inhomo-
geneous model which can combine the effects of preferential
attachment and difference by birth and then to provide quan-
titative descriptions of its properties of degree sequence. Our
model inherits certain features from homogeneous growing
model such that it is capable of producing asymptotic degree
distributions such as power law distributions and exponential
distributions by choosing proper parameters.

1.1. Definition of Our Model. At first, we introduce a type
spaceS = {0, 1}. Let {𝑌

𝑡
; 𝑡 ≥ 2} be a sequence of independent

random variables with identical distribution (i.i.d. for short),
which take values in S. The distribution of the random
variables {𝑌

𝑡
; 𝑡 ≥ 2} is given by

𝑃 (𝑌
𝑡

= 0) = 𝑞
0
, 𝑃 (𝑌

𝑡
= 1) = 𝑞

1
, (1)
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where 𝑞
0

+ 𝑞
1

= 1. Let 0 < 𝛼, 𝛽 < 1, and 𝛼 + 𝛽 = 1. Here and
thereafter we let

𝑌
0

≡ 0, 𝑌
1

≡ 1. (2)

Nowwe can define ourmodel based on the information of
{𝑌
𝑡
; 𝑡 ≥ 0}. Consider the following process which generates

a sequence of graphs {𝐺
𝑡
}
𝑡≥1

.

Time-Step 1. Let 𝐺(1) be a graph consisting of two vertices V
0

and V
1
with one edge connecting them, which are associated

by two type variables 𝑌
0
and 𝑌

1
, respectively.

Time-Step 𝑡 ≥ 2.The graph 𝐺(𝑡) is constructed from 𝐺(𝑡 − 1)

in such a way that a vertex V
𝑡
associated with one new edge,

whose type is controlled by a random variable 𝑌
𝑡
, is added

to the graph 𝐺(𝑡 − 1). Denote the degrees of the vertices
{V
0
, V
1
, . . . , V

𝑡−1
} by 𝑑

0
(𝑟), 𝑑
1
(𝑟), . . . , 𝑑

𝑡−1
(𝑟) at time 𝑟 ≥ 𝑡 − 1.

For simplicity of the notations, we also denote 𝑑
𝑖
(𝑟)𝐼
{𝑌𝑖=𝑠}

by
𝑑
(𝑠)

𝑖
(𝑟), and for 𝑖 ≥ 0, we write 𝛿

(𝑖,𝑠) for 𝛿𝐼
{𝑌𝑖=𝑠}

, where 𝛿 is
a nonnegative real number, and 𝐼

{⋅}
is the indicator function.

When the newvertex arrives at the system, the endpoint of the
new edge emanating from vertex V

𝑡
is chosen independently

from {V
0
, V
1
, . . . , V

𝑡−1
} according to their different types.

The attachment procedures of the new edge proceeded as
follows.

(a) With probability 𝛼, it is preferential to attach to an
old vertex whose type is the same as the new one.
When the vertices V

𝑖
and V

𝑡
are of the same type 𝑠,

the probability that V
𝑖
is chosen as the endpoint of the

new edge associated with the new vertex V
𝑡
is equal to

𝛼((𝑑
(𝑠)

𝑖
(𝑡 − 1) + 𝛿

(𝑖,𝑠)

)/ ∑
𝑡−1

j=0 (𝑑
(𝑠)

𝑗
(𝑡 − 1) + 𝛿

(𝑗,𝑠)

)), so that,
for 𝑖 = 0, 1, . . . , 𝑡 − 1 and 𝑠 = 0, 1,

Pr (V
𝑡

󳨀→ V
𝑖
, 𝑌
𝑖

= 𝑠, 𝑌
𝑡

= 𝑠 | F
𝑡−1

)

= 𝛼𝑞
𝑠

𝑑
(𝑠)

𝑖
(𝑡 − 1) + 𝛿

(𝑖,𝑠)

∑
𝑡−1

𝑗=0
(𝑑
(𝑠)

𝑗
(𝑡 − 1) + 𝛿

(𝑗,𝑠)
)

.

(3)

(b) With probability 𝛽 = 1 − 𝛼, it is equitable to connect
to an old vertex whose type is different from the new
one and the probability that V

𝑖
is chosen is

Pr (V
𝑡

󳨀→ V
𝑖
, 𝑌
𝑖

= 1 − 𝑠, 𝑌
𝑡

= 𝑠 | F
𝑡−1

)

= 𝛽𝑞
𝑠

𝐼
{𝑌𝑖=1−𝑠}

∑
𝑡−1

𝑗=0
𝐼
{𝑌𝑗=1−𝑠}

;

(4)

here and thereafter we letF
𝑡
be the 𝜎-algebra associated with

the probability space up to time 𝑡.

Remark 1. In our model, (3) depicts preferential competitive
mechanism among the vertices with the same type. On the
other hand, (4) describes the fair competitive effect on the
vertices which are of different types. In our model, we can
consider the degree of a vertex as an indication of its success,
so that vertices with large degree correspond to successful
vertices. Naturally, in reality, both the previous success of a

vertex and its initial typemay play important roles in the final
success of the vertex. In our model individuals arrive at the
network with different types and one initial edge, which form
the basis for their future success. Heuristically, the larger the
group is, the more the individuals which are successful exist;
on the other hand, the rich will be richer as time increases.

Remark 2. Our model is different from the inhomogeneous
model [5] in that it is dynamic; more precisely, a new vertex is
added to the graph at each integer time. If 𝛽 = 0 and 𝑞

0
= 1,

that is, Pr(𝑌
𝑡

= 0) = 1 for all 𝑡 ≥ 2, our model reduces to the
original preferential model which is very similar to the one
from Barabási and Albert [2], once the types are ignored.

1.2. States of Our Main Results. What we are interested in
is the limit distribution of the degree sequences of different
types in the resulting graph 𝐺(𝑡). Let 𝑁

(𝑠)

𝑘
(𝑡) be the number of

vertices of type 𝑠 with degree 𝑘 in graph 𝐺(𝑡). Define 𝑃
(𝑠)

𝑘
(𝑡) =

𝑁
(𝑠)

𝑘
(𝑡)/(𝑡 + 1) as the fraction of vertices of type 𝑠 with degree

𝑘. What we are concerned about is the limiting behavior of
𝑃
(𝑠)

𝑘
(𝑡) as 𝑡 tends to infinity.

Theorem 3. If 0 < 𝛼 < 1, for 𝑘 ≥ 1 and 𝑠 = 0, 1, respectively,
one has

𝑃
(𝑠)

𝑘

= lim
𝑡→∞

𝐸 [𝑁
(𝑠)

𝑘
(𝑡)]

𝑡 + 1

= 𝑞
𝑠

× (1 +

𝛼 (1 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

)

−1

⋅

𝑘

∏

𝑗=2

( (𝑗 − 1 + 𝛿

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (𝑗 + 𝛿 +

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

−1

)

(5)

𝑐
𝑠

(Γ (𝑘+𝛿 +

𝛽 (1 − 𝑞
𝑠
) [(1+ 𝛿+𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (𝑘 + 1 + 𝛿 +

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽(1− 𝑞
𝑠
)[(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽(1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

)

(6)

≈ 𝑐
𝑠
𝑘
−(2+((1+𝛿)𝑞𝑠+𝛽(1−𝑞𝑠))/𝛼𝑞𝑠)

, (7)



Abstract and Applied Analysis 3

where Γ(⋅) is the Gamma function and

𝑐
𝑠

= 𝑞
𝑠

× (1 +

𝛼 (1 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

)

−1

× Γ (2 + 𝛿 +

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (1 + 𝛿

+

𝛽 (1 − 𝑞
𝑠
) [(1+𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

;

(8)

the empty product, arising when 𝑘 = 1, is defined to be equal
to one.

Remark 4. (i) If 𝛼 = 0, the result graph 𝐺(𝑡) is a bipartite
graph. Moreover, the degree distributions of different types
are as follows: for 𝑘 ≥ 1 and 𝑠 = 0, 1,

𝑃
(𝑠)

𝑘
= (1 − 𝑞

𝑠
)
𝑘−1

𝑞
2

𝑠
. (9)

(ii) For 𝛼 = 1 and 𝑡 ≥ 1, the result graph 𝐺(𝑡) has
two different connected branches such that one branch is
composed of the vertices of type 0, and the vertices of type
1 consist of the other one. Moreover, there is only one initial
edge that connects the two branches. Furthermore, for 𝑠 =

0, 1, the degree distributions of different types of vertices are

𝑃
(𝑠)

𝑘
≈ 𝑐
󸀠

𝑠
𝑘
−(3+𝛿)

, (10)

where 𝑐
󸀠

𝑠
is equal to the value of 𝑐

𝑠
when 𝛼 = 1, 𝛽 = 0.

