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We use a three-step iterative process to prove some strong and Δ-convergence results for nonexpansive mappings in a uniformly
convex hyperbolic space, a nonlinear domain. Three-step iterative processes have numerous applications and hyperbolic spaces
contain Banach spaces (linear domains) as well as CAT(0) spaces. Thus our results can be viewed as extension and generalization
of several known results in uniformly convex Banach spaces as well as CAT(0) spaces.

1. Introduction and Preliminaries

Approximating fixed points of nonlinear mappings using dif-
ferent iterative processes on different domains has remained
at the heart of fixed point theory. Nonexpansive mappings
constitute one of the most important classes of nonlinear
mappings which have remained a crucial part of such studies.
Another important role is that of ambient spaces in this
regard. Banach spaces (linear domains) with some geometric
structure have been studied extensively: one of such struc-
tures is convexity. Since every Banach space is a vector space,
it is easier to assign a convex structure to it. However, metric
spaces do not enjoy this structure. Takahashi [1] introduced
the notion of convex metric spaces and studied the fixed
point theory for nonexpansive mappings in this setting. Later
on, several attempts were made to introduce different convex
structures on a metric space. One such convex structure is
available in a hyperbolic space introduced by Kohlenbach [2].
Kohlenbach hyperbolic space [2] is more restrictive than the
hyperbolic space introduced in [3] and more general than
the concept of hyperbolic space in [4]. Spaces like CAT(0)
and Banach are special cases of a hyperbolic space. The
class of hyperbolic spaces also containsHadamardmanifolds,
Hilbert ball equipped with the hyperbolic metric [5], R-
trees, and Cartesian products of Hilbert balls as special cases.
Many authors have worked on hyperbolic spaces; see for
example, [6, 7] and the references cited therein. Finally, an

iterative process to be used for approximation of fixed point
is very important. Several iterative processes having various
numbers of steps have been employed for the purpose.
Very famous Mann iteration process is a one-step process,
while Ishikawa process is a two-step process among others.
Glowinski and Le Tallec [8] used a three-step iterative process
to obtain approximate solutions of the elastoviscoplasticity
problem, liquid crystal theory, and eigenvalue computation.
They observed that a three-step iterative process is better than
a two- and a one-step iterative process in giving numerical
results. This was again testified in the study of Abbas and
Nazir [9]. Haubruge et al. [10] analyzed convergence of a
three-step iterative process of Glowinski and Le Tallec [8] and
applied it to obtain new splitting type iterations for solving
variational inequalities, separable convex programming, and
minimization of a sum of convex functions.They also proved
that a three-step iterative process lead to highly paralleled
iterations under certain conditions. Thus we conclude that
studying three-step iterative processes is very important in
solving various numerical problems arising in pure and
applied sciences.

The purpose of this paper is to investigate Δ-convergence
as well as strong convergence of a three-step iterative process
(to be given later) for nonexpansive maps on a nonlinear
domain of hyperbolic spaces. As mentioned above, the class
of uniformly convex hyperbolic spaces includes several types
of spaces including those of uniformly convex Banach spaces
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as well as CAT(0) spaces. This shows that our results extend
and improve the corresponding results for uniformly convex
Banach spaces as well as CAT(0) spaces at the same time and
using one of the well-applied three-step iterative processes.

Throughout this paper, N stands for the set of natural
numbers. Let (𝑋, 𝑑) be a metric space and 𝐾 a nonempty
subset of 𝑋. A mapping 𝑇 : 𝐾 → 𝐾 is said to be
nonexpansive if 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐾. The
notation 𝐹(𝑇) has been reserved for the set of fixed points of
𝑇.

