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Many application problems of practical interest can be posed as structured convex optimization models. In this paper, we study
a new first-order primaldual algorithm. The method can be easily implementable, provided that the resolvent operators of the
component objective functions are simple to evaluate. We show that the proposed method can be interpreted as a proximal point
algorithm with a customized metric proximal parameter. Convergence property is established under the analytic contraction
framework. Finally, we verify the efficiency of the algorithm by solving the stable principal component pursuit problem.

1. Introduction

In this paper, we consider the following separable optimiza-
tion problem:

min
𝑥∈X,𝑦∈Y

𝑓 (𝑥) + 𝑔 (𝑦)

s.t. 𝐴𝑥 + 𝐵𝑦 = 𝑏,

(1)

where 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑚×𝑝 are given matrices, 𝑏 ∈ R𝑚

is a given vector, and X ⊂ R𝑛 and Y ⊂ R𝑝 are nonempty
closed convex sets. 𝑓 : R𝑛 → R and 𝑔 : R𝑝 → R are
convex functions (not necessarily smooth). Throughout this
paper, we assume that the solution set of (1) is nonempty.
Problem of this type arises in many applications, ranging
from machine learning to compressed sensing. We refer to,
for example, [1–9], for a few examples of applications.

To solve (1), one can use the classical augmented
Lagrangian method (ALM). Starting from any initial iterate
(𝑥0, 𝑦0, 𝜆0), ALM iterates via the following procedure:

(𝑥𝑘+1, 𝑦𝑘+1) = arg min
𝑥,𝑦

LA (𝑥, 𝑦; 𝜆
𝑘) , (2a)

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) , (2b)

where the augmented Lagrangian functionLA(𝑥, 𝑦; 𝜆) asso-
ciated with the problem (1) is given by

LA (𝑥, 𝑦, 𝜆) = 𝑓 (𝑥) + 𝑔 (𝑦) − 𝜆
𝑇 (𝐴𝑥 + 𝐵𝑦 − 𝑏)

+
𝛽

2

󵄩󵄩󵄩󵄩𝐴𝑥 + 𝐵𝑦 − 𝑏
󵄩󵄩󵄩󵄩
2

,
(3)

and 𝜆 ∈ R𝑚 is the Lagrangian multiplier vector associ-
ated with the linear constraint and 𝛽 > 0 is a penalty
parameter for the violation of the linear constraint. ALM
enjoys very nice convergence and has been shown to be
equivalent to a proximal point algorithm applied to the
dual of (1) [10]. A noticeable feature of ALM is that it
treats (1) as a generic minimization problem and ignores
completely the nice separable structure emerging in the
objective function.Theminimizations of the two functions 𝑓
and 𝑔 in (2a) are strongly coupled because of the quadratic
term (𝛽/2)‖𝐴𝑥 + 𝐵𝑦 − 𝑏‖2. Hence, the implementation of
ALM ((2a) and (2b)) can be computationally challenging.
To utilize the separable structure of the problem, the well-
known alternating directionmethod (ADM) essentially splits
the ALM subproblem into two subproblems with respect to
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𝑥 and 𝑦 in Gauss-Seidel manner. More specifically, at each
iteration, ADM takes the following form:

𝑥𝑘+1 = arg min
𝑥∈X

LA (𝑥, 𝑦
𝑘; 𝜆𝑘) , (4a)

𝑦𝑘+1 = arg min
𝑦∈Y

LA (𝑥
𝑘+1, 𝑦; 𝜆𝑘) , (4b)

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) . (4c)

ADM can be interpreted as Douglas-Rachford splitting
method applied to the dual problem [11] and proximal point
method [12]. We refer to, for example, [13–17] for recent
study of ADM and its variants. Comparing to ALM, ADM
minimizes (3) with respect to 𝑥 and 𝑦 alternatingly at
each iteration, rather than with respect to both 𝑥 and 𝑦
simultaneously. This splitting procedure makes it possible
to exploit the special separable structure of the objective
functions. Thus, ADM appears to be a natural fit for solving
very large scale distributed machine learning and big-data
related optimization problems.