Wewant to say that the proof of (9) and (10) is very similar
to the proof of Theorem 3, so we omitted it.

For all 𝑘 ≥ 1, let 𝑁
𝑘
(𝑡) be the number of vertices with

degree 𝑘 in graph 𝐺(𝑡). Define 𝑃
𝑘
(𝑡) = 𝑁

𝑘
(𝑡)/(𝑡 + 1) as the

fraction of vertices with degree 𝑘. Since 𝑁
𝑘
(𝑡) = 𝑁

(0)

𝑘
(𝑡) +

𝑁
(1)

𝑘
(𝑡), the following corollary is a direct result ofTheorem 3.

Corollary 5. In our model, one has

𝑃
𝑘

= lim
𝑡→∞

𝐸 [𝑁
𝑘

(𝑡)]

𝑡 + 1

= 𝑃
(0)

𝑘
+ 𝑃
(1)

𝑘
, (11)

where 𝑃
(𝑠)

𝑘
for 𝑠 = 0, 1 are defined as in Theorem 3.

Note the following fact:

Γ (𝑘 + 𝑎)

Γ (𝑘 + 𝑏)

=

1

𝑏 − 𝑎 − 1

[

Γ (𝑘 + 𝑎)

Γ (𝑘 − 1 + 𝑏)

−

Γ (𝑘 + 1 + 𝑎)

Γ (𝑘 + 𝑏)

] .

(12)

By using a telescope sum identity we can deduce the following
corollary easily.

Corollary 6. For all 𝑘 ≥ 1 and 𝑠 = 0, 1, 𝑃
(𝑠)

𝑘
are defined by

(6); then one has the total fractions of vertices of types 0 and 1

in our limit graph which are equal to 𝑞
𝑠

(𝑠 = 0, 1), respectively;
that is,

∞

∑

𝑘=1

𝑃
(𝑠)

𝑘
= 𝑞
𝑠
, 𝑠 = 0, 1. (13)

Remark 7. (i) We know that {𝑌
𝑖
; 𝑖 ≥ 2} is a sequence of

i.i.d. random variables; thus by strong law of large numbers,
𝑇
(𝑠)

𝑡−1
/𝑡 → 𝑞

𝑠
, (𝑠 = 0, 1) as 𝑡 → ∞.ThusCorollary 6 is exactly

consistent with it.
(ii) From Corollary 5, for 0 < 𝛼, 𝛽 < 1, we can easily find

that if 𝑞
0

= 𝑞
1

= 1/2, the total degree sequence 𝑃
𝑘
follows

power law with the exponent 2+(1+𝛿+𝛽)/𝛼; otherwise, 𝑃
𝑘
is

a linear combination of two different power law distributions.
(iii) From our analysis of the degree distribution of dif-

ferent types, we can find that our model grasps two heuristic
phenomena as follows: one is “rich-get-richer” effect; the
other is that the larger the group is, the more the successful
individuals in that group are.

We are also concerned about the strong law of large
numbers of degree sequences for different types, respectively,
as follows.
Theorem 8. For 𝑠 ∈ S and fixed 𝑘 ≥ 1, one has

lim
𝑡→∞

𝑃
(𝑠)

𝑘
(𝑡) = 𝑃

(𝑠)

𝑘
, a.s. (14)

At last, it is also interesting to find out an expression
for the joint-probability distribution for degrees of adjacent
vertices. For 𝑠 ∈ S, write 𝑁

(𝑠,𝑠)

𝑘,𝑙
(𝑡) for the number of adjacent

pairs of vertices with type 𝑠 whose degrees are 𝑘 and 𝑙,
respectively, at time 𝑡 and𝑁

(𝑠,1−𝑠)

𝑘,𝑙
(𝑡) for the number of vertices

of degree 𝑘with type 𝑠which attach to a vertex of degree 𝑙with
type 1 − 𝑠 at time 𝑡. 𝑁

(𝑠)

𝑘
(𝑡) is defined as before. For 𝛿 = 0, we

have the following.

Theorem 9. (𝑖) In our model, for 𝑠 ∈ S, the joint degree
distributions of pairs of adjacent vertices with the same type
are

𝑃
(𝑠,𝑠)

𝑘,𝑙
= lim
𝑡→∞

𝐸 [𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡)]

𝑡 + 1

= Γ (𝑘 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× Γ (𝑙 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞s + 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (𝑘 + 𝑙 + 1 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

2𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

⋅ 𝛾
(𝑠,𝑠)

𝑙−2

∑

𝑗=0

Γ (𝑘 + 𝑙 − 𝑗 − 2)

Γ (𝑙 − 𝑗 − 1) Γ (𝑘)

𝜋
(𝑠,𝑠)

(𝑗 + 2) ;

(15)
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for 𝑘 ≥ 1, 𝑙 ≥ 2, the vertex of type 𝑠 with degree 𝑘 is younger
than the vertex of type 𝑠 with degree 𝑙, where

𝛾
(𝑠,𝑠)

= Γ (2 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× ([Γ (1+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)]

2

)

−1

× 𝑃
(𝑠)

1
,

(16)

and for all 𝑙 ≥ 2

𝜋
(𝑠,𝑠)

(𝑙)

= Γ (1 + 𝑙 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

2𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (𝑙 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

⋅ (𝑙 − 1)

× (𝑙 − 1 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

−1

.

(17)

(ii) For 𝑞
0

= 𝑞
1

= 1/2, one also has

𝑃
(𝑠,1−𝑠)

𝑘,𝑙
= lim
𝑡→∞

𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡)]

𝑡 + 1

=

Γ (𝑘 + 2𝛽/𝛼) Γ (𝑙 + 2𝛽/𝛼)

Γ (𝑘 + 𝑙 + 1 + 2/𝛼 + 4𝛽/𝛼)

⋅ 𝛾
(𝑠,1−𝑠)

𝑙−2

∑

𝑗=0

Γ (𝑘 + 𝑙 − 𝑗 − 2)

Γ (𝑙 − 𝑗 − 1) Γ (𝑘)

𝜋
(𝑠,1−𝑠)

(𝑗 + 2) ,

(18)

where

𝛾
(𝑠,1−𝑠)

=

Γ (2 + 2 (1 + 𝛽) /𝛼)

[Γ (1 + 2𝛽/𝛼)]
2

⋅

2𝛽

𝛼 [𝛼 + 2 (1 + 𝛽)]

,

𝜋
(𝑠,1−𝑠)

(𝑙) =

1

𝑙 − 1 + 2𝛽/𝛼

⋅

Γ (𝑙 + 1 + 2 (1 + 2𝛽) /𝛼)

Γ (𝑙 + 2 (1 + 2𝛽) /𝛼)

,

(19)

for 𝑘 ≥ 1, 𝑙 ≥ 2, when the vertex of type 𝑠 with degree 𝑘 is
younger than the vertex of type 1 − 𝑠 with degree 𝑙.

The rest of this paper is organized as follows. In Section 2,
we state four lemmas which are useful to prove our main
results. Especially, in Lemma 12 we compute the expectation
of the total degree of vertices with type 𝑠 and the total number
of vertices with type 𝑠, respectively. In Lemma 13 we give the
moment inequalities for the total degree of vertices with type
𝑠 and the total number of vertices with type 𝑠. In Section 3,
we give the proofs of our main results in Theorems 3 and 8.
In Section 4, we prove ourmain result about joint-probability
distribution for degrees of adjacent vertices with the same
type and different types, respectively. In the appendix, we give
the proof of Lemmas 12 and 13.

2. Preliminaries

The following two lemmas are useful to prove our main
results. The readers who are interested in their details can
refer to the associated materials.