A hyperbolic space [2] is a triple (𝑋, 𝑑,𝑊)where (𝑋, 𝑑) is
a metric space and𝑊: 𝑋

2
× [0, 1] → 𝑋 is such that

(W1) 𝑑(𝑢,𝑊(𝑥, 𝑦, 𝛼)) ≤ (1 − 𝛼)𝑑(𝑢, 𝑥) + 𝛼𝑑(𝑢, 𝑦),
(W2) 𝑑(𝑊(𝑥, 𝑦, 𝛼),𝑊(𝑥, 𝑦, 𝛽)) = |𝛼 − 𝛽|𝑑(𝑥, 𝑦),
(W3) 𝑊(𝑥, 𝑦, 𝛼) = 𝑊(𝑦, 𝑥, (1 − 𝛼)),
(W4) 𝑑(𝑊(𝑥, 𝑧, 𝛼),𝑊(𝑦, 𝑢, 𝛼)) ≤ (1 − 𝛼)𝑑(𝑥, 𝑦) + 𝛼𝑑(𝑧, 𝑢),

for all 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0, 1].
If (𝑋, 𝑑,𝑊) satisfies only (W1), then it coincides with the

convex metric space introduced by Takahashi [1]. A subset𝐾
of a hyperbolic space𝑋 is called convex if𝑊(𝑥, 𝑦, 𝛼) ∈ 𝐾 for
all 𝑥, 𝑦 ∈ 𝐾 and 𝛼 ∈ [0, 1].

A hyperbolic space (𝑋, 𝑑,𝑊) is said to be

(i) strictly convex [1] if, for any 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1],
there exists a unique element 𝑧 ∈ 𝑋 such that

𝑑 (𝑧, 𝑥) = 𝜆𝑑 (𝑥, 𝑦) , 𝑑 (𝑧, 𝑦) = (1 − 𝜆) 𝑑 (𝑥, 𝑦) ; (1)

(ii) uniformly convex [11] if, for all 𝑢, 𝑥, 𝑦 ∈ 𝑋, 𝑟 > 0 and
𝜀 ∈ (0, 2], there exists a 𝛿 ∈ (0, 1] such that

𝑑 (𝑥, 𝑢) ≤ 𝑟

𝑑 (𝑦, 𝑢) ≤ 𝑟

𝑑 (𝑥, 𝑦) ≥ 𝜀𝑟

}

}

}

⇒ 𝑑(𝑊(𝑥, 𝑦,
1

2
) , 𝑢) ≤ (1 − 𝛿) 𝑟.

(2)

A map 𝜂 : (0,∞) × (0, 2] → (0, 1] which provides such a
𝛿 = 𝜂(𝑟, 𝜀) for given 𝑟 > 0 and 𝜀 ∈ (0, 2] is called modulus of
uniform convexity. We call 𝜂monotone if it decreases with 𝑟

(for a fixed 𝜀). A uniformly convex hyperbolic space is strictly
convex (see [12]).

In all the iterative processes to follow, we fix a given 𝑥
1
in

𝐾 (a subset of the ambient space) as a starting point of the
process and 𝑇 : 𝐾 → 𝐾 a nonexpansive mapping unless
stated otherwise. We know that Picard and Mann iterative
processes are defined, respectively, as

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 ∈ N,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(3)

where {𝛼
𝑛
} is in (0, 1).

In an attempt to develop an iterative process whose rate of
convergence is faster than the Picard iterative, Agarwal et al.
[13] introduced the following two-step iterative process:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑇𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(4)

where {𝛼
𝑛
} and {𝛽

𝑛
} are in (0, 1). They showed that this

process converges at a rate the same as that of Picard process
and faster than Mann process for contractions. Continuing
with the same question, Sahu [14] proved that this process
converges at a rate faster than both Picard and Mann for
contractions. He also gave a numerical example in support
of his analytic proof.

Recently, Abbas and Nazir [9] considered the following
three-step iterative process in Banach spaces:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑇𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(5)

where {𝛼
𝑛
}, {𝛽
𝑛
} and {𝛾

𝑛
} are in (0, 1).

They proved that it is faster than all of Picard, Mann,
and Agarwal et al.’s while supporting their analytic proof by
a numerical example. They claimed that their process was
independent of all the processes just mentioned in the sense
that neither can be deduced from this process and vice versa.
They proved someweak and strong convergence results using
this iterative process for nonexpansive mappings in Banach
spaces (a linear domain).