When𝐴 and𝐵 in (1) are both identitymatrices, ADM can
be very efficient. The first two subproblems ((4a) and (4b))
correspond to evaluating the resolvent operators of com-
ponent functions 𝑓 and 𝑔, respectively. Here, the proximal
operator of the function 𝜃 : R𝑛 → R is defined by

𝑢 := prox
𝜉𝜃
(𝑎) = arg min{𝜃 (𝑢) + 1

2𝜉
‖𝑢 − 𝑎‖

2 | 𝑢 ∈ R𝑛} ,

(5)

where 𝑎 ∈ R𝑛 and 𝜉 > 0. In most popular applica-
tions of sparse optimization, the proximal operator can be
computed exactly and efficiently (e.g., 𝜃(𝑥) = ‖𝑥‖

1
:=

∑
𝑛

𝑖=1
|𝑥
𝑖
| or 𝜃(𝑥) = ‖𝑥‖

2
:= √∑

𝑛

𝑖=1
|𝑥
𝑖
|2). While when

𝐴 (resp., 𝐵) is not an identity matrix, the resulting ADM
subproblems may not be easily solvable, since they involve
inverting of𝐴 (resp., 𝐵), and there is no efficient way of doing
so directly. This difficulty could result in inefficiency of the
ADMgreatly. As a result, first-order algorithms that preserves
both the alternating computation feature of ADM and the
advantages of not involving the inverse of 𝐴 and 𝐵 are highly
desirable.

In [18, 19], an alternating proximal gradient method
(APGM) for solving (1) was given. APGM is based on the
framework of ADM, which solves the first two subproblems
((4a) and (4b)) inexactly by taking one proximal gradient
step. More specifically, APGM generates the new iterate
(𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) via the following procedure:

𝑥𝑘+1 = arg min
𝑥∈X

𝑓 (𝑥)

+
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑘 −

1

𝑟
𝐴𝑇 (𝜆𝑘 − 𝛽 (𝐴𝑥𝑘 + 𝐵𝑦𝑘 − 𝑏))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

(6a)

𝑦𝑘+1 = arg min
𝑦∈Y

𝑔 (𝑦)

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦𝑘 −

1

𝑠
𝐵𝑇 (𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘 − 𝑏))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

(6b)

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) , (6c)

where 𝛽 > 0, 𝑟 > 𝛽‖𝐴𝑇𝐴‖, and 𝑠 > 𝛽‖𝐵𝑇𝐵‖.
In this paper, we also focus on the specific scenario of (1),

where both 𝐴 and 𝐵 are not identity matrices. We propose a
new first-order primal-dual algorithm for (1). We show that
our algorithm can be viewed as a customized proximal point
methodwith a special proximal regularization parameter, and
it is within the framework of the contraction type methods.
The proposed algorithm has three main advantages: first, it
can be easily implementable, the main computational effort
of each iteration is to evaluate the proximal operators of
the component objective functions; second, the involved
subproblems are solved consecutively in the ADM manner,
which makes the algorithm amenable to distributed opti-
mization. Finally, it only uses the first-order information
and does not require any matrix inversion or solving linear
systems. Hence, the method is well suited for solving large
scale distributed optimization problems.

The paper is organized as follows. In Section 2, we review
some preliminaries. In Sections 3 and 4, we present the new
method and analyze its convergence. In Section 5 we conduct
numerical experiments to compare the proposed method
with APGM for solving the stable principal component
pursuit problem. We conclude the paper in Section 6.

2. Preliminaries

2.1. Variational Characterization of (1). In this section, we
reformulate (1) as a variational form, which is useful for
succedent algorithmic illustration and convergence analysis.