Lemma 10 (see [15]). Suppose that a sequence {𝑎
𝑡
} satisfies the

recurrence relation

𝑎
𝑡+1

= (1 −

𝑏
𝑡

𝑡 + 𝑡
1

) 𝑎
𝑡

+ 𝑐
𝑡

(20)

for 𝑡 ≥ 𝑡
0
. Furthermore, suppose that lim

𝑡→∞
𝑏
𝑡

= 𝑏 > 0 and
lim
𝑡→∞

𝑐
𝑡

= 𝑐. Then lim
𝑡→∞

(𝑎
𝑡
/𝑡) exists and

lim
𝑡→∞

𝑎
𝑡

𝑡

=

𝑐

1 + 𝑏

. (21)

Lemma 11 (see [11]). Let 𝑝 ∈ [1, 2] and suppose that {𝑋
𝑖
; 𝑖 ≥

1} are i.i.d. sequence with 𝐸[𝑋
1
] = 0 and 𝐸[|𝑋

1
|
𝑝

] < ∞. Then
there exists a constant 𝑐

𝑝
depending only on 𝑝, such that

𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡

∑

𝑖=1

𝑋
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

] ≤ 𝑐
𝑝

𝑡𝐸 [
󵄨
󵄨
󵄨
󵄨
𝑋
1

󵄨
󵄨
󵄨
󵄨

𝑝

] . (22)

In the following, in graph 𝐺(𝑡 − 1), we denote the total
degree of vertices with type 𝑠 by 𝑆

(𝑠)

𝑡−1
, that is,

𝑆
(𝑠)

𝑡−1
=

𝑡−1

∑

𝑖=0

𝑑
(𝑠)

𝑖
(𝑡 − 1) , (23)

and the number of vertices of type 𝑠 by 𝑇
(𝑠)

𝑡−1
; that is,

𝑇
(𝑠)

𝑡−1
=

𝑡−1

∑

𝑖=0

𝐼
{𝑌𝑖=𝑠}

. (24)

Nowwe conclude this section by stating the following two
lemmas whose proofs are proposed in the appendix.

Lemma 12. For 𝑠 = 0, 1, one has the following:

(i) 𝐸 [𝑆
(𝑠)

𝑡−1
] = 1 + 𝑞

𝑠
(𝑡 − 2) + [𝛼𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)] (𝑡 − 2) .

(ii) 𝐸 [𝑇
(𝑠)

𝑡−1
] = 1 + 𝑞

𝑠
(𝑡 − 2) .

(25)
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Lemma 13. Let 𝑆
(𝑠)

𝑡−1
and 𝑇

(𝑠)

𝑡−1
be defined as before; then

(i) for ∀0 < 𝜀 < 1, there exists a constant 𝐶 which is
independent of the parameter 𝑡 such that

(ii) one has the following:

𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑇

(𝑠)

𝑡−1
]

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝑡
1/(1+𝜀)

,

𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
(𝑠)

𝑡−1
− 𝐸 [𝑆

(𝑠)

𝑡−1
]

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2√𝑡.

(26)

3. Proof of Theorems 3 and 8

3.1. The Master Equations for the Degree Sequences of Vertices
with Two Different Types. For 𝑡 large enough, it is easy to
obtain two master equations of the degree sequences of
different types as follows:

𝐸 [𝑁
(𝑠)

𝑘
(𝑡) − 𝑁

(𝑠)

𝑘
(𝑡 − 1) | F

𝑡−1
]

= − [

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠)

𝑘
(𝑡 − 1)

+ [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠)

𝑘−1
(𝑡 − 1)

+ 𝛿
𝑘,1

𝐼
{𝑌𝑡=𝑠}

𝑠 = 0, 1.

(27)

Now let us come to solve (27). Taking expectation of both
sides of above equation and rewriting it, we get

𝐸 [𝑁
(𝑠)

𝑘
(𝑡)]

= {1 −

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

−

𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡−1
]

} 𝐸 [𝑁
(𝑠)

𝑘
(𝑡 − 1)]

+ {

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

+

𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡−1
]

} 𝐸 [𝑁
(𝑠)

𝑘−1
(𝑡 − 1)]

+ 𝛿
𝑘,1

𝑞
𝑠

+ 𝛼𝑞
𝑠

(𝑘 + 𝛿)

× 𝐸 {𝑁
(𝑠)

𝑘
(𝑡 − 1)

𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑆

(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
] ⋅ (𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
)

}

− 𝛼𝑞
𝑠

(𝑘 − 1 + 𝛿)

× 𝐸 {𝑁
(𝑠)

𝑘−1
(𝑡 − 1)

𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑆

(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
] ⋅ (𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
)

}

+ 𝛽 (1 − 𝑞
𝑠
) 𝐸 {𝑁

(𝑠)

𝑘
(𝑡 − 1)

𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑇

(𝑠)

𝑡−1
]

𝑇
(𝑠)

𝑡−1
⋅ 𝐸 [𝑇

(𝑠)

𝑡−1
]

}

− 𝛽 (1 − 𝑞
𝑠
) 𝐸 {𝑁

(𝑠)

𝑘−1
(𝑡 − 1)

𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑇

(𝑠)

𝑡−1
]

𝑇
(𝑠)

𝑡−1
⋅ 𝐸 [𝑇

(𝑠)

𝑡−1
]

} .

(28)

Note that, for any 𝑘 ≥ 1 and 𝑠 = 0, 1, we have the following
inequalities:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

𝑘
(𝑡 − 1)

𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 1, (29)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

𝑘
(𝑡 − 1)

𝑇
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 1. (30)

Combining Lemma 12, Lemma 13, triangle inequality, and
(28)–(30), the last four sets of terms of (28) tend to zero as
𝑡 → ∞; then for 𝑡 large enough, we have

𝐸 [𝑁
(𝑠)

𝑘
(𝑡)]

= [1 −

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

−

𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡−1
]

] 𝐸 [𝑁
(𝑠)

𝑘
(𝑡 − 1)]

+ [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

𝐸 [𝑆
(𝑠)

𝑡−1
+ 𝛿𝑇
(𝑠)

𝑡−1
]

+

𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡−1
]

] 𝐸 [𝑁
(𝑠)

𝑘−1
(𝑡 − 1)]

+ 𝛿
𝑘,1

𝑞
𝑠

+ 𝑜 (1)

= [1 −

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

1 + 𝛿 + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

−

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

] 𝐸 [𝑁
(𝑠)

𝑘
(𝑡 − 1)] + 𝛿

𝑘,1
𝑞
𝑠

+ [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

1 + 𝛿 + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

] 𝐸 [𝑁
(𝑠)

𝑘−1
(𝑡 − 1)] + 𝑜 (1) .

(31)

For 𝑘 = 1, all 𝑡 > 0, note that we have 𝑁
(𝑠)

0
(𝑡) = 0 for

𝑠 ∈ S; thus combining (31) we obtain

𝐸 [𝑁
(𝑠)

1
(𝑡)] = (1 −

𝑏
𝑡

𝑡

) 𝐸 [𝑁
(𝑠)

1
(𝑡 − 1)] + 𝑞

𝑠
+ 𝑜 (1) , (32)

where

𝑏
𝑡

=

𝛼 (1 + 𝛿) 𝑞
𝑠

(1 + 𝛿) (1/𝑡) + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] ((𝑡 − 2) /𝑡)

+

𝛽 (1 − 𝑞
𝑠
)

1/𝑡 + 𝑞
𝑠

((𝑡 − 2) /𝑡)

.

(33)
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For 𝑘 > 1 and all 𝑡 > 0, according to (31), and for 𝑠 ∈ S,
respectively, we also have

𝐸 [𝑁
(𝑠)

𝑘
(𝑡)]

= [1 −

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

1 + 𝛿 + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

−

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

] 𝐸 [𝑁
(𝑠)

𝑘
(𝑡 − 1)]

+ [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

1 + 𝛿 + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

] 𝐸 [𝑁
(𝑠)

𝑘−1
(𝑡 − 1)] + 𝑜 (1) .

(34)

To solve the above two equations ((32) and (34)), we want
to show that the expected values 𝐸[𝑁

(𝑠)

𝑘
(𝑡)]/(𝑡 + 1) follow

power laws as 𝑡 goes to infinity. To see it, we proceed by
induction on 𝑘 to show that the limits lim

𝑡→∞
(𝐸[𝑁
(𝑠)

𝑘
(𝑡)]/(𝑡+

1)) exist for each 𝑘 ≥ 1.

3.2. Proof of Theorem 3

Proof of Theorem 3. For 𝑘 = 1, according to (33), we have

𝑏
𝑡

󳨀→

𝛼 (1 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

= 𝑏,

as 𝑡 󳨀→ ∞.

