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In 1961, Wang showed that if 𝐴 is the commutative 𝐶
∗-algebra 𝐶

0
(𝑋) with𝑋 a locally compact Hausdorff space, then𝑀(𝐶

0
(𝑋)) ≅

𝐶
𝑏
(𝑋). Later, this type of characterization ofmultipliers of spaces of continuous scalar-valued functions has also been generalized to

algebras and modules of continuous vector-valued functions by several authors. In this paper, we obtain further extension of these
results by showing that Hom

𝐶0(𝑋,𝐴)
(𝐶
0
(𝑋, 𝐸), 𝐶

0
(𝑋, 𝐹)) ≃ 𝐶

𝑠,𝑏
(𝑋,Hom

𝐴
(𝐸, 𝐹)),where 𝐸 and 𝐹 are 𝑝-normed spaces which are also

essential isometric left 𝐴-modules with 𝐴 being a certain commutative 𝐹-algebra, not necessarily locally convex. Our results unify
and extend several known results in the literature.

1. Introduction

Characterizations of multipliers on algebras and modules of
continuous functions with values in a commutative Banach
or 𝐶
∗-algebra 𝐴 have been obtained by several authors. In

1961, Wang [1] showed that if 𝐴 is taken as the commutative
𝐶
∗-algebra 𝐶

0
(𝑋) with 𝑋 being a locally compact Hausdorff

space, then 𝑀(𝐶
0
(𝑋)) ≅ 𝐶

𝑏
(𝑋). This result has also been

generalized to vector-valued functions by several authors
(see, e.g., [2–6]). In 1985, Lai [6] showed that if 𝑋 is a
locally compact abelian group and 𝐴 is a commutative
Banach algebra with a bounded approximate identity, then
𝑀(𝐶
0
(𝑋, 𝐴)) ≅ 𝐶

𝑏
(𝑋,𝑀(𝐴)

𝑢
). In 1992, Candeal Haro and

Lai [3] had obtained
Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸) , 𝐶

0
(𝑋, 𝐹)) ≃ 𝐶

𝑠,𝑏
(𝑋,Hom

𝐴
(𝐸, 𝐹)) ,

(1)

in the case when 𝐴 is a commutative Banach algebra and 𝐸

and 𝐹 are left Banach 𝐴-modules.
A natural question arises is to investigate the extent to

which these characterizations can be made beyond Banach
modules. We will focus mainly on the nonlocally convex case
by considering𝐴 a commutative complete𝑝-normed algebra,
0 < 𝑝 ≤ 1, having a minimal approximate identity and 𝐸 and
𝐹 being 𝐹-spaces which are also left 𝐴-modules.

We mention that the arguments of earlier authors relied
heavily on the fact that, in the case of 𝐴, a Banach algebra,

𝐶
0
(𝑋, 𝐴) is isometrically isomorphic to the completed tensor

product 𝐶
0
(𝑋)⊗
𝜆
𝐴 with respect to the smallest cross norm 𝜆

(see [2–5]). We will avoid the use of this technique as it need
not work in our case. In fact, when 𝐴 is not locally convex,
⊗
𝜆
is no longer appropriate; even for𝐴 a complete 𝑝-normed

space, many complications arise (see [7, Section 10.4]; [8, p.
100]).

2. Preliminaries

In this section, we include some basic definitions and study
various classes of topological algebras considered in this
paper.

Definition 1 (see [9, 10]). Let 𝐸 be a vector space over the field
K ∈ {R, C}.

(a) A function 𝑞 : 𝐸 → R is called an 𝐹-seminorm on 𝐸

if it satisfies the following:

(F
1
) 𝑞(𝑢) ≥ 0 for all 𝑢 ∈ 𝐸;

(F
2
) 𝑞(𝑢) = 0 if 𝑢 = 0;

(F
3
) 𝑞(𝛼𝑢) ≤ 𝑞(𝑢) for all 𝑢 ∈ 𝐸 and 𝛼 ∈ K with
|𝛼| ≤ 1;

(F
4
) 𝑞(𝑢 + V) ≤ 𝑞(𝑢) + 𝑞(V) for all 𝑢, V ∈ 𝐸;

(F
5
) if 𝛼
𝑛

→ 0 in K, then 𝑞(𝛼
𝑛
𝑢) → 0 for all 𝑢 ∈ 𝐸.
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(b) An 𝐹-seminorm 𝑞 on 𝐸 is called an 𝐹-norm if, for any
𝑢 ∈ 𝐸, 𝑞(𝑢) = 0 implies 𝑢 = 0.

(c) An 𝐹-seminorm (or 𝐹-norm) 𝑞 on 𝐸 is called a 𝑝-
seminorm (resp.,𝑝-norm), 0 < 𝑝 ≤ 1, if it also satisfies

𝑞 (𝛼𝑢) = |𝛼|
𝑝

𝑞 (𝑢) ∀𝑢 ∈ 𝐸, 𝛼 ∈ K. (𝑝-homogeneous) .
(2)

(d) If 𝑞 is an 𝐹-norm (resp., a 𝑝-norm) on a vector space
𝐸, then the pair (𝐸, 𝑞) is called an 𝐹-normed (resp., a
𝑝-normed) space.

(e) An 𝐹-norm (or a 𝑝-norm) 𝑞 on an algebra 𝐴 is called
submultiplicative if

𝑞 (𝑎𝑏) ≤ 𝑞 (𝑎) 𝑞 (𝑏) ∀𝑎, 𝑏 ∈ 𝐴. (3)

An algebra 𝐴 with a submultiplicative 𝐹-norm (resp., 𝑝-
norm) 𝑞 is called an 𝐹-normed (resp., 𝑝-normed) algebra.