The Lagrangian function associated with (1) is

L (𝑥, 𝑦, 𝜆) = 𝑓 (𝑥) + 𝑔 (𝑦) − 𝜆
𝑇 (𝐴𝑥 + 𝐵𝑦 − 𝑏) , (7)

where 𝜆 ∈ R𝑚 is a Lagrangian multiplier. According to the
previous convex assumption of (1), finding optimal solutions
of (1) and its dual form is equivalent to finding a saddle point
ofL. More precisely, let (𝑥∗, 𝑦∗, 𝜆∗) be a saddle point ofL.
We have

L
𝜆∈R𝑚 (𝑥

∗, 𝑦∗, 𝜆) ≤L (𝑥∗, 𝑦∗, 𝜆∗) ≤L
𝑥∈X,𝑦∈Y (𝑥, 𝑦, 𝜆

∗) .

(8)

Then we can directly read off the optimality conditions
with variational characterization. More specifically, 𝑤∗ =
(𝑥∗, 𝑦∗, 𝜆∗) ∈ Ω is a saddle point ofL if and only if it satisfies
the following mixed variational inequality (VI):

ℎ (𝑢) − ℎ (𝑢
∗) + (𝑤󸀠 − 𝑤∗)

𝑇

𝐹 (𝑤∗) ≥ 0, ∀𝑤󸀠 ∈ Ω, (9a)
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with

𝑢 := (
𝑥
𝑦
) , 𝑤 := (

𝑥
𝑦
𝜆
) , ℎ (𝑢) := 𝑓 (𝑥) + 𝑔 (𝑦) ,

𝐹 (𝑤) := (
−𝐴𝑇𝜆

−𝐵𝑇𝜆
𝐴𝑥 + 𝐵𝑦 − 𝑏

) ,

(9b)

Ω = X ×Y ×R𝑚. (9c)
Hence, a solution of ((9a)–(9c)) yields a solution of (1).

Note that the mapping 𝐹(⋅) is said to be monotone with
respect to Ω if

(𝐹 (𝑤) − 𝐹 (𝑤
󸀠))

𝑇

(𝑤 − 𝑤󸀠) ≥ 0, ∀𝑤,𝑤󸀠 ∈ Ω. (10)

Consequently, it can be easily verified that 𝐹(𝑤) is monotone.
Under the aforementioned nonempty assumption on the
solution set of (1), the solution set of ((9a)–(9c)), denoted by
W∗, is also nonempty.

2.2. Proximal Point Algorithmic Framework. In this subsec-
tion, we review the classical proximal point algorithm (PPA)
for solving the VI ((9a)–(9c)).

PPA, which was proposed by Martinet [20] and further
studied by Rockafellar [10], plays a fundamental rule in
optimization. For given iterate 𝑤𝑘 ∈ Ω, PPA generates the
new iterative 𝑤𝑘+1 via the following procedure:

ℎ (𝑢󸀠) − ℎ (𝑢𝑘+1) + (𝑤󸀠 − 𝑤𝑘+1)
𝑇

× (𝐹 (𝑤𝑘+1) + 𝐺 (𝑤𝑘+1 − 𝑤𝑘)) ≥ 0, ∀𝑤󸀠 ∈ Ω,

(11)

where 𝐺 is a positive definite matrix, playing the role of
proximal regularization parameter. A simple choice of 𝐺 is
that 𝐺 = 𝛽 ⋅ 𝐼 where 𝛽 > 0 and 𝐼 is the identity matrix,
regularizing the proximal terms 𝑤𝑘+1 − 𝑤𝑘 in the uniform
way. We refer the reader to example [21–24] for some special
choices of 𝐺 in different scenarios.

3. The Main Algorithm

3.1. Assumption. Before we present our new algorithm, we
need to make the following assumption:

Assumption 1. For any give 𝑎 ∈ R𝑛+𝑝 and 𝜉 > 0, the proximal
operator of ℎ(𝑢) (see (5)) has a closed-form solution or it can
be efficiently solved up to a high precision.

Whenever the assumption holds, we say that the proximal
operator of ℎ is “easy” to evaluate. Note that ℎ is separable
across two variables, that is, ℎ = 𝑓 + 𝑔; according to the
definition (5), we have

prox
𝜉ℎ
(𝑏, 𝑐) = (prox

𝜉𝑓
(𝑏) , prox

𝜉𝑔
(𝑐)) , (12)

where 𝑏 ∈ R𝑛 and 𝑐 ∈ R𝑝. Hence, under the assumption, the
proximal operators of the component objective functions 𝑓
and 𝑔 are also “easy” to evaluate.