(35)

Thus we apply Lemma 10 with 𝑐
𝑡

→ 𝑞
𝑠

= 𝑐 (as 𝑡 → ∞) to
obtain that lim

𝑡→∞
(𝐸[𝑁
(𝑠)

1
(𝑡)]/(𝑡 + 1)) exists and

𝑃
(𝑠)

1
= lim
𝑡→∞

𝐸 [𝑁
(𝑠)

1
(𝑡)]

𝑡 + 1

= 𝑞
𝑠

× (1 +

𝛼 (1 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

)

−1

.

(36)

We suppose that lim
𝑡→∞

(𝐸[𝑁
(𝑠)

𝑘−1
(𝑡)]/(𝑡 + 1)) = 𝑃

(𝑠)

𝑘−1

exists; we use Lemma 10 again with

𝑏
𝑡

=

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

(1 + 𝛿) (1/𝑡) + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] ((𝑡 − 2) /𝑡)

+

𝛽 (1 − 𝑞
𝑠
)

1/𝑡 + 𝑞
𝑠

((𝑡 − 2) /𝑡)

󳨀→

𝛼 (𝑘 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

= 𝑏

as 𝑡 → ∞,

𝑐
𝑡

= [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

(1 + 𝛿) (1/𝑡) + [(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] ((𝑡 − 2) /𝑡)

+

𝛽 (1 − 𝑞
𝑠
)

1/𝑡 + 𝑞
𝑠

((𝑡 − 2) /𝑡)

]

𝐸 [𝑁
(𝑠)

𝑘−1
(𝑡 − 1)]

𝑡

󳨀→ [

𝛼 (𝑘 − 1 + 𝛿) 𝑞
𝑠

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

] 𝑃
(𝑠)

𝑘−1
= 𝑐

as 𝑡 󳨀→ ∞.

(37)

Then we can arrive at the limit lim
𝑡→∞

(𝐸[𝑁
(𝑠)

𝑘
(𝑡)]/(𝑡 + 1))

which exists and is equal to

𝑃
(𝑠)

𝑘

= (𝑘 − 1 + 𝛿 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

× (𝑘 + 𝛿 +

(1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛿 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

−1

) 𝑃
(𝑠)

𝑘−1
.

(38)

Thus we can get (5) immediately, and (6) is a direct result of
(5).

By Stirling’s formula, we have that Γ(𝑘 + 𝑎)/Γ(𝑘) ∼

𝑘
𝑎 as 𝑘 → ∞, from which it follows that 𝑃

(𝑠)

𝑘
∼

𝑐
𝑠
𝑘
−(2+((1+𝛿)𝑞𝑠+𝛽(1−𝑞𝑠))/𝛼𝑞𝑠)

(𝑠 = 0, 1) for some constants 𝑐
𝑠

>

0. Thus the power law exponent is 2 + ((1 + 𝛿)𝑞
𝑠

+ 𝛽(1 −

𝑞
𝑠
))/𝛼𝑞
𝑠
.

3.3. Proof of Theorem 8. In our model, Azuma’s inequality
no longer works because there is no uniform bound on the
change in the number of 𝑁

(𝑠)

𝑘
(𝑡) when we investigate the

influence of the extra information contained inF
𝑛
compared

to the information contained in F
𝑛−1

; that is, we have to
bound the difference |𝐸[𝑁

(𝑠)

𝑘
(𝑡)|F
𝑛
] − 𝐸[𝑁

(𝑠)

𝑘
(𝑡)|F
𝑛−1

]|. It is
very difficult to do it for our model, so we use our method
instead of Azuma’s inequality, in which there is no need to
use such a uniform bound.

Proof of Theorem 8. At first we note a basic fact as follows:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁
(𝑠)

𝑘
(𝑡 + 1) − 𝑁

(𝑠)

𝑘
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2. (39)
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At first, we consider the case 𝑘 = 1 for 𝑠 = 0, 1, respectively.
Consider

Δ
(𝑠)

1
(𝑡 + 1)

= 𝐸[𝑁
(𝑠)

1
(𝑡 + 1) − 𝐸 [𝑁

(𝑠)

1
(𝑡 + 1)]]

2

= 𝐸 {[𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)] + [𝑁

(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]

− [𝐸 [𝑁
(𝑠)

1
(𝑡 + 1)] − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]}

2

= 𝐸[𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)]

2

+ 𝐸[𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]

2

+ [𝐸 [𝑁
(𝑠)

1
(𝑡 + 1)] − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]

2

+ 2𝐸 {[𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)] ⋅ [𝑁

(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]}

− 2{𝐸 [𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)]}

2

≤ 𝐸[𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)]

2

+ Δ
(𝑠)

1
(𝑡)

+ 2𝐸 {[𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡)] ⋅ [𝑁

(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]]}

≤ 4 + Δ
(𝑠)

1
(𝑡)

+ 2𝐸 [(𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅𝐸 [𝑁
(𝑠)

1
(𝑡 + 1) − 𝑁

(𝑠)

1
(𝑡) | F

𝑡
]]

= 4 + Δ
(𝑠)

1
(𝑡)

− 2𝐸 [ (𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅ (𝛼𝑞
𝑠

(1 + 𝛿)

𝑁
(𝑠)

1
(𝑡)

𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡

+ 𝛽 (1 − 𝑞
𝑠
)

𝑁
(𝑠)

1
(𝑡)

𝑇
(𝑠)

𝑡

)]

= 4 + Δ
(𝑠)

1
(𝑡) (1 −

2𝛼𝑞
𝑠

(1 + 𝛿)

𝐸 [𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
]

−

2𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡
]

)

− 2𝛼𝑞
𝑠

(1 + 𝛿)

× 𝐸 [ (𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅ (

𝑁
(𝑠)

1
(𝑡)

𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡

−

𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]

𝐸 [𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
]

)]

− 2𝛽 (1 − 𝑞
𝑠
) 𝐸 [ (𝑁

(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅ (

𝑁
(𝑠)

1
(𝑡)

𝑇
(𝑠)

𝑡

−

𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)]

𝐸 [𝑇
(𝑠)

𝑡
]

)]

= 4 + Δ
(𝑠)

1
(𝑡) (1 −

2𝛼𝑞
𝑠

(1 + 𝛿)

𝐸 [𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
]

−

2𝛽 (1 − 𝑞
𝑠
)

𝐸 [𝑇
(𝑠)

𝑡
]

) + 𝐼
1

+ 𝐼
2
,

(40)

where

𝐼
1

= −2𝛼𝑞
𝑠

(1 + 𝛿)

× 𝐸 [ (𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅ (

𝑁
(𝑠)

1
(𝑡)

𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡

−

𝑁
(𝑠)

1
(𝑡)

𝐸 [𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
]

)] ,

(41)

𝐼
2

= −2𝛽 (1 − 𝑞
𝑠
) 𝐸 [ (𝑁

(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

⋅ (

𝑁
(𝑠)

1
(𝑡)

𝑇
(𝑠)

𝑡

−

𝑁
(𝑠)

1
(𝑡)

𝐸 [𝑇
(𝑠)

𝑡
]

)] .

(42)

Now let us come to estimate (41) and (42), respectively.
For (41), we note the basic fact that

0 <

(1 + 𝛿) 𝑁
(𝑠)

1
(𝑡)

𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡

≤ 1. (43)

By Hölder’s inequality, letting 𝜀 = 1 in (A.8) and combining
with (A.16) we can easily obtain

𝐼
1

≤ 2𝛼𝑞
𝑠

√𝐸(𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

2

⋅ √

𝐸(𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
− 𝐸 [𝑆

(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
])

2

(𝐸 [𝑆
(𝑠)

𝑡
+ 𝛿𝑇
(𝑠)

𝑡
])

2

≤ 2𝛼𝑞
𝑠

√𝐸(𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

2

⋅

𝐶
1

√𝑡

≤ 𝛼𝑞
𝑠

[

[

𝐸(𝑁
(𝑠)

1
(𝑡) − 𝐸 [𝑁

(𝑠)

1
(𝑡)])

2

𝐴
1
𝑡

+ 𝐶
2

1
𝐴
1

]

]

= 𝛼𝑞
𝑠

Δ
(𝑠)

1
(𝑡)

𝐴
1
𝑡

+ 𝛼𝑞
𝑠
𝐶
2

1
𝐴
1
,

(44)

where the constant 𝐶
1
is independent of the parameter 𝑡, and

we can take a constant 𝐴
1
such that

0 <

2 (1 + 𝛿)

max {1 + 𝛿, (1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)}

−

1

𝐴
1

< 1.