Definition 2. (1) A net {𝑒
𝜆
: 𝜆 ∈ 𝐼} in a topological algebra 𝐴

is called an approximate identity if

lim
𝜆

𝑒
𝜆
𝑎 = lim
𝜆

𝑎𝑒
𝜆
= 𝑎 ∀𝑎 ∈ 𝐴. (4)

(2) An approximate identity {𝑒
𝜆
: 𝜆 ∈ 𝐼} in an 𝐹-normed

algebra (𝐴, 𝑞) is said to beminimal if 𝑞(𝑒
𝜆
) ≤ 1 for all 𝜆 ∈ 𝐼.

If 𝐸 and 𝐹 are topological vector spaces over the fieldK ∈

{R or C}, then the set of all continuous linear mappings 𝑇 :

𝐸 → 𝐹 is denoted by 𝐶𝐿(𝐸, 𝐹). Clearly, 𝐶𝐿(𝐸, 𝐹) is a vector
space over K with the usual pointwise operations. Further, if
𝐹 = 𝐸, 𝐶𝐿(𝐸) = 𝐶𝐿(𝐸, 𝐸) is an algebra under composition
(i.e., (𝑆𝑇)(𝑢) = 𝑆(𝑇(𝑢)), 𝑢 ∈ 𝐸) and has the identity 𝐼 : 𝐸 →

𝐸 given by 𝐼(𝑢) = 𝑢 (𝑢 ∈ 𝐸).

Definition 3. Let (𝐸, 𝑞
𝐸
) and (𝐹, 𝑞

𝐹
) be 𝑝-normed spaces. For

any linear map 𝑇 : 𝐸 → 𝐹, define

‖𝑇‖
𝑞𝐸,𝑞𝐹

= sup {𝑞
𝐹
(𝑇𝑢) : 𝑢 ∈ 𝐸, 𝑞

𝐸
(𝑢) ≤ 1} . (5)

Then, by ([10, p. 101-102]), 𝑇 ∈ 𝐶𝐿(𝐸, 𝐹) if and only if
‖𝑇‖
𝑞𝐸,𝑞𝐹

< ∞. Further, ‖ ⋅ ‖
𝑞𝐸,𝑞𝐹

is an 𝐹-norm on 𝐶𝐿(𝐸, 𝐹)

and, for any 𝑇 ∈ 𝐶𝐿(𝐸, 𝐹),

𝑞
𝐹
(𝑇𝑢) ≤ ‖𝑇‖

𝑞𝐸,𝑞𝐹
⋅ 𝑞
𝐸
(𝑢) ∀𝑢 ∈ 𝐸. (6)

In particular, if 𝑇 ∈ 𝐶𝐿(𝐸) = 𝐶𝐿(𝐸, 𝐸), we denote

‖𝑇‖
𝑞𝐸

:= sup {𝑞
𝐸
(𝑇 (𝑢)) : 𝑢 ∈ 𝐸, 𝑞

𝐸
(𝑢) ≤ 1} . (7)

In this case, for any 𝑆, 𝑇 ∈ 𝐶𝐿(𝐸), ||𝑆𝑇||
𝑞𝐸

≤ ||𝑆||
𝑞𝐸
||𝑇||
𝑞𝐸
;

hence (𝐶𝐿(𝐸), ‖ ⋅ ‖
𝑞𝐸
) is a 𝑝-normed algebra.

Definition 4. Let 𝐸 and 𝐹 be topological vector spaces.
The uniform operator topology 𝜎 (resp., the strong operator
topology 𝑠) on 𝐶𝐿(𝐸, 𝐹) is defined as the linear topology
which has a base of neighborhoods of 0 consisting of all the
sets of the form

𝑁(𝐷,𝑊) = {𝑇 ∈ 𝐶𝐿 (𝐴) : 𝑇 (𝐷) ⊆ 𝑊} , (8)

where 𝐷 is a bounded (resp., finite) subset of 𝐸 and 𝑊 is a
neighborhood of 0 in𝐹. Clearly, 𝑠 ≤ 𝜎. In particular, if (𝐴, 𝑞

𝐴
)

is a 𝑝-normed algebra, then the 𝜎-topology on 𝐶𝐿(𝐴) is the
one given by the 𝑝-norm ‖ ⋅ ‖

𝐴𝑝
. In this setting, the strong

operator topology 𝑠 on 𝐶𝐿(𝐴) is given by the family of {𝑃
𝑎

:

𝑎 ∈ 𝐴} of 𝐹-seminorms, where

𝑃
𝑎
(𝑇) = 𝑞

𝐴
(𝑇 (𝑎)) , 𝑇 ∈ 𝐶𝐿 (𝐴) . (9)

Remark 5. If (𝐸, 𝑞
𝐸
) is a general 𝐹-algebra, then ||𝑇||

𝑞𝐸
need

not exist since the set {𝑢 ∈ 𝐸 : 𝑞
𝐸
(𝑢) ≤ 1}maynot be bounded

(see ([10, p. 8]; [11, 12]) for counterexamples).

Definition 6. Let 𝑋 be a Hausdorff topological space and 𝐸 a
Hausdorff topological vector space over the field K (= R or
C) with a baseW of neighborhoods of 0 in 𝐸. A function 𝑓 :

𝑋 → 𝐸 is said to vanish at infinity if, for each neighborhood
𝑊 of 0 in 𝐸, there exists a compact set𝐾 = 𝐾

𝑊
⊆ 𝑋 such that

𝑓 (𝑥) ∈ 𝑊 ∀𝑥 ∈ 𝑋 \ 𝐾. (10)

We will denote by 𝐶
𝑏
(𝑋, 𝐸) the vector space of all continuous

bounded 𝐸-valued functions on 𝑋 and by 𝐶
0
(𝑋, 𝐸) the

subspace of 𝐶
𝑏
(𝑋, 𝐸) consisting of those functions which

vanish at infinity. When 𝐸 = K (= R or C), these spaces will
be denoted by 𝐶

𝑏
(𝑋) and 𝐶

0
(𝑋). Let 𝐶

𝑏
(𝑋) ⊗ 𝐸 denote the

vector subspace of𝐶
𝑏
(𝑋, 𝐸) spanned by the set of all functions

of the form 𝜑 ⊗ 𝑢, where 𝜑 ∈ 𝐶
𝑏
(𝑋), 𝑢 ∈ 𝐸, and

(𝜑 ⊗ 𝑢) (𝑥) = 𝜑 (𝑥) 𝑢, 𝑥 ∈ 𝑋. (11)

We mention that, if 𝑋 is not locally compact, then 𝐶
0
(𝑋, 𝐸)

may be the trivial vector space {0}. For example, if𝑋 = Q, the
space of rationals, and 𝐸 = R, then 𝐶

0
(Q,R) = {0}.