Keeping in mind the above discussion (about mappings,
ambient spaces, and iterative processes), we first write the
iterative process (5) in the language of hyperbolic spaces as

𝑥
𝑛+1

= 𝑊(𝑇𝑦
𝑛
, 𝑇𝑧
𝑛
, 𝛼
𝑛
) ,

𝑦
𝑛
= 𝑊(𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
, 𝛽
𝑛
) ,

𝑧
𝑛
= 𝑊(𝑥

𝑛
, 𝑇𝑥
𝑛
, 𝛾
𝑛
) , 𝑛 ∈ N,

(6)

where {𝛼
𝑛
}, {𝛽
𝑛
} and {𝛾

𝑛
} are in (0, 1).

Note that (6) is a three-step iterative process. To explain
and simplify the already mentioned purpose of our paper, we
say that we apply iterative process (6) to approximate fixed
points of nonexpansive mappings in a hyperbolic space.

Let us now turn to some prerequisites as follows.
The concept of Δ-convergence in a metric space was

introduced by Lim [15]. Δ-convergence in CAT(0) spaces
has been investigated initially by Dhompongsa and Panyanak
[16]. See also Khan et al. [6], Abbas and Khan [17], and Khan
and Abbas [18].

Let {𝑥
𝑛
} be a bounded sequence in a hyperbolic space 𝑋.

For𝑥 ∈ 𝑋, we define a continuous functional 𝑟(⋅, {𝑥
𝑛
}) : 𝑋 →

[0,∞) by

𝑟 (𝑥, {𝑥
𝑛
}) = lim sup

𝑛→∞

𝑑 (𝑥, 𝑥
𝑛
) . (7)

The asymptotic radius 𝜌 = 𝑟({𝑥
𝑛
}) of {𝑥

𝑛
} is defined as

𝜌 = inf {𝑟 (𝑥, {𝑥
𝑛
}) : 𝑥 ∈ 𝑋} . (8)

The asymptotic center of a bounded sequence {𝑥
𝑛
} with

respect to a subset 𝐾 of𝑋 is defined as

𝐴
𝐾
({𝑥
𝑛
})

= {𝑥 ∈ 𝑋 : 𝑟 (𝑥, {𝑥
𝑛
}) ≤ 𝑟 (𝑦, {𝑥

𝑛
}) for any 𝑦 ∈ 𝐾} .

(9)
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If the asymptotic center is taken with respect to 𝑋, then
it is simply denoted by 𝐴({𝑥

𝑛
}). It is known that uniformly

convex Banach spaces and CAT(0) spaces enjoy the property
that bounded sequences have unique asymptotic centers with
respect to closed convex subsets. In case of hyperbolic spaces,
we have the following result.

Lemma 1 (see [19]). Let (𝑋, 𝑑,𝑊) be a complete uniformly
convex hyperbolic space with monotone modulus of uniform
convexity.Then every bounded sequence {𝑥

𝑛
} in𝑋 has a unique

asymptotic center with respect to any nonempty closed convex
subset𝐾 of𝑋.

A sequence {𝑥
𝑛
} in 𝑋 is said to Δ-converge to 𝑥 ∈ 𝑋 if 𝑥

is the unique asymptotic center of {𝑢
𝑛
} for every subsequence

{𝑢
𝑛
} of {𝑥

𝑛
}. In this case, 𝑥 is called Δ-limit of {𝑥

𝑛
} and is

written as Δ-lim
𝑛
𝑥
𝑛
= 𝑥.

The following useful lemma has been taken from
Khan et al. [6].

Lemma 2 (see [6]). Let (𝑋, 𝑑,𝑊) be a uniformly con-
vex hyperbolic space with monotone modulus of uniform
convexity 𝜂. Let 𝑥 ∈ 𝑋, {𝛼

𝑛
} be a sequence in [𝑏, 𝑐]

for some 𝑏, 𝑐 ∈ (0, 1) and {𝑥
𝑛
}, {𝑦
𝑛
} sequences in 𝑋.