(45)

Similarly there also exist constants 𝐶
2
(independent of the

parameter 𝑡) and 𝐴
2
such that

𝐼
2

≤ 𝛽 (1 − 𝑞
𝑠
)

Δ
(𝑠)

1
(𝑡)

𝐴
2
𝑡

+ 𝛽 (1 − 𝑞
𝑠
) 𝐶
2

2
𝐴
2
, (46)
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where 0 < 2 − (1/𝐴
2
) < 1. We denote

𝜑
(𝑠)

1
= 𝜑
(𝑠)

1
(𝛿, 𝛼, 𝐶

1
, 𝐴
1
, 𝐶
2
, 𝐴
2
)

= 𝛼𝑞
𝑠

[

2 (1 + 𝛿)

max {1 + 𝛿, (1 + 𝛿 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)}

−

1

𝐴
1

]

+ 𝛽 (1 − 𝑞
𝑠
) (2 −

1

𝐴
2

) ,

𝜃
(𝑠)

1
= 4 + 𝛼𝑞

𝑠
𝐶
2

1
𝐴
1

+ 𝛽 (1 − 𝑞
𝑠
) 𝐶
2

2
𝐴
2
,

(47)

noting the initial condition that 𝑁
(𝑠)

1
(1) = 1 so that Δ

(𝑠)

1
(1) =

0; then for 𝑡 large enough we have

Δ
(𝑠)

1
(𝑡 + 1)

≤ (1 −

𝜑
(𝑠)

1

𝑡

) Δ
(s)
1

(𝑡) + 𝜃
(𝑠)

1

≤

𝑡+1

∑

𝑘=2

𝑡

∏

𝑗=𝑘

(1 −

𝜑
(𝑠)

1

𝑗

) 𝜃
(𝑠)

1

(we let the vacant product be equal to 1)

=

𝑡+1

∑

𝑘=2

exp(

𝑡

∑

𝑗=𝑘

ln(1 −

𝜑
(𝑠)

1

𝑗

)) 𝜃
(𝑠)

1

≈

𝑡+1

∑

𝑘=2

(

𝑘

𝑡

)

𝜑
(𝑠)

1

⋅ 𝜃
(𝑠)

1

≈ 𝑡𝜃
(𝑠)

1
∫

1

0

𝑥
𝜑
(𝑠)

1
𝑑𝑥

≤

𝜃
(𝑠)

1

1 + 𝜑
(𝑠)

1

(𝑡 + 1) .

(48)

Thus it follows that

𝐸[

𝑁
(𝑠)

1
(𝑡)

𝑡

−

𝐸 [𝑁
(𝑠)

1
(𝑡)]

𝑡

]

2

≤

𝜃
(𝑠)

1

1 + 𝜑
(𝑠)

1

1

𝑡

; (49)

then we arrive at
∞

∑

𝑛=1

P(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

1
(𝑛
2

)

𝑛
2

−

𝐸 [𝑁
(𝑠)

1
(𝑛
2

)]

𝑛
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀)

≤

1

𝜀
2

∞

∑

𝑛=1

𝐸[

𝑁
(𝑠)

1
(𝑛
2

)

𝑛
2

−

𝐸 [𝑁
(𝑠)

1
(𝑛
2

)]

n2
]

2

≤

1

𝜀
2

𝜃
(𝑠)

1

1 + 𝜑
(𝑠)

1

∞

∑

𝑛=1

1

𝑛
2

< ∞.

(50)

ThusTheorem 3 and the Borel-Cantelli lemma imply that

𝑁
(𝑠)

1
(𝑛
2

)

𝑛
2

󳨀→ 𝑃
(𝑠)

1
a.s., (51)

where𝑃
(𝑠)

1
is defined by (6). For all 𝑡, we take 𝑛

2

≤ 𝑡 ≤ (𝑛+1)
2;

we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑁
(𝑠)

1
(𝑡) − 𝑁

(s)
1

(𝑛
2

)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2 (𝑡 − 𝑛
2

) ≤ 4𝑛 + 2. (52)

Then we have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

1
(𝑡)

𝑡

−

𝑁
(𝑠)

1
(𝑛
2

)

𝑛
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

1
(𝑡) − 𝑁

(𝑠)

1
(𝑛
2

)

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠)

1
(𝑛
2

) (𝑡 − 𝑛
2

)

𝑡 ⋅ 𝑛
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󳨀→ 0

(as 𝑛 󳨀→ ∞) ;

(53)

thus we get

𝑁
(𝑠)

1
(𝑡)

𝑡

󳨀→ 𝑃
(𝑠)

1
a.s. (54)

Similarly to the case 𝑘 > 1 and 𝑠 = 0, 1, we can also prove that

𝑁
(𝑠)

𝑘
(𝑡)

𝑡

󳨀→ 𝑃
(𝑠)

𝑘
a.s., (55)

where 𝑃
(𝑠)

𝑘
is defined as inTheorem 3.

4. Proof of Theorem 9

4.1. Master Equations for Joint Degree Sequences 𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡) and

𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡). Let 𝛿 = 0; we can easily get the master equations

as follows: for 𝑠 ∈ S

𝐸 [𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡) − 𝑁

(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1) | F

𝑡−1
]

= [

𝛼𝑞
𝑠

(𝑘 − 1)

𝑆
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠,𝑠)

𝑘−1,𝑙
(𝑡 − 1)

+ [

𝛼𝑞
𝑠

(𝑙 − 1)

𝑆
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠,𝑠)

𝑘,𝑙−1
(𝑡 − 1)

− [

𝛼𝑞
𝑠

(𝑘 + 𝑙)

𝑆
(𝑠)

𝑡−1

+

2𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1)

+

𝛼𝑞
𝑠

(𝑙 − 1)

𝑆
(𝑠)

𝑡−1

𝑁
(𝑠)

𝑙−1
(𝑡 − 1) 𝛿

𝑘,1
,

(56)

where we suppose that the vertex of type 𝑠 with degree 𝑘 is
younger than the vertex of type 𝑠 with degree 𝑙. The first two
sets of terms on the right-hand side account for the change in
𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡) due to the addition of the new edge hitting a vertex of

degree 𝑘 − 1 or 𝑙 − 1 (both gain) with type 𝑠, while the third set
of terms gives the change in 𝑁

(𝑠,𝑠)

𝑘,𝑙
(𝑡−1) due to the addition of

the new edge onto the ancestor vertex of degree 𝑘 or 𝑙 (both
loss) with type 𝑠. Finally, the last term accounts for the gain
in 𝑁
(𝑠,𝑠)

1,𝑙
(𝑡 − 1) due to the addition on the new vertex.
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Similarly, for 𝑠 ∈ S we also have

𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡) − 𝑁

(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1) | F

𝑡
]

= [

𝛼𝑞
𝑠

(𝑘 − 1)

𝑆
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠,1−𝑠)

𝑘−1,𝑙
(𝑡 − 1)

+ [

𝛼 (1 − 𝑞
𝑠
) (𝑙 − 1)

𝑆
(1−𝑠)

𝑡−1

+

𝛽𝑞
𝑠

𝑇
(1−𝑠)

𝑡−1

] 𝑁
(𝑠,1−𝑠)

𝑘,𝑙−1
(𝑡 − 1)

− [

𝛼𝑞
𝑠
𝑘

𝑆
(𝑠)

𝑡−1

+

𝛽 (1 − 𝑞
𝑠
)

𝑇
(𝑠)

𝑡−1

] 𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)

− [

𝛼 (1 − 𝑞
𝑠
) 𝑙

𝑆
(1−𝑠)

𝑡−1

+

𝛽𝑞
𝑠

𝑇
(1−𝑠)

𝑡−1

] 𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)

+

𝛽𝑞
𝑠

𝑇
(1−𝑠)

𝑡−1

𝑁
(1−𝑠)

𝑙−1
(𝑡 − 1) 𝛿

𝑘,1
,

(57)

where the vertex of type 𝑠 with degree 𝑘 is younger than the
vertex of type 1 − 𝑠 with degree 𝑙.