Remarks 7. (i) If 𝐸 = 𝐴 is an algebra, then 𝐶
𝑏
(𝑋, 𝐴) is also an

algebra with respect to the pointwise multiplication defined
by

(𝑓𝑔) (𝑥) = 𝑓 (𝑥) 𝑔 (𝑥) , 𝑥 ∈ 𝑋. (12)

(ii) If 𝐸 = 𝐴 is a commutative algebra, then 𝐶
𝑏
(𝑋, 𝐴)

is also commutative; in particular, 𝐶
𝑏
(𝑋) is a commutative

algebra.
(iii) If 𝐸 is only a vector space, then 𝐶

𝑏
(𝑋, 𝐸) is a

𝐶
𝑏
(𝑋)-bimodule with respect to the module multiplications

(𝜑, 𝑓) → 𝜑 ⋅ 𝑓 and (𝑓, 𝜑) → 𝑓 ⋅ 𝜑 defined by

(𝜑 ⋅ 𝑓) (𝑥) = 𝜑 (𝑥) 𝑓 (𝑥) = (𝑓 ⋅ 𝜑) (𝑥) , 𝑥 ∈ 𝑋. (13)

(iv) If 𝐸 is a vector space and 𝐴 is algebra, then 𝐶
𝑏
(𝑋, 𝐸)

is a left 𝐴-module with respect to the module multiplication
(𝑎, 𝑓) → 𝑎 ⋅ 𝑓 as pointwise action:

(𝑎 ⋅ 𝑓) (𝑥) = 𝑎𝑓 (𝑥) , 𝑎 ∈ 𝐴, 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐴) , 𝑥 ∈ 𝑋. (14)

In particular, 𝐶
0
(𝑋, 𝐸) is a left 𝐴-module.

Definition 8. Let 𝑋 be a Hausdorff space and 𝐸 a Hausdorff
topological vector space (TVS) over K (= R or C). The
uniform topology 𝑢 on 𝐶

𝑏
(𝑋, 𝐸) is the linear topology which
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has a base of neighborhoods of 0 consisting of all sets of the
form

𝑁(𝑋,𝐺) = {𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) : 𝑓 (𝑋) ⊆ 𝑊} , (15)

where 𝑊 is a neighborhood of 0 in 𝐸. In particular, if 𝐸 =

(𝐸, 𝑞
𝐸
) is an 𝐹-normed space, the 𝑢-topology on 𝐶

𝑏
(𝑋, 𝐸) is

given by the 𝐹-norm
𝑓

𝑞𝐸,∞
= sup
𝑥∈𝑋

𝑞
𝐸
(𝑓 (𝑥)) , 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) . (16)

3. Main Results

In this section we extend some results of [2–6] from Banach
modules to the more general setting of topological modules.

Definition 9 (cf. [13, 14]). Let (𝐴, 𝑞
𝐴
) be a commutative 𝑝-

normed algebra, and let (𝐸, 𝑞
𝐸
) be a 𝑝-normed space which

is also an 𝐴-module in the usual algebraic sense. Then 𝐸 is
called an isometric 𝐴-module if

𝑞
𝐹
(𝑎𝑢) ≤ 𝑞

𝐴
(𝑎) 𝑞
𝐹
(𝑢) for any 𝑎 ∈ 𝐴, 𝑢 ∈ 𝐸. (17)

If (𝐴, 𝑞
𝐴
) has a minimal approximate identity {𝑒

𝜆
: 𝜆 ∈ 𝐼},

then 𝐸 is called an essential𝐴-module if lim
𝜆
𝑒
𝜆
𝑢 = lim

𝜆
𝑢𝑒
𝜆
=

𝑢 for all 𝑢 ∈ 𝐸.

Definition 10. Let (𝐴, 𝑞
𝐴
) be a commutative 𝑝-normed alge-

bra, and let 𝐸 = (𝐸, 𝑞
𝐸
) and 𝐹 = (𝐹, 𝑞

𝐹
) be 𝑝-normed spaces

which are also 𝐴-modules. One writes
Hom
𝐴
(𝐸, 𝐹) = {𝑇 ∈ 𝐶𝐿 (𝐸, 𝐹) :

𝑇 (𝑎 ⋅ 𝑢)=𝑎 ⋅ 𝑇 (𝑢) for any 𝑎 ∈ 𝐴, 𝑢 ∈ 𝐸} .

(18)

If 𝐸 is an 𝐴-bimodule, then defining 𝑎 ∗ 𝑇 by

(𝑎 ∗ 𝑇) (𝑢) = 𝑇 (𝑢 ⋅ 𝑎) (𝑎 ∈ 𝐴, 𝑢 ∈ 𝐸) , (19)

Hom
𝐴
(𝐸, 𝐹) becomes a left 𝐴-module. In fact, for any 𝑎, 𝑏 ∈

𝐴, 𝑢 ∈ 𝐸,
(𝑎 ∗ 𝑇) (𝑏 ⋅ 𝑢) = 𝑇 ((𝑏 ⋅ 𝑢) ⋅ 𝑎) = 𝑇 (𝑏 ⋅ (𝑢 ⋅ 𝑎))

= 𝑏 ⋅ 𝑇 (𝑢 ⋅ 𝑎) = 𝑏 ⋅ (𝑎 ∗ 𝑇) (𝑢) .