If lim sup
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) ≤ 𝑟, lim sup

𝑛→∞
𝑑(𝑦
𝑛
, 𝑥) ≤

𝑟, and lim
𝑛→∞

𝑑(𝑊(𝑥
𝑛
, 𝑦
𝑛
, 𝛼
𝑛
), 𝑥) = 𝑟 for some 𝑟 ≥ 0, then

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

A sequence {𝑥
𝑛
} in a metric space 𝑋 is said to be Fejér

monotone with respect to 𝐾 (a subset of 𝑋) if 𝑑(𝑥
𝑛+1

, 𝑝) ≤

𝑑(𝑥
𝑛
, 𝑝) for all 𝑝 ∈ 𝐾 and for all 𝑛 ∈ N.

Lemma 3 (see [20]). Let 𝐾 be a nonempty closed subset of a
complete metric space (𝑋, 𝑑) and let {𝑥

𝑛
} be Fejér monotone

with respect to 𝐾. Then {𝑥
𝑛
} converges to some 𝑝 ∈ 𝐾 if and

only if lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐾) = 0.

A map 𝑇 : 𝐾 → 𝐾 is semicompact if any bounded
sequence {𝑥

𝑛
} satisfying 𝑑(𝑥

𝑛
, 𝑇𝑥
𝑛
) → 0 as 𝑛 → ∞, has a

convergent subsequence. A map 𝑇 : 𝐾 → 𝐾 is said to satisfy
condition (I) in [21] if there is a nondecreasing function 𝑓 :

[0,∞) → [0,∞) with 𝑓(0) = 0, 𝑓(𝑡) > 0 for all 𝑡 ∈ (0,∞)

such that

𝑑 (𝑥, 𝑇𝑥) ≥ 𝑓 (𝑑 (𝑥, 𝐹 (𝑇))) , (10)

for all 𝑥 ∈ 𝐾, where 𝑑(𝑥, 𝐹(𝑇)) = inf{𝑑(𝑥, 𝑝) : 𝑝 ∈ 𝐹(𝑇)}.

2. Fixed Point Approximation

We start our main section with the following.

Lemma 4. Let 𝐾 be a nonempty closed convex subset of a
hyperbolic space 𝑋 and let 𝑇 be a nonexpansive self-map on
𝐾 such that 𝐹(𝑇) ̸= 0. Then {𝑥

𝑛
} as defined in (6) is Fejér

monotone with respect to 𝐹(𝑇).

Proof. Let 𝑝 ∈ 𝐹(𝑇). Using (6), we have

𝑑 (𝑧
𝑛
, 𝑝) = 𝑑 (𝑊 (𝑥

𝑛
, 𝑇𝑥
𝑛
, 𝛾
𝑛
) , 𝑝)

≤ (1 − 𝛾
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛾

𝑛
𝑑 (𝑇𝑥
𝑛
, 𝑝)

≤ (1 − 𝛾
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛾

𝑛
𝑑 (𝑥
𝑛
, 𝑝)

= 𝑑 (𝑥
𝑛
, 𝑝) .

(11)

Next,

𝑑 (𝑦
𝑛
, 𝑝) = 𝑑 (𝑊 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
, 𝛽
𝑛
) , 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑝) + 𝛽

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑑 (𝑧
𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑑 (𝑥
𝑛
, 𝑝) by (11)

= 𝑑 (𝑥
𝑛
, 𝑝) .

(12)

Thus

𝑑 (𝑥
𝑛+1

, 𝑝) = 𝑑 (𝑊 (𝑇𝑦
𝑛
, 𝑇𝑧
𝑛
, 𝛼
𝑛
) , 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑇𝑦

𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑦
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑧
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝)

+ 𝛼
𝑛
𝑑 (𝑥
𝑛
, 𝑝) by (11) and (12)

= 𝑑 (𝑥
𝑛
, 𝑝) .

(13)

That is, 𝑑(𝑥
𝑛+1

, 𝑝) ≤ 𝑑(𝑥
𝑛
, 𝑝) for all 𝑝 ∈ 𝐹(𝑇). Thus {𝑥

𝑛
} is

Fejér monotone with respect to 𝐹(𝑇).

Remarks 1. The following are immediate consequences of the
above lemma:

(1) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists for all 𝑝 ∈ 𝐹(𝑇);

(2) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) exists;

(3) {𝑥
𝑛
} is bounded.