We also notice a fact that the total number of pairs of
adjacent vertices is equal to the number of edges at time 𝑡.
The total number of edges is 𝑡 in the resulting graph 𝐺(𝑡);
obviously, there exist constants 𝜃

𝑖
(𝑖 = 1, 2, 3) such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1)

𝑆
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 1,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)

𝑆
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 1,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡)

S(1−𝑠)
𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 1.

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1)

𝑇
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜃
1
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡)

𝑇
(𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜃
2
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡)

𝑇
(1−𝑠)

𝑡−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜃
3
.

(58)

Similarly to the analysis of (27), for 𝑡 large enough, combining
Lemmas 12 and 13 and (58), we can get by (56) and (57),
respectively,

𝐸 [𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡) − 𝑁

(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1)]

= [

𝛼𝑞
𝑠

(𝑘 − 1)

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

]

× 𝐸 [𝑁
(𝑠,𝑠)

𝑘−1,𝑙
(𝑡 − 1)]

+ [

𝛼𝑞
𝑠

(𝑙 − 1)

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

]

× 𝐸 [𝑁
(𝑠,𝑠)

𝑘,𝑙−1
(𝑡 − 1)]

− [

𝛼𝑞
𝑠

(𝑘 + 𝑙)

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

2𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

]

× 𝐸 [𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡 − 1)]

+

𝛼𝑞
𝑠

(𝑙 − 1)

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

𝐸 [𝑁
(𝑠)

𝑙−1
(𝑡 − 1)]

× 𝛿
𝑘,1

+ 𝑂 (𝑡
−1/2

) ,

(59)

𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡) − 𝑁

(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)]

= [

𝛼𝑞
𝑠

(𝑘 − 1)

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

]

× 𝐸 [𝑁
(𝑠,1−𝑠)

𝑘−1,𝑙
(𝑡 − 1)]

+ [

𝛼 (1 − 𝑞
𝑠
) (𝑙 − 1)

1 + [(1 + 𝛼) (1 − 𝑞
𝑠
) + 𝛽𝑞

𝑠
] (𝑡 − 2)

+

𝛽𝑞
𝑠

1 + (1 − 𝑞
𝑠
) (𝑡 − 2)

] 𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙−1
(𝑡 − 1)]

− [

𝛼𝑞
𝑠
𝑘

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

+

𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

]

× 𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)]

− [

𝛼 (1 − 𝑞
𝑠
) 𝑙

1 + [(1 + 𝛼) (1 − 𝑞
𝑠
) + 𝛽𝑞

𝑠
] (𝑡 − 2)

+

𝛽𝑞
𝑠

1 + (1 − 𝑞
𝑠
) (𝑡 − 2)

] 𝐸 [𝑁
(𝑠,1−𝑠)

𝑘,𝑙
(𝑡 − 1)]

+

𝛽𝑞
𝑠

1 + (1 − 𝑞
𝑠
) (𝑡 − 2)

𝐸 [𝑁
(1−𝑠)

𝑙−1
(𝑡 − 1)] 𝛿

𝑘,1
+ 𝑂 (𝑡

−1/2

) .

(60)

4.2. Proof of Theorem 9. To solve the above equations ((59),
(60), resp.), we come to proveTheorem 9 as follows.

Proof of Theorem 9. At first we have

𝑁
(𝑠,𝑠)

𝑘,1
(𝑡) = 0 (for 𝑘 ≥ 1) ,

𝑁
(𝑠,𝑠)

0,𝑙
(𝑡) = 0 (for 𝑙 ≥ 2) , for all 𝑡 ≥ 1

(61)

so that

𝑃
(𝑠,𝑠)

𝑘,1
= 0 (for 𝑘 ≥ 1) , 𝑃

(𝑠,𝑠)

0,𝑙
= 0 (for 𝑙 ≥ 2) . (62)

Thus we have

𝐸 [𝑁
(𝑠,𝑠)

1,2
(𝑡)]

= [1 −

3𝛼𝑞
𝑠

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

−

2𝛽 (1 − 𝑞
𝑠
)

1 + 𝑞
𝑠

(𝑡 − 2)

] 𝐸 [𝑁
(𝑠,𝑠)

1,2
(𝑡 − 1)]

+

𝛼𝑞
𝑠

1 + [(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)] (𝑡 − 2)

𝐸 [𝑁
(𝑠)

1
(𝑡 − 1)] ;

(63)



10 Abstract and Applied Analysis

combining Lemma 10 withTheorem 3, it follows that

𝑃
(𝑠,𝑠)

1,2

=

𝛼𝑞
𝑠
/ ((1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
))

1 + 3𝛼𝑞
𝑠
/ ((1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)) + 2𝛽 (1 − 𝑞

𝑠
) /𝑞
𝑠

× 𝑃
(𝑠)

1
;

(64)

here and thereafter 𝑃
(𝑠)

1
is defined as (5) in Theorem 3 when

𝛿 = 0.
For 𝑘 ≥ 2, 𝑙 ≥ 2, by induction hypothesis, we suppose that

lim
𝑡→∞

𝐸

[𝑁
(𝑠,𝑠)

𝑘−1,𝑙
(𝑡)]

𝑡

= 𝑃
(𝑠,𝑠)

𝑘−1,𝑙
,

lim
𝑡→∞

𝐸

[𝑁
(𝑠)

𝑘,𝑙−1
(𝑡)]

𝑡

= 𝑃
(𝑠,𝑠)

𝑘,𝑙−1
exist.

(65)

Thus by using Lemma 10 and Theorem 3 again, we arrive
at lim

𝑡→∞
(𝐸[𝑁
(𝑠,𝑠)

𝑘,𝑙
(𝑡)]/𝑡) = 𝑃

(𝑠,𝑠)

𝑘,𝑙
existence and satisfy the

following time-independent recursion relation:

[1 +

𝛼𝑞
𝑠

(𝑘 + 𝑙)

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

2𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

] 𝑃
(𝑠,𝑠)

𝑘,𝑙

= [

𝛼𝑞
𝑠

(𝑘 − 1)

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

] 𝑃
(𝑠,𝑠)

𝑘−1,𝑙

+ [

𝛼𝑞
𝑠

(𝑙 − 1)

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

+

𝛽 (1 − 𝑞
𝑠
)

𝑞
𝑠

] 𝑃
(𝑠,𝑠)

𝑘,𝑙−1

+

𝛼𝑞
𝑠

(𝑙 − 1)

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝑃
(𝑠)

𝑙−1
𝛿
𝑘,1

,

(66)

which is equivalent to

[𝑘 + 𝑙 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

2𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

] 𝑃
(𝑠,𝑠)

𝑘,𝑙

= [𝑘 − 1 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

] 𝑃
(𝑠,𝑠)

𝑘−1,𝑙

+ [𝑙 − 1 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

] 𝑃
(𝑠,𝑠)

𝑘,𝑙−1

+ (𝑙 − 1) 𝑃
(𝑠)

𝑙−1
𝛿
𝑘,1

.

(67)

Now let us come to solve the difference equation (67). Letting

𝑃
(𝑠,𝑠)

𝑘,𝑙

= Γ (𝑘 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× Γ (𝑙 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (𝑘 + 𝑙 + 1 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

2𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

× 𝑀
(𝑠,𝑠)

𝑘,𝑙
,

(68)

substituting the above equation (68) in (67), and combining
(6), we arrive at

𝑀
(𝑠,𝑠)

𝑘,𝑙

= 𝑀
(𝑠,𝑠)

𝑘−1,𝑙
+ 𝑀
(𝑠,𝑠)

𝑘,𝑙−1

+ Γ (1 + 𝑙 +

(1 + 𝛼) 𝑞
𝑠

+ 𝛽 (1 − 𝑞
𝑠
)

𝛼𝑞
𝑠

+

2𝛽 (1 − q
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

× (Γ (1 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

)

×Γ (𝑙 +

𝛽 (1 − 𝑞
𝑠
) [(1 + 𝛼) 𝑞

𝑠
+ 𝛽 (1 − 𝑞

𝑠
)]

𝛼𝑞
2

𝑠

))

−1

× (𝑙 − 1) 𝑃
(𝑠)

𝑙−1
𝛿
𝑘,1

= 𝑀
(𝑠,𝑠)

𝑘−1,𝑙
+ 𝑀
(𝑠,𝑠)

𝑘,𝑙−1
+ 𝛾
(𝑠,𝑠)

𝜋
(𝑠,𝑠)

(𝑙) 𝛿
𝑘,1

,

(69)

where 𝛾
(𝑠,𝑠), 𝜋

(𝑠,𝑠)

(𝑙) are defined as (16) and (17) for all 𝑙 ≥ 2,
respectively.