(20)

In particular, Hom
𝐴
(𝐴, 𝐹) is a left 𝐴-module. If 𝐸 = 𝐹 = 𝐴,

then Hom
𝐴
(𝐴, 𝐴) = 𝑀(𝐴) is the usual multiplier algebra of

𝐴:
𝑀(𝐴) = {𝑇 ∈ 𝐶𝐿 (𝐴, 𝐴) : 𝑇 (𝑎𝑏) = 𝑎𝑇 (𝑏) = 𝑇 (𝑎) 𝑏

∀𝑎, 𝑏 ∈ 𝐴} ,

(21)

which is a commutative algebra (without 𝐴 being commuta-
tive) and has the identity 𝐼 : 𝐴 → 𝐴, 𝐼(𝑥) = 𝑥 (𝑥 ∈ 𝐴).

Lemma 11. Let (𝐴, 𝑞
𝐴
) a commutative 𝑝-normed algebra

having a minimal approximate identity, and let (𝐹, 𝑞
𝐹
) be

𝑝-normed space which is an essential isometric 𝐴-bimodule.
Then, for any V ∈ 𝐹,

𝐿V
𝑞𝐹

=
𝑅V

𝑞𝐹
= 𝑞
𝐹
(V) , (22)

where 𝐿V, 𝑅V : 𝐴 → 𝐹 are the maps given by 𝐿V(𝑎) = V ⋅ 𝑎 and
𝑅V(𝑎) = 𝑎 ⋅ V, 𝑎 ∈ 𝐴.

Proof. Let V ∈ 𝐹. Then

𝐿V
𝑞𝐴,𝑞𝐹

= sup {𝑞
𝐹
(𝐿V (𝑎)) : 𝑞

𝐴
(𝑎) ≤ 1}

= sup {𝑞
𝐹
(V ⋅ 𝑎) : 𝑞

𝐴
(𝑎) ≤ 1}

≤ sup {𝑞
𝐴
(𝑎) 𝑞
𝐹
(V) : 𝑞

𝐴
(𝑎) ≤ 1} = 𝑞

𝐹
(V) .

(23)

On the other hand,
𝐿V

𝑞𝐴,𝑞𝐹
= sup {𝑞

𝐹
(V ⋅ 𝑎) : 𝑞

𝐴
(𝑎) ≤ 1}

≥ 𝑞
𝐹
(V ⋅ 𝑒
𝜆
) ∀𝜆 ∈ 𝐼,

(24)

so

𝐿V
𝑞𝐴,𝑞𝐹

≥ lim
𝜆

𝑞
𝐹
(V ⋅ 𝑒
𝜆
) = 𝑞
𝐹
(lim
𝜆

V ⋅ 𝑒
𝜆
) = 𝑞
𝐹
(V) . (25)

Hence ‖𝐿V‖𝑞𝐴,𝑞𝐹 = 𝑞
𝐹
(V). Similarly, ||𝑅V||𝑞𝐸 = 𝑞

𝐸
(V).

Lemma 12. Let (𝐴, 𝑞
𝐴
) a commutative𝑝-normed algebra, and

let (𝐹, 𝑞
𝐹
) be an essential isometric 𝐴-bimodule. If 𝐴 has an

identity 𝑒, thenHom
𝐴
(𝐴, 𝐹) ≅ 𝐹 and 𝑀(𝐴) ≅ 𝐴.

Proof. We claim that

Hom
𝐴
(𝐴, 𝐹) ≅ {𝐿

𝑇(𝑒)
: 𝑇 ∈ Hom

𝐴
(𝐴, 𝐹)}

= {𝐿V : V ∈ 𝐹} ≅ 𝐹.

(26)

Clearly,

{𝐿
𝑇(𝑒)

: 𝑇 ∈ Hom
𝐴
(𝐴, 𝐹)} ⊆ {𝐿V : V ∈ 𝐹} ⊆ Hom

𝐴
(𝐴, 𝐹) .

(27)

On the other hand, if 𝑇 ∈ Hom
𝐴
(𝐴, 𝐹), then, for any 𝑎 ∈ 𝐴,

𝑇 (𝑎) = 𝑇 (𝑒𝑎) = 𝑇 (𝑒) ⋅ 𝑎 = 𝐿
𝑇(𝑒)

(𝑎) . (28)

Hence 𝑇 = 𝐿
𝑇(𝑒)

. Further, by Lemma 11, ‖𝐿
𝑇(𝑒)

‖
𝑞𝐴,𝑞𝐹

=

𝑞
𝐹
(𝑇(𝑒)). Thus Hom

𝐴
(𝐴, 𝐹) ≅ 𝐹. In particular, 𝑀(𝐴) ≅

𝐴.

Density Assumption. In the sequel, we will always assume
that, for 𝑋 a locally compact Hausdorff space and 𝐸 a
topological vector space, 𝐶

0
(𝑋) ⊗ 𝐸 is 𝑢-dense in 𝐶

0
(𝑋, 𝐸).

This assumption is crucial for the proof of our main results.
For its justification, we mention that as a consequence of the
vector-valued versions of Stone-Weierstrass theorem [8, 12,
15], 𝐶
0
(𝑋) ⊗ 𝐸 is 𝑢-dense in 𝐶

0
(𝑋, 𝐸) in each of the following

cases.

(a) 𝐸 is locally convex.
(b) Every compact subset of 𝑋 has a finite covering

dimension and 𝐸 is any topological vector space.
(c) 𝐸 is an 𝐹-space with a basis (e.g., 𝐸 = ℓ

𝑝 for 𝑝 > 0).
(d) 𝐸 has the approximation property.
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Recall that if 𝑇 ∈ 𝑀(𝐶
0
(𝑋, 𝐴)), then 𝑇(𝑎 ⋅ 𝑓) = 𝑎 ⋅

𝑇(𝑓) for 𝑓 ∈ 𝐶
0
(𝑋, 𝐴) and 𝑎 ∈ 𝐴 ([16, Lemma 4.5]).