3.2. Motivation. Themotivation for our algorithm is directly
related to the linearized augmented Lagrangian method pro-
posed in [25] and the customized proximal point algorithm
proposed in [21] for convex problems with linear constraints.

In order to obtain a closed-form solution of 𝑥, we first add
a proximal regularization parameter 𝐺 = ( 𝑟𝐼 0 𝐴

𝑇

0 0 0

𝐴 0 (1/𝛽)𝐼

) to the
variational characterization of the problem ((9a)–(9c)).Then,
like the algorithm in [21], we get the following proximal point
algorithm:

𝑥𝑘+1 = arg min
𝑥∈X

𝑓 (𝑥) +
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑘 −

1

𝑟
𝐴𝑇𝜆𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

, (13a)

𝑦𝑘+1 = arg min
𝑦∈Y

𝑔 (𝑦) +
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦 − 𝑏 −

𝜆𝑘

𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

(13b)

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) . (13c)

However, (13b) is still not implementable. Inspired in
[25], in order to alleviate the computation required by 𝑦-
subproblems, we try to linearize the quadratic term in (13b)
by

𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦 − 𝑏 −

𝜆𝑘

𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≈
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘 − 𝑏 −

𝜆𝑘

𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽(𝑦 − 𝑦𝑘)
𝑇

𝑔𝑘 +
𝑠

2

󵄩󵄩󵄩󵄩󵄩𝑦 − 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩 ,

(14)

where 𝑠 > 0 is a proximal parameter, and 𝑔𝑘 =

𝐵𝑇(𝐴(2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘 − 𝑏 − 𝜆𝑘/𝛽) is the gradient of
(1/2)‖𝐴(2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦 − 𝑏 − 𝜆𝑘/𝛽‖

2

at 𝑦𝑘. With a simple
manipulation, we get the following approximation to (13b):

𝑦𝑘+1 = arg min
𝑦∈Y

𝑔 (𝑦) +
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦𝑘 −

1

𝑠
𝐵𝑇 (𝜆𝑘 − 𝛽

× (𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘 − 𝑏))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(15)

In this case, the closed-form solutions of the resulting
subproblems can be easily obtained.

3.3. Description of the Algorithm. In this section, we formally
present Algorithm 1.

Remark 2. From the algorithm, we can see that the mini-
mizations ((∗) and (∗∗)) each requires the evaluation of the
proximal operators for the component objective functions 𝑓
and 𝑔. It is clear that the implementation of the proposed
method is simple under our assumption.
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The proposed algorithm for (1)
Step 0. Input (𝑥0, 𝑦0, 𝜆0) ∈ X ×Y.
Step 1. Set

𝑥𝑘+1 = argmin
𝑥∈X

𝑓 (𝑥) +
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥𝑘 −

1

𝑟
𝐴𝑇𝜆𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

, (∗)

𝑦𝑘+1 = argmin
𝑦∈Y

𝑔 (𝑦) +
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦𝑘 −

1

𝑠
𝐵𝑇 (𝜆𝑘 − 𝛽 (𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘 − 𝑏))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

, (∗∗)

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘+1 − 𝑏), (∗ ∗ ∗)
where 𝛽 > 0, and 𝑟 > 𝛽 󵄩󵄩󵄩󵄩󵄩𝐴

𝑇𝐴
󵄩󵄩󵄩󵄩󵄩 , 𝑠 > 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩.

Step 2. If a termination criterion is not met, go to Step 1.

Algorithm 1

4. Global Convergence

In this section, we show that the proposed method is in
some sense equivalent to the proximal point algorithm
with a special proximal regularization parameter. Then its
convergence can be easily established under the analytic
framework of contraction type methods.