Moreover, by (69) we have

𝑀
(𝑠,𝑠)

𝑘,1
= 0 (for 𝑘 ≥ 1) , 𝑀

(𝑠,𝑠)

0,𝑙
= 0 (for 𝑙 ≥ 2) .

(70)

Nowwe define 2-dimensional generating function as follows:

𝐺
(𝑠,𝑠)

(𝑥, 𝑦) =

∞

∑

𝑘=1

∞

∑

𝑙=2

𝑀
(𝑠,𝑠)

𝑘,𝑙
𝑥
𝑘

𝑦
𝑙

|𝑥| < 1,
󵄨
󵄨
󵄨
󵄨
𝑦

󵄨
󵄨
󵄨
󵄨

< 1; (71)
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it follows that

𝐺
(𝑠,𝑠)

(𝑥, 𝑦) =

∞

∑

𝑘−1=1

∞

∑

𝑙=2

𝑀
(𝑠,𝑠)

𝑘−1,𝑙
𝑥
𝑘

𝑦
𝑙

+

∞

∑

𝑘=1

∞

∑

𝑙−1=2

𝑀
(𝑠,𝑠)

𝑘,𝑙−1
𝑥
𝑘

𝑦
𝑙

+

∞

∑

𝑙=2

𝛾
(𝑠,𝑠)

𝜋
(𝑠,𝑠)

(𝑙) 𝑥𝑦
𝑙

= 𝑥𝐺
(𝑠,𝑠)

(𝑥, 𝑦) + 𝑦𝐺
(𝑠,𝑠)

(𝑥, 𝑦)

+ 𝛾
(𝑠,𝑠)

𝑥

∞

∑

𝑙=2

𝜋
(𝑠,𝑠)

(𝑙) 𝑦
𝑙

,

(72)
so that

𝐺
(𝑠,𝑠)

(𝑥, 𝑦) =

𝛾
(𝑠,𝑠)

𝑥

1 − 𝑥 − 𝑦

∞

∑

𝑙=2

𝜋
(𝑠,𝑠)

(𝑙) 𝑦
𝑙

; (73)

furthermore, taking 0 < 𝑟 < 1, for |𝑥 + 𝑦| ≤ 𝑟, and expanding
𝐺
(𝑠,𝑠)

(𝑥, 𝑦), then

𝐺
(𝑠,𝑠)

(𝑥, 𝑦)

= 𝛾
(𝑠,𝑠)

𝑥

∞

∑

𝑛=0

(𝑥 + 𝑦)
𝑛

∞

∑

𝑙=2

𝜋
(𝑠,𝑠)

(𝑙) 𝑦
𝑙

= 𝛾
(𝑠,𝑠)

𝑥

∞

∑

𝑛=0

𝑛

∑

𝑖=0

𝐶
𝑖

𝑛
𝑥
𝑛−𝑖

𝑦
𝑖

∞

∑

𝑗=0

𝜋
(𝑠,𝑠)

(𝑗 + 2) 𝑦
𝑗+2

= 𝛾
(𝑠,𝑠)

∞

∑

𝑘=1

∞

∑

𝑢=0

∑

𝑖+𝑗=𝑢

𝐶
𝑖

𝑘+𝑖−1
𝜋
(𝑠,𝑠)

(𝑗 + 2) 𝑥
𝑘

𝑦
𝑢+2

= 𝛾
(𝑠,𝑠)

∞

∑

𝑘=1

∞

∑

𝑙=2

𝑙−2

∑

𝑗=0

𝐶
𝑙−𝑗−2

𝑘+𝑙−𝑗−3
𝜋
(𝑠,𝑠)

(𝑗 + 2) 𝑥
𝑘

𝑦
𝑙

= 𝛾
(𝑠,𝑠)

∞

∑

𝑘=1

∞

∑

𝑙=2

𝑙−2

∑

𝑗=0

Γ (𝑘 + 𝑙 − 𝑗 − 2)

Γ (𝑙 − 𝑗 − 1) Γ (𝑘)

𝜋
(𝑠,𝑠)

(𝑗 + 2) 𝑥
𝑘

𝑦
𝑙

.

(74)

Comparing (71) with (74), it follows that

𝑀
(𝑠,𝑠)

𝑘,𝑙
= 𝛾
(𝑠,𝑠)

𝑙−2

∑

𝑗=0

Γ (𝑘 + 𝑙 − 𝑗 − 2)

Γ (𝑙 − 𝑗 − 1) Γ (𝑘)

𝜋
(𝑠,𝑠)

(𝑗 + 2) , (75)

so we arrive at (10) immediately. Furthermore, if 𝑞
0

=

𝑞
1

= 1/2, similarly to the analysis of (59), by doing the
same procedure to (60), (13) can be easily derived. Thus we
complete the proof of Theorem 9.

Appendix

Proof of Lemma 12. For 𝑖 ≥ 0, 𝑘 ≥ 𝑖+1, and 𝑠 = 0, 1, we define
a sequence of random variables {𝜉

(𝑠)

𝑖,𝑘
} as follows:

𝜉
(𝑠)

𝑖,𝑘
=

{
{

{
{

{

1, if the new edge associated with the 𝑘th
vertex hit the 𝑖th vertex of type 𝑠;

0, else.

(A.1)

It is simple to see that

𝑑
(0)

0
(𝑡 − 1) = 1 +

𝑡−1

∑

𝑘=2

𝜉
(0)

0,𝑘
, (A.2)

𝑑
(1)

1
(𝑡 − 1) = 1 +

𝑡−1

∑

𝑘=2

𝜉
(1)

1,𝑘
. (A.3)

For 𝑖 ≥ 2,

𝑑
(𝑠)

𝑖
(𝑡 − 1) = 𝐼

{𝑌𝑖=𝑠}
+

𝑡−1

∑

𝑘=𝑖+1

𝜉
(𝑠)

𝑖,𝑘
. (A.4)

Moreover combining (3) and (4), we have

𝑃 (𝜉
(𝑠)

𝑖,𝑘
= 1 | F

𝑘−1
)

= 𝑃 (V
𝑘

󳨀→ V
𝑖
, 𝑌
𝑖

= 𝑠, 𝑌
𝑘

= 𝑠 | F
𝑘−1

)

+ 𝑃 (V
𝑘

󳨀→ V
𝑖
, 𝑌
𝑖

= 𝑠, 𝑌
𝑘

= 1 − 𝑠 | F
𝑘−1

)

= 𝛼𝑞
𝑠

𝑑
(𝑠)

𝑖
(𝑘 − 1) + 𝛿

(𝑖,𝑠)

𝑆
(𝑠)

𝑘−1
+ 𝛿𝑇
(𝑠)

𝑘−1

+ 𝛽 (1 − 𝑞
𝑠
)

𝐼
{𝑌𝑖=𝑠}

𝑇
(𝑠)

𝑘−1

,

(A.5)

so for the case 𝑠 = 0,

𝐸 [

𝑡−1

∑

𝑖=0

𝑑
(0)

𝑖
(𝑡 − 1)]

= 1 + 𝐸 [

𝑡−1

∑

𝑘=2

𝜉
(0)

0,𝑘
] + 𝐸 [

𝑡−1

∑

𝑖=2

𝐼
{𝑌𝑖=0}

] + 𝐸 [

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

𝜉
(0)

𝑖,𝑘
]

= 1 + 𝑞
0

(𝑡 − 2) + 𝐸 [

𝑡−1

∑

𝑘=2

𝑃 (𝜉
(0)

0,𝑘
= 1 | F

𝑘−1
)]

+ 𝐸 [

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

𝑃 (𝜉
(0)

𝑖,𝑘
= 1 | F

𝑘−1
)]

= 1 + 𝑞
0

(𝑡 − 2)

+ 𝐸

𝑡−1

∑

𝑘=2

[𝛼𝑞
0

𝑑
(0)

0
(𝑘 − 1) + 𝛿

(0,0)

𝑆
(0)

𝑘−1
+ 𝛿𝑇
(0)

𝑘−1

+ 𝛽 (1 − 𝑞
0
)

𝐼
{𝑌0=0}

𝑇
(0)

𝑘−1

]

+ 𝐸

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

[𝛼𝑞
0

𝑑
(0)