Lemma 5. Let 𝐾 be a nonempty closed convex subset of a
uniformly convex hyperbolic space 𝑋 with monotone modulus
of uniform convexity 𝜂. Let 𝑇 be a nonexpansive self-map on𝐾
such that 𝐹(𝑇) ̸= 0. Let {𝑥

𝑛
} be as defined in (6). Then

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (14)

Proof. Let 𝑝 ∈ 𝐹(𝑇). By Lemma 4, it follows that
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists. Assume that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑝) = 𝑐

where 𝑐 ≥ 0. Note that

lim sup
𝑛→∞

𝑑 (𝑇𝑧
𝑛
, 𝑝) ≤ lim sup

𝑛→∞

𝑑 (𝑧
𝑛
, 𝑝)

≤ lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑝)

= 𝑐.

(15)
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Similarly,

lim sup
𝑛→∞

𝑑 (𝑇𝑦
𝑛
, 𝑝) ≤ 𝑐. (16)

Since lim
𝑛→∞

𝑑(𝑥
𝑛+1

, 𝑝) = lim
𝑛→∞

𝑑(𝑊(𝑇𝑦
𝑛
, 𝑇𝑧
𝑛
, 𝛼
𝑛
), 𝑝) =

𝑐, Lemma 2 gives

lim
𝑛→∞

𝑑 (𝑇𝑦
𝑛
, 𝑇𝑧
𝑛
) = 0. (17)

Next,

𝑑 (𝑥
𝑛+1

, 𝑝) = 𝑑 (𝑊 (𝑇𝑦
𝑛
, 𝑇𝑧
𝑛
, 𝛼
𝑛
) , 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑇𝑦

𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑇𝑦

𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑇𝑦
𝑛
)

+ 𝛼
𝑛
𝑑 (𝑇𝑦
𝑛
, 𝑝)

≤ 𝑑 (𝑇𝑦
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑇𝑦
𝑛
)

≤ 𝑑 (𝑦
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑇𝑦
𝑛
)

(18)

implies by virtue of (17) that

lim inf
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) ≥ 𝑐. (19)

But by (12), lim sup
𝑛→∞

𝑑(𝑦
𝑛
, 𝑝) ≤ 𝑐; hence

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) = lim

𝑛→∞
𝑑 (𝑊 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
, 𝛽
𝑛
) , 𝑝) = 𝑐. (20)

Since lim sup
𝑛→∞

𝑑(𝑇𝑥
𝑛
, 𝑝) ≤ 𝑐 and

lim sup
𝑛→∞

𝑑(𝑇𝑧
𝑛
, 𝑝) ≤ 𝑐, Lemma 2 guarantees

lim
𝑛→∞

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑧
𝑛
) = 0 (21)

because of (20).
Moreover,

𝑑 (𝑦
𝑛
, 𝑝) = 𝑑 (𝑊 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
, 𝛽
𝑛
) , 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑝) + 𝛽

𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
) + (1 − 𝛽

𝑛
) 𝑑 (𝑇𝑧

𝑛
, 𝑝)

+ 𝛽
𝑛
𝑑 (𝑇𝑧
𝑛
, 𝑝)

= (1 − 𝛽
𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
) + 𝑑 (𝑇𝑧

𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑧
𝑛
) + 𝑑 (𝑧

𝑛
, 𝑝)

(22)

yields by virtue of (21) that

lim inf
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑝) ≥ 𝑐. (23)

But by (11), lim sup
𝑛→∞

𝑑(𝑧
𝑛
, 𝑝) ≤ 𝑐; hence

lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑝) = lim

𝑛→∞
𝑑 (𝑊 (𝑥

𝑛
, 𝑇𝑥
𝑛
, 𝛾
𝑛
) , 𝑝) = 𝑐. (24)

Thus from Lemma 2, we obtain

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (25)

The following are our strong convergence results.

Theorem 6. Let 𝐾 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 be a nonexpansive
self-map on 𝐾 such that 𝐹(𝑇) ̸= 0. Suppose that 𝑇 satisfies
condition (I) in [21]. Then the sequence {𝑥

𝑛
} defined in (6)

converges strongly to 𝑝 ∈ 𝐹(𝑇).

Proof. By Lemma 4, it follows that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists

for all 𝑝 ∈ 𝐹(𝑇) and hence lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) exists.