We also mention that if (𝐴, 𝑞
𝐴
) is an 𝑝-normed algebra

having a minimal approximate identity, then, by ([16, Lemma
4.4]), 𝐶

0
(𝑋, 𝐴) has an approximate identity and hence it is

a faithful topological 𝐴-module. Consequently, for any 𝑇 ∈

𝑀(𝐶
0
(𝑋, 𝐴)), 𝑇(𝑓𝑔) = 𝑓𝑇(𝑔) = 𝑇(𝑓)𝑔 for all 𝑓, 𝑔 ∈

𝐶
0
(𝑋, 𝐴); we will write

‖𝑇‖
𝑞𝐴

:= sup {𝑞
𝐴
(𝑇 (𝑓)) : 𝑓 ∈ 𝐶

0
(𝑋, 𝐴) ,

𝑓
𝑞𝐴,∞

≤ 1} .

(29)

If 𝑇 ∈ Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸), 𝐶

0
(𝑋, 𝐹)), we let

‖𝑇‖
𝑞𝐸,𝑞𝐹

:= sup {𝑞
𝐹
(𝑇 (𝑓)) : 𝑓 ∈ 𝐶

0
(𝑋, 𝐸) ,

𝑓
𝑞𝐸,∞

≤ 1} .

(30)

Definition 13. Now, let 𝐸 = (𝐸, 𝑞
𝐸
) and 𝐹 = (𝐹, 𝑞

𝐹
) be 𝐹-

normed spaces. For any closed subspace 𝑈 = 𝑈
𝑠
(𝐸, 𝐹) of

𝐶𝐿(𝐸, 𝐹) endowed with the strong operator topology 𝑠, we
define
𝐶
𝑠,𝑏

(𝑋,𝑈) = {𝐺 : 𝑋 → 𝑈 :

𝐺 is strongly continuous and bounded} .
(31)

We now define an 𝐹-norm on 𝐶
𝑠,𝑏

(𝑋,𝑈) by

‖𝐺‖
𝐶𝑠,𝑏

= sup
𝑥∈𝑋

‖𝐺 (𝑥)‖
𝑞𝐸,𝑞𝐹

= sup
𝑥∈𝑋

sup
𝑢∈𝐸,𝑞𝐸(𝑢)≤1

𝑞
𝐹
(𝐺 (𝑥) (𝑢)) .

(32)

Then 𝐶
𝑠,𝑏

(𝑋,𝑈) is a complete 𝑝-normed space under the 𝑝-
norm ‖ ⋅ ‖

𝑞,∞
defined in (24).

Recall that a left𝐴-module 𝐸 is called faithful (orwithout
order) if, for any 𝑢 ∈ 𝐸, 𝑎 ⋅ 𝑢 = 0 for all 𝑎 ∈ 𝐴 implies that
𝑥 = 0 (cf. [13, 14]).

Lemma 14. Let 𝐴 = (𝐴, 𝑞
𝐴
) be a commutative complete 𝑝-

normed algebra, and let 𝐸 and 𝐹 be 𝐴-modules. Then, for any
𝑇 ∈ Hom

𝐶0(𝑋,𝐴)
(𝐶
0
(𝑋, 𝐸), 𝐶

0
(𝑋, 𝐹)),

(a) 𝑇(𝑎 ⋅ 𝑓) = 𝑎 ⋅ 𝑇(𝑓) for 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝐶
0
(𝑋, 𝐸),

(b) 𝑇(𝜑 ⋅ 𝑓) = 𝜑 ⋅ 𝑇(𝑓) for 𝜑 ∈ 𝐶
0
(𝑋) and 𝑓 ∈ 𝐶

0
(𝑋, 𝐸).

Proof. (a) We first note that 𝐶
0
(𝑋) is a Banach algebra with a

bounded approximate identity, {𝜓
𝛼
} (say). Then, for any 𝑎 ∈

𝐴, 𝑢 ∈ 𝐸, and 𝜑 ∈ 𝐶
0
(𝑋),

lim
𝛼

[(𝜓
𝛼
⊗ 𝑎) ⋅ (𝜑 ⊗ 𝑢)] = lim

𝛼

(𝜓
𝛼
𝜑 ⊗ 𝑎 ⋅ 𝑢)

= 𝜑 ⊗ 𝑎 ⋅ 𝑢 = 𝑎 (𝜑 ⊗ 𝑢) .

(33)

Since 𝑇 ∈ Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸), 𝐶

0
(𝑋, 𝐹)) and 𝜓

𝛼
⊗ 𝑎 ∈

𝐶
0
(𝑋, 𝐴), 𝜑 ⊗ 𝑢 ∈ 𝐶

0
(𝑋, 𝐸), we have

𝑇 (𝑎 ⋅ (𝜑 ⊗ 𝑢)) = lim
𝛼

𝑇 [(𝜓
𝛼
⊗ 𝑎) ⋅ (𝜑 ⊗ 𝑢)]

= lim
𝛼

(𝜓
𝛼
⊗ 𝑎) ⋅ 𝑇 (𝜑 ⊗ 𝑢)

= 𝑎 ⋅ 𝑇 (𝜑 ⊗ 𝑢) .

(34)

By𝑇 being linear and𝐶
0
(𝑋)⊗𝐸 being assumed to be 𝑢-dense

in 𝐶
0
(𝑋, 𝐸), it follows that 𝑇(𝑎 ⋅ 𝑓) = 𝑎 ⋅ 𝑇(𝑓) holds for all

𝑓 ∈ 𝐶
0
(𝑋, 𝐴) and 𝑎 ∈ 𝐴.

(b) Similar to the above part.

We now give the following characterization in the pseu-
doscaler case by considering both 𝐶

0
(𝑋) and 𝐶

0
(𝑋, 𝐹) as

𝐶
0
(𝑋)-modules.