Lemma 3. Let 𝑤𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 be generated by
((∗)–(∗ ∗ ∗)) from a given 𝑤𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘)𝑇 and 𝐻 =

(
𝑟𝐼 0 𝐴

𝑇

0 𝑠𝐼−𝛽𝐵
𝑇

𝐵 0

𝐴 0 (1/𝛽)𝐼

). Then

ℎ (𝑢󸀠) − ℎ (𝑢𝑘+1) + (𝑤󸀠 − 𝑤𝑘+1)
𝑇

× (𝐹 (𝑤𝑘+1) + 𝐻(𝑤𝑘+1 − 𝑤𝑘)) ≥ 0,

∀𝑤󸀠 ∈ Ω.

(16)

Proof. First, by deriving the optimality condition for the
subproblem (∗), we have

𝑓 (𝑥) − 𝑓 (𝑥
𝑘+1) + (𝑥󸀠 − 𝑥𝑘+1)

𝑇

(𝑟 (𝑥𝑘+1 − 𝑥𝑘) − 𝐴𝑇𝜆𝑘) ≥ 0,

∀𝑥󸀠 ∈ X.

(17)

It can be further rewritten as

𝑓 (𝑥) − 𝑓 (𝑥
𝑘+1) + (𝑥󸀠 − 𝑥𝑘+1)

𝑇

× (−𝐴𝑇𝜆𝑘+1 + 𝑟 (𝑥𝑘+1 − 𝑥𝑘) + 𝐴𝑇 (𝜆𝑘+1 − 𝜆𝑘)) ≥ 0,

∀𝑥󸀠 ∈ X.

(18)

Similarly, the optimality condition for the subproblem (∗∗)
is

𝑔 (𝑦) − 𝑔 (𝑦𝑘+1) + (𝑦󸀠 − 𝑦𝑘+1)
𝑇

(𝑠 (𝑦𝑘+1 − 𝑦𝑘)

− 𝐵𝑇 (𝜆𝑘 − 𝛽 (𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘 − 𝑏))) ≥ 0,

∀𝑦󸀠 ∈ Y.

(19)

It can be further rewritten as

𝑔 (𝑦) − 𝑔 (𝑦𝑘+1) + (𝑦󸀠 − 𝑦𝑘+1)
𝑇

((𝑠 − 𝛽𝐵𝑇𝐵) (𝑦𝑘+1 − 𝑦𝑘)

− 𝐵𝑇 (𝜆𝑘 − 𝛽 (𝐴 (2𝑥𝑘+1 − 𝑥𝑘) + 𝐵𝑦𝑘+1 − 𝑏))) ≥ 0,

∀𝑦󸀠 ∈ Y.

(20)

Substituting (∗ ∗ ∗) into (19), we have

𝑔 (𝑦) − 𝑔 (𝑦𝑘+1) + (𝑦󸀠 − 𝑦𝑘+1)
𝑇

× (−𝐵𝑇𝜆𝑘+1 + (𝑠 − 𝛽𝐵𝑇𝐵) (𝑦𝑘+1 − 𝑦𝑘)) ≥ 0,

∀𝑦󸀠 ∈ Y.

(21)

In addition, it follows from (∗ ∗ ∗) that

𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏 + 𝐴 (𝑥𝑘+1 − 𝑥𝑘) +
1

𝛽
(𝜆𝑘+1 − 𝜆𝑘) = 0.

(22)

Combining (18), (21), and (22) together, we get

ℎ (𝑢) − ℎ (𝑢
𝑘+1) + (

𝑥 − 𝑥𝑘+1

𝑦 − 𝑦𝑘+1

𝜆 − 𝜆𝑘+1
)

{{{
{{{
{

(

−𝐴𝑇𝜆𝑘+1

−𝐵𝑇𝜆𝑘+1

𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏

) +(

𝑟 (𝑥𝑘+1 − 𝑥𝑘) + 𝐴𝑇 (𝜆𝑘+1 − 𝜆𝑘)

(𝑠 − 𝛽𝐵𝑇𝐵) (𝑦𝑘+1 − 𝑦𝑘)

𝐴 (𝑥𝑘+1 − 𝑥𝑘) +
1

𝛽
(𝜆𝑘+1 − 𝜆𝑘)

)

}}}
}}}
}

≥ 0, (23)
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with 𝑤 = (𝑥, 𝑦, 𝜆)𝑇 ∈ Ω. Using the notation of 𝐻, the
assertion (16) is proved.