Also, by Lemma 5, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. By using

condition (I) in [21] we get lim
𝑛→∞

𝑓(𝑑(𝑥
𝑛
, 𝐹(𝑇))) = 0.

Since 𝑓 is nondecreasing with 𝑓(0) = 0, it follows that
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0. Again by Lemma 4, {𝑥

𝑛
} is Fejér

monotone with respect to 𝐹(𝑇). Thus Lemma 3 implies that
{𝑥
𝑛
} converges strongly to a point 𝑝 in 𝐹(𝑇).

Theorem 7. Let 𝐾 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 be a nonexpansive
self-map on 𝐾 such that 𝐹(𝑇) ̸= 0. Suppose that either 𝐾 is
compact or 𝑇 is semicompact. Then the sequence {𝑥

𝑛
} defined

in (6) converges strongly to 𝑝 ∈ 𝐹(𝑇).

Proof. Note that the condition (I) in [21] is weaker than
both the compactness of 𝐾 and the semicompactness of the
nonexpansive mappings 𝑇; therefore we have the result by
above theorem.

Finally, we give our Δ-convergence theorem.

Theorem 8. Let 𝐾 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 be a nonexpansive
self-map on 𝐾 such that 𝐹(𝑇) ̸= 0. Then the sequence {𝑥

𝑛
}

defined by (6) Δ-converges to a fixed point of 𝑇.

Proof. It follows from Lemma 4 that {𝑥
𝑛
} is bounded. There-

fore {𝑥
𝑛
} has a Δ-convergent subsequence. We now prove

that every Δ-convergent subsequence of {𝑥
𝑛
} has a unique

Δ-limit in 𝐹(𝑇). For this, let 𝑢 and V be the Δ-limits of the
subsequences {𝑢

𝑛
} and {V

𝑛
} of {𝑥

𝑛
}, respectively. By definition

𝐴({𝑢
𝑛
}) = {𝑢} and 𝐴({V

𝑛
}) = {V}. By Lemma 5, we have

lim
𝑛→∞

𝑑(𝑢
𝑛
, 𝑇𝑢
𝑛
) = 0. We claim that 𝑢 is a fixed point of

𝑇. Now

𝑑 (𝑇𝑢, 𝑢
𝑛
) ≤ 𝑑 (𝑇𝑢, 𝑇𝑢

𝑛
) + 𝑑 (𝑇𝑢

𝑛
, 𝑢
𝑛
)

≤ 𝑑 (𝑢, 𝑢
𝑛
) + 𝑑 (𝑇𝑢

𝑛
, 𝑢
𝑛
)

(26)

implies that

𝑟 (𝑇𝑢, {𝑢
𝑛
}) = lim sup

𝑛→∞

𝑑 (𝑇𝑢, 𝑢
𝑛
)

≤ lim sup
𝑛→∞

[𝑑 (𝑇𝑢, 𝑇𝑢
𝑛
) + 𝑑 (𝑇𝑢

𝑛
, 𝑢
𝑛
)]
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≤ lim sup
𝑛→∞

[𝑑 (𝑢, 𝑢
𝑛
) + 𝑑 (𝑇𝑢

𝑛
, 𝑢
𝑛
)]

= lim sup
𝑛→∞

𝑑 (𝑢, 𝑢
𝑛
)

= 𝑟 (𝑢, {𝑢
𝑛
}) .

(27)

By the uniqueness of asymptotic centers, 𝑇𝑢 = 𝑢.
Similarly, we can prove that 𝑇V = V. This means that both
𝑢 and V are fixed points of 𝑇. What is left to prove now is that
𝑢 = V. To this end, if 𝑢 and V are distinct then by uniqueness
of asymptotic centers,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = lim sup

𝑛→∞

𝑑 (𝑢
𝑛
, 𝑢)

< lim sup
𝑛→∞

𝑑 (𝑢
𝑛
, V)

= lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, V)

= lim sup
𝑛→∞

𝑑 (V
𝑛
, V)

< lim sup
𝑛→∞

𝑑 (V
𝑛
, 𝑢)

= lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) .

(28)

This is a contradiction and hence the proof.
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