Theorem 15. Let 𝑋 be a locally compact Hausdorff space and
𝐹 = (𝐹, 𝑞

𝐹
) a 𝑝-normed space. Then

Hom
𝐶0(𝑋)

(𝐶
0
(𝑋) , 𝐶

0
(𝑋, 𝐹)) ≅ 𝐶

𝑏
(𝑋, 𝐹) . (35)

Proof. Let 𝑇 ∈ Hom
𝐶0(𝑋)

(𝐶
0
(𝑋), 𝐶

0
(𝑋, 𝐹)) and 𝑥 ∈ 𝑋. If

𝜑, 𝜓 ∈ 𝐶
0
(𝑋) with 𝜑(𝑥) ̸= 0 and 𝜓(𝑥) ̸= 0, then there is a

neighborhood 𝑁(𝑥) of 𝑥 in 𝑋 such that

𝜑 (𝑡) ̸= 0, 𝜓 (𝑡) ̸= 0 for any 𝑡 ∈ 𝑁 (𝑥) . (36)

Since𝐶
0
(𝑋) is commutative and𝐶

0
(𝑋, 𝐹) is a𝐶

0
(𝑋)-module,

following as in ([1, p. 1135]), we have

𝜓 (𝑡) (𝑇𝜑) (𝑡) = 𝑇 (𝜓 ⋅ 𝜑) (𝑡) = 𝑇 (𝜑 ⋅ 𝜓) (𝑡)

= 𝜑 (𝑡) (𝑇𝜓) (𝑡)

(37)

and then

𝑇 (𝜓) (𝑡)

𝜓 (𝑡)
=

(𝑇𝜑) (𝑡)

𝜑 (𝑡)
for any 𝑡 ∈ 𝑁 (𝑥) . (38)

Now, for each 𝑥 ∈ 𝑋 with 𝜑(𝑥) ̸= 0, define 𝑔
𝑇

: 𝑋 → 𝐹 by

𝑔
𝑇
(𝑥) =

(𝑇𝜑) (𝑥)

𝜑 (𝑥)
. (39)

By the above argument, the function𝑔
𝑇
(𝑥)defined in thisway

is independent of the choice of 𝜑 ∈ 𝐶
0
(𝑋); hence 𝑔

𝑇
is well-

defined.
Clearly if 𝜑(𝑥) ̸= 0, then (𝑇𝜑)(𝑥) = 𝑔

𝑇
(𝑥)𝜑(𝑥). The

equality also holds when 𝜑(𝑥) = 0. [To see this, choose
𝜓 ∈ 𝐶

0
(𝑋) such that 𝜓(𝑥) ̸= 0. Then

𝜓 (𝑥) (𝑇𝜑) (𝑥) = 𝑇 (𝜓𝜑) (𝑥) = 𝜑 (𝑥) (𝑇𝜓) (𝑥) = 0, (40)

and so 𝑇𝜑(𝑥) = 0.]
Next, 𝑔

𝑇
∈ 𝐶
𝑏
(𝑋, 𝐹), as follows. For any 𝑥 ∈ 𝑋 with

𝜑(𝑥) ̸= 0, by Urysohn’s lemma, we can choose a 𝜑 ∈ 𝐶
0
(𝑋)

such that ‖𝜑‖
∞

= |𝜑(𝑥)|. So

𝑞
𝐹
[𝑔
𝑇
(𝑥)] =

𝑞
𝐹
[𝑇𝜑 (𝑥)]

𝜑 (𝑥)


≤
‖𝑇‖
𝑞𝐹

𝜑
∞

𝜑 (𝑥)


= ‖𝑇‖
𝑞𝐹

(41)

for all 𝑥 ∈ 𝑋. Hence ‖𝑔
𝑇
‖
𝑞,∞

≤ ‖𝑇‖
𝑞𝐹
, and so 𝑔

𝑇
∈ 𝐶
𝑏
(𝑋, 𝐹).

On the other hand, since

𝑞
𝐹
[(𝑇𝜑) (𝑥)] = 𝑞

𝐹
[𝑔
𝑇
(𝑥) 𝜑 (𝑥)] ≤

𝑔𝑇
𝑞,∞

𝜑
∞

, (42)

we have ‖𝑇‖
𝑞𝐹

≤ ‖𝑔
𝑇
‖
𝑞,∞

. Consequently ‖𝑔
𝑇
‖
𝑞𝐹,∞

= ‖𝑇‖
𝑞𝐹
.

This shows that Hom
𝐶0(𝑋)

(𝐶
0
(𝑋), 𝐶

0
(𝑋, 𝐹)) is isometrically

embedded in 𝐶
𝑏
(𝑋, 𝐹).
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Conversely, for any 𝑔 ∈ 𝐶
𝑏
(𝑋, 𝐹), we define 𝑇

𝑔
:

𝐶
0
(𝑋) → 𝐶

0
(𝑋, 𝐹) by

𝑇
𝑔
(𝜑) = 𝑔 ⋅ 𝜑, 𝜑 ∈ 𝐶

0
(𝑋) . (43)

Then one can easily show that 𝑇
𝑔
is a multiplier from

𝐶
0
(𝑋) to 𝐶

0
(𝑋, 𝐹) and that ‖𝑔‖

𝑞,∞
= ‖𝑇
𝑔
‖
𝑞𝐹

.

Now we can establish the main theorem by considering
both 𝐶

0
(𝑋, 𝐸) and 𝐶

0
(𝑋, 𝐹) as 𝐶

0
(𝑋, 𝐴)-modules.

Theorem 16. Let 𝐴 = (𝐴, 𝑞
𝐴
) be a commutative complete 𝑝-

normed algebra, and let 𝐸 = (𝐸, 𝑞
𝐸
) and 𝐹 = (𝐹, 𝑞

𝐹
) be 𝑝-

normed spaces which are also essential isometric 𝐴-modules.
Then

Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸) , 𝐶

0
(𝑋, 𝐹))≅ 𝐶

𝑠,𝑏
(𝑋, Hom

𝐴
(𝐸, 𝐹)) .