𝑖
(𝑘 − 1) + 𝛿

(𝑖,0)

𝑆
(0)

𝑘−1
+ 𝛿𝑇
(0)

𝑘−1

+ 𝛽 (1 − 𝑞
0
)

𝐼
{𝑌𝑖=0}

𝑇
(0)

𝑘−1

]

= 1 + 𝑞
0

(𝑡 − 2)

+ 𝐸

𝑡−1

∑

𝑘=2

[𝛼𝑞
0

𝑑
(0)

0
(𝑘 − 1) + 𝛿

(0,0)

𝑆
(0)

𝑘−1
+ 𝛿𝑇
(0)

𝑘−1

+ 𝛽 (1 − 𝑞
0
)

𝐼
{𝑌0=0}

𝑇
(0)

𝑘−1

]
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+ 𝐸 [

𝑡−1

∑

𝑘=3

𝑘−1

∑

𝑖=2

𝛼𝑞
0

𝑑
(0)

𝑖
(𝑘 − 1) + 𝛿

(𝑖,0)

𝑆
(0)

𝑘−1
+ 𝛿𝑇
(0)

𝑘−1

+

𝑡−1

∑

𝑘=3

𝑘−1

∑

𝑖=2

𝛽 (1 − 𝑞
0
)

𝐼
{𝑌𝑖=0}

𝑇
(0)

𝑘−1

]

= 1 + 𝑞
0

(𝑡 − 2) + [𝛼𝑞
0

+ 𝛽 (1 − 𝑞
0
)] (𝑡 − 2) .

(A.6)

Similarly we can get

𝐸 [

𝑡−1

∑

𝑖=0

𝑑
(1)

𝑖
(𝑡 − 1)]

= 1 + 𝑞
1

(𝑡 − 2) + [𝛼𝑞
1

+ 𝛽 (1 − 𝑞
1
)] (𝑡 − 2) .

(A.7)

Thus (i) holds. Assertion (ii) is obvious since the {𝑌
𝑖
; 𝑖 ≥ 2}

are i.i.d. sequence.

Proof of Lemma 13. (i) Applying Lemma 11 to 𝑋
𝑖

= 𝐼
{𝑌𝑖=𝑠}

− 𝑞
𝑠

and combining with Hölder’s inequality we have for ∀𝜀 > 0

and 𝑝 = 1 + 𝜀

𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
(𝑠)

𝑡−1
− 𝐸 [𝑇

(𝑠)

𝑡−1
]

󵄨
󵄨
󵄨
󵄨
󵄨

≤
[

[

𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡−1

∑

𝑖=2

(𝐼
{𝑌𝑖=𝑠}

− 𝑞
𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1+𝜀

]

]

1/(1+𝜀)

≤ {𝑐
1+𝜀

𝑡𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
{𝑌2=𝑠}

− 𝑞
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨

1+𝜀

]}

1/(1+𝜀)

≤ 𝐶𝑡
1/(1+𝜀)

,

(A.8)

where 𝐶 = {𝑐
1+𝜀

[(1 − 𝑞
𝑠
)
1+𝜀

𝑞
𝑠

+ 𝑞
1+𝜀

𝑠
(1 − 𝑞

𝑠
)]}
1/(1+𝜀).

(ii) We introduce for 𝑠 = 0, 1

𝑍
(𝑠)

𝑛
= 𝐸 [𝑆

(𝑠)

𝑡−1
| F
𝑛
] , 𝑛 = 0, 1, . . . , 𝑡 − 1, (A.9)

where F
0
is 𝜎-field generated by the empty graph. By

Lemma 12 we have 𝐸[𝑍
(𝑠)

𝑛
] < ∞; the process is a Doob

martingalewith respect to {F
𝑛
}
𝑡−1

𝑛=0
.Moreover, we have𝑍

(𝑠)

𝑡−1
=

𝑆
(𝑠)

𝑡−1
and 𝑍

(𝑠)

0
= 𝐸[𝑆

(𝑠)

𝑡−1
], so that

𝑆
(𝑠)

𝑡−1
− 𝐸 [𝑆

(𝑠)

𝑡−1
] = 𝑍

(𝑠)

𝑡−1
− 𝑍
(𝑠)

0
. (A.10)

Furthermore, we claim that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑍
(𝑠)

𝑛
− 𝑍
(𝑠)

𝑛−1

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2. (A.11)

To see this, we at first consider the case 𝑠 = 0, noticing that

𝑆
(0)

𝑡−1
= 1 +

𝑡−1

∑

𝑖=2

𝐼
{𝑌𝑖=0}

+

𝑡−1

∑

𝑘=2

𝜉
(0)

0,𝑘
+

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

𝜉
(0)

𝑖,𝑘
, (A.12)

so that

𝑍
(0)

𝑛
= 𝐸 [𝑆

(0)

𝑡−1
| F
𝑛
]

= 𝐸 [1 +

𝑡−1

∑

𝑖=2

𝐼
{𝑌𝑖=0}

+

𝑡−1

∑

𝑘=2

𝜉
(0)

0,𝑘
+

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

𝜉
(0)

𝑖,𝑘
| F
𝑛
]

= 1 +

𝑛

∑

𝑖=2

𝐼
{𝑌𝑖=0}

+ 𝑞
0

(𝑡 − 𝑛 − 1)

+ 𝐸 [

𝑡−1

∑

𝑘=2

𝜉
(0)

0,𝑘
| F
𝑛
] + 𝐸 [

𝑡−1

∑

𝑖=2

𝑡−1

∑

𝑘=𝑖+1

𝜉
(0)

𝑖,𝑘
| F
𝑛
]

= 1 +

𝑛

∑

𝑖=2

𝐼
{𝑌𝑖=0}

+ 𝑞
0

(𝑡 − 𝑛 − 1)

+

𝑛

∑

𝑘=2

𝜉
(0)

0,𝑘
+

𝑡−1

∑

𝑘=𝑛+1

𝐸 [𝐸 [𝜉
(0)

0,𝑘
| F
𝑘−1

] | F
𝑛
]

+

𝑛

∑

𝑘=3

𝑘−1

∑

𝑖=2

𝜉
(0)

𝑖,𝑘

+

𝑡−1

∑

𝑘=𝑛+1

𝑘−1

∑

𝑖=2

𝐸 [𝐸 [𝜉
(0)

𝑖,𝑘
| F
𝑘−1

] | F
𝑛
]

= 1 +

𝑛

∑

𝑖=2

𝐼
{𝑌𝑖=0}

+ 𝑞
0

(𝑡 − 𝑛 − 1) +

𝑛

∑

𝑘=2

𝜉
(0)

0,𝑘

+

𝑛

∑

𝑘=3

𝑘−1

∑

𝑖=2

𝜉
(0)

𝑖,𝑘
+ [𝛼𝑞
0

+ 𝛽 (1 − 𝑞
0
)] (𝑡 − 𝑛 − 1) .

(A.13)

It follows that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑍
(0)

𝑛
− 𝑍
(0)

𝑛−1

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐼
{𝑌𝑛=0}

− 𝑞
0

+ 𝜉
(0)

0,𝑛
+

𝑛−1

∑

𝑖=2

𝜉
(0)

𝑖,𝑛
− [𝛼𝑞
0

+ 𝛽 (1 − 𝑞
0
)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
{𝑌𝑛=0}

− 𝑞
0

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉
(0)

0,𝑛
+

𝑛−1

∑

𝑖=2

𝜉
(0)

𝑖,𝑛
− [𝛼𝑞
0

+ 𝛽 (1 − 𝑞
0
)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2.

(A.14)

Similarly we get
󵄨
󵄨
󵄨
󵄨
󵄨
𝑍
(1)

𝑛
− 𝑍
(1)

𝑛−1

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2. (A.15)

Combining this fact and the martingale property we arrive at

𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
(𝑠)

𝑡−1
− 𝐸 [𝑆

(𝑠)

𝑡−1
]

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 𝐸[

𝑡−1

∑

𝑛=1

(𝑍
(𝑠)

𝑛
− 𝑍
(𝑠)

𝑛−1
)]

2

=

𝑡−1

∑

𝑛=1

𝐸(𝑍
(𝑠)

𝑛
− 𝑍
(𝑠)

𝑛−1
)

2

≤ 4𝑡.

(A.16)
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Applying Hölder’s inequality again, we can get assertion (ii).
Thus we complete the proof of Lemma 13.
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