(44)

The correspondence between the multiplier 𝑇 and the function
𝐺 is given by the following relation:

(𝑇𝑓) (𝑥) = 𝐺 (𝑥) ⋅ 𝑓 (𝑥)

𝑓𝑜𝑟 𝑥 ∈ 𝑋𝑎𝑛𝑑 𝑎𝑛𝑦𝑓 ∈ 𝐶
0
(𝑋, 𝐸) .

(45)

Proof. Let 𝑇 ∈ Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸), 𝐶

0
(𝑋, 𝐹)). Then we can

define a map Ψ
𝑇

: 𝐸 → Hom
𝐶0(𝑋)

(𝐶
0
(𝑋), 𝐶

0
(𝑋, 𝐹)) by

Ψ
𝑇
(𝑢) (𝜑) = 𝑇 (𝜑 ⊗ 𝑢) for 𝑢 ∈ 𝐸, 𝜑 ∈ 𝐶

0
(𝑋) . (46)

To see that this map is well-defined, first note thatΨ
𝑇
(𝑢)(𝜑) ∈

𝐶
0
(𝑋, 𝐹). For a fixed 𝑢 ∈ 𝐸, the operator Φ

𝑇
(𝑢) defines a

bounded linear operator from 𝐶
0
(𝑋) into 𝐶

0
(𝑋, 𝐹), since by

(46),
Ψ𝑇 (𝑢) (𝜑)

𝑞𝐸,∞
=

𝑇 (𝜑 ⊗ 𝑢)
𝑞𝐸,∞

≤ ‖𝑇‖
𝑞𝐸

⋅
𝜑 ⊗ 𝑎

𝑞𝐸,∞
;

(47)

further, it is a multiplier since, for any 𝜑, 𝜓 ∈ 𝐶
0
(𝑋),

Ψ
𝑇
(𝑢) (𝜑𝜓) = 𝑇 (𝜑𝜓 ⊗ 𝑢) = 𝜑 ⋅ 𝑇 (𝜓 ⊗ 𝑢) . (48)

HenceΨ
𝑇
(𝑢) ∈ Hom

𝐶0(𝑋)
(𝐶
0
(𝑋), 𝐶

0
(𝑋, 𝐹)). ByTheorem 15,

there exists an element, say 𝑔
𝑢
, in 𝐶
𝑏
(𝑋, 𝐹) such that

Ψ
𝑇
(𝑢) (𝜑) = 𝑔

𝑢
⋅ 𝜑, for 𝑢 ∈ 𝐸, 𝜑 ∈ 𝐶

0
(𝑋) . (49)

Now, we can define a map 𝐺 : 𝑋 → Hom
𝐴
(𝐸, 𝐹) by

𝐺 (𝑥) (𝑢) = 𝑔
𝑢
(𝑥) for 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐸. (50)

To see that this map is well-defined, first note that, for a fixed
𝑥 ∈ 𝑋, 𝐺(𝑥) is a linear operator from 𝐸 into 𝐹. Moreover, for
𝑎 ∈ 𝐴 and 𝜑 ∈ 𝐶

0
(𝑋), we have

𝐺 (𝑥) (𝑎 ⋅ 𝑢) ⋅ 𝜑 (𝑢) = 𝑔
𝑎𝑢

(𝑥) 𝜑 (𝑥) = 𝑇 (𝜑 ⊗ 𝑎 ⋅ 𝑢) (𝑥)

= 𝑎 ⋅ 𝑇 (𝜑 ⊗ 𝑢) (𝑥) = 𝑎 ⋅ 𝑔
𝑢
(𝑥) 𝜑 (𝑥)

= 𝑎 ⋅ 𝐺 (𝑥) (𝑢) 𝜑 (𝑥) ,

(51)

or

𝐺 (𝑥) (𝑎 ⋅ 𝑢) = 𝑎 ⋅ 𝐺 (𝑥) (𝑢) . (52)

This implies that 𝐺(𝑥) ∈ Hom
𝐴
(𝐸, 𝐹), and hence 𝐺 ∈

𝐶
𝑠,𝑏

(𝑋, Hom
𝐴
(𝐸, 𝐹)). Next we establish isometry between 𝑇

and𝐺. For 𝑥 ∈ 𝑋 and 𝜑⊗𝑢 ∈ 𝐶
0
(𝑋)⊗𝐸with ‖𝜑 ⊗ 𝑢‖

𝑞𝐸,∞
≤ 1,

‖𝐺(𝑥)‖
𝑞𝐸,𝑞𝐹

= sup
𝑞𝐸(𝑢)≤1

𝑞
𝐹
[𝐺 (𝑥) (𝑢)] = sup

𝑞𝐸(𝑢)≤1

𝑞
𝐹
[𝑔
𝑢
(𝑥)]

≤ sup
𝑞𝐸(𝑢)≤1

𝑔𝑢
𝑞𝐹,∞

= sup
𝑞𝐸(𝑢)≤1

‖𝜑‖∞
≤1

𝑔𝑢 ⋅ 𝜑
𝑞𝐹,∞

= sup
‖𝜑⊗𝑢‖

𝑞𝐸,∞
≤1

𝑇 (𝜑 ⊗ 𝑢)
𝑞𝐹,∞

= ‖𝑇‖
𝑞𝐸,𝑞𝐹

,

(53)

since 𝐶
0
(𝑋) ⊗𝐸 is 𝑢-dense in 𝐶

0
(𝑋, 𝐸). So ‖𝐺‖

𝐶𝑠,𝑏
≤ ‖𝑇‖

𝑞𝐸,𝑞𝐹
.

But
𝑇 (𝜑 ⊗ 𝑢)

𝑞𝐹,∞
=

𝑔𝑢 ⋅ 𝜑
𝑞𝐹,∞

≤
𝑔𝑢

𝑞𝐹,∞

𝜑
∞

≤ ‖𝐺‖
𝐶𝑠,𝑏

‖𝑢‖
𝜑

∞
= ‖𝐺‖

𝐶𝑠,𝑏

𝜑 ⊗ 𝑢
𝑞𝐸,∞

(54)

for all 𝜑 ⊗ 𝑢 ∈ 𝐶
0
(𝑋) ⊗ 𝐸. Consequently, ‖𝑇‖

𝑞𝐸,𝑞𝐹
≤ ‖𝐺‖

𝐶𝑠,𝑏
.

Conversely, let𝐺 ∈ 𝐶
𝑠,𝑏

(𝑋, Hom
𝐴
(𝐸, 𝐹)) and𝜑 ∈ 𝐶

0
(𝑋).

Then 𝐺 ⋅ 𝜑 is a continuous function on 𝑋 given by

(𝐺 ⋅ 𝜑) (𝑥) (𝑢) = (𝐺 (𝑥) 𝑢) 𝜑 (𝑥) , 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐸. (55)

It is easy to see that 𝐺 ⋅ 𝜑 vanishes at infinity, and so 𝐺 ⋅ 𝜑 ∈

𝐶
0
(𝑋, Hom

𝐴
(𝐸, 𝐹)). For any 𝑢 ∈ 𝐸 and 𝜑 ∈ 𝐶

0
(𝑋), 𝐺

determines a bounded linear operator 𝑇 from 𝐶
0
(𝑋, 𝐸) to

𝐶
0
(𝑋, 𝐹) given by

𝑇 (𝜑 ⊗ 𝑢) (𝑥) = (𝐺 (𝑥) 𝑢) 𝜑 (𝑥) . (56)

Again, since 𝐶
0
(𝑋) ⊗ 𝐸 is 𝑢-dense in 𝐶

0
(𝑋, 𝐸), it follows that

‖𝑇‖
𝑞𝐸,𝑞𝐹

= ‖𝐺‖
𝐶𝑠,𝑏

.
Since 𝐸 and 𝐹 are 𝐴-modules, for any ℎ ⊗ 𝑎 ∈ 𝐶

0
(𝑋) ⊗ 𝐴

and 𝜑 ⊗ 𝑢 ∈ 𝐶
0
(𝑋) ⊗ 𝐸,

𝑇 ((ℎ ⊗ 𝑎) ⋅ (𝜑 ⊗ 𝑢)) = 𝑇 (ℎ𝜑 ⊗ 𝑎𝑢)

= 𝐺 (⋅) (𝑎 ⋅ 𝑢) (ℎ𝜑) (⋅)

= 𝑎 ⋅ ℎ (⋅) 𝐺 (⋅) (𝑢) 𝜑 (⋅)

= (ℎ ⊗ 𝑎) ⋅ 𝑇 (𝜑 ⊗ 𝑢) .

(57)

Hence𝑇 is amultiplier on𝐶
0
(𝑋, 𝐸) since𝐶

0
(𝑋)⊗𝐸 is𝑢-dense

in 𝐶
0
(𝑋, 𝐸). The isometry between 𝐺 and 𝑇 now implies that

Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸) , 𝐶

0
(𝑋, 𝐹)) ≅ 𝐶

𝑠,𝑏
(𝑋,Hom

𝐴
(𝐸, 𝐹)) .

(58)

4. Applications

As an application of the above results, in particular of
Theorem 16, we can deduce several known results, as follows.
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Corollary 17 (see [3]). Let 𝑋 be a locally compact Hausdorff
space and 𝐴 = (𝐴, || ⋅ ||) a commutative Banach algebra, and
let 𝐸 and 𝐹 be Banach 𝐴-modules. Then

Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸) , 𝐶

0
(𝑋, 𝐹))≅𝐶

𝑠,𝑏
(𝑋, Hom

𝐴
(𝐸, 𝐹)) .

(59)

Corollary 18 (see [3, 5]). Let𝑋 be a locally compactHausdorff
space and𝐴 = (𝐴, ‖ ⋅ ‖) be a commutative Banach algebra with
identity of norm 1, and let 𝐸 be a Banach 𝐴-module. Then

Hom
𝐶0(𝑋,𝐴)

(𝐶
0
(𝑋, 𝐸) , 𝐶

0
(𝑋, 𝐸)) ≅ 𝐶

𝑏
(𝑋, 𝐸) . (60)

Corollary 19 (see [16]). Let𝑋 be a locally compact Hausdorff
space and 𝐴 = (𝐴, 𝑞) a commutative complete 𝑝-normed
algebra with a minimal approximate identity. Then

𝑀(𝐶
0
(𝑋, 𝐴)) ≅ 𝐶

𝑠,𝑏
(𝑋,𝑀(𝐴)

𝑢
) . (61)

Proof. This follows from the fact that Hom
𝐴
(𝐴, 𝐴) = 𝑀(𝐴).

Corollary 20 (see [1]). Let 𝑋 be a locally compact Hausdorff
space. Then

𝑀(𝐶
0
(𝑋)) ≅ 𝐶

𝑏
(𝑋) . (62)

Proof. This follows from the fact that Hom
𝐶0(𝑋)

(𝐶
0
(𝑋),

𝐶
0
(𝑋)) ≅ 𝐶

𝑏
(𝑋).

Example 21. Let 𝐴
𝑝
, 0 < 𝑝 ≤ 1, denote the algebra of all

holomorphic functions in the unit disc𝐷 = {𝑧 ∈ C : |𝑧| ≤ 1}:

𝜑 (𝑧) =

∞

∑

𝑛=0

𝑎
𝑛
𝑧
𝑛

, 𝑧 ∈ 𝐷, (63)

for which

𝜑
𝑝

=

∞

∑

𝑛=0

𝑎𝑛


𝑝

< ∞. (64)

This is a commutative complete 𝑝-normed algebra with the
pointwise multiplication and has an identity ([7, p. 135]; [17,
p. 8]). In this case,

𝑀(𝐶
0
(𝑋,𝐴

𝑝
)) ≃ 𝐶

𝑏
(𝑋,𝑀(𝐴

𝑝
)
𝑠

) ≃ 𝐶
𝑏
(𝑋,𝐴

𝑝
) . (65)
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