Note that when 𝛽 > 0 and 𝑟 > 𝛽‖𝐴𝑇𝐴‖, 𝑠 > 𝛽‖𝐵𝑇𝐵‖,𝐻 is
a positive definitematrix. Lemma 3 implies that the proposed
algorithm can be viewed as a customized version of the PPA,
where 𝐻 is the metric proximal parameter. Henceforth, we
denote the proposed algorithm as CPPA. Now we state and
prove the contractive property of our algorithm.

Lemma 4. Suppose the condition

𝛽 > 0, 𝑟 > 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴

𝑇𝐴
󵄩󵄩󵄩󵄩󵄩 , 𝑠 > 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩 (24)

holds. Then, for any 𝑤∗ = (𝑥∗, 𝑦∗, 𝜆∗)𝑇 ∈ Ω∗, the sequence
𝑤𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 generated by ((∗)–(∗ ∗ ∗)) satisfies
the following inequality:

󵄩󵄩󵄩󵄩󵄩𝑤
𝑘+1 − 𝑤∗

󵄩󵄩󵄩󵄩󵄩
2

𝐻

≤
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

−
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤𝑘
󵄩󵄩󵄩󵄩󵄩
2

𝐻

, (25)

where the norm ‖ ⋅ ‖2
𝐻
is defined as ‖𝑤‖2

𝐻
= 𝑤𝑇𝐻𝑤.

Proof. Note that 𝑤∗ ∈ Ω; it follows from (16) that

ℎ (𝑢∗) − ℎ (𝑢𝑘+1) + (𝑤∗ − 𝑤𝑘+1)
𝑇

× (𝐹 (𝑤𝑘+1) + 𝐻(𝑤𝑘+1 − 𝑤𝑘)) ≥ 0,

(26)

which can be further written as

(𝑤∗ − 𝑤𝑘+1)
𝑇

𝐻(𝑤𝑘+1 − 𝑤𝑘)

≥ ℎ (𝑢𝑘+1) − ℎ (𝑢∗) + (𝑤𝑘+1 − 𝑤∗)
𝑇

𝐹 (𝑤𝑘+1) .

(27)

On the other hand, using the fact that 𝐹(⋅) is a monotone
operator, we have

(𝑤𝑘+1 − 𝑤∗)
𝑇

(𝐹 (𝑤𝑘+1) − 𝐹 (𝑤∗)) ≥ 0. (28)

Combining (28) and (27), we have

(𝑤∗ − 𝑤𝑘+1)
𝑇

𝐻(𝑤𝑘+1 − 𝑤𝑘)

≥ ℎ (𝑢𝑘+1) − ℎ (𝑢∗) + (𝑤𝑘+1 − 𝑤∗)
𝑇

𝐹 (𝑤∗) .

(29)

Since 𝑤∗ is a solution of (9a) and 𝑤𝑘+1 ∈ Ω, we have

ℎ (𝑢𝑘+1) − ℎ (𝑢∗) + (𝑤𝑘+1 − 𝑤∗)
𝑇

𝐹 (𝑤∗) ≥ 0. (30)

Thus, we get

(𝑤∗ − 𝑤𝑘+1)
𝑇

𝐻(𝑤𝑘+1 − 𝑤𝑘) ≥ 0. (31)

Since 𝐻 is positive definite under the requirements of the
parameters (24), (31) can be further written as

(𝑤∗ − 𝑤𝑘)
𝑇

𝐻(𝑤𝑘+1 − 𝑤𝑘) ≥
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤𝑘
󵄩󵄩󵄩󵄩󵄩
2

𝐻

. (32)

On the other hand,
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

=
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤𝑘 + 𝑤𝑘 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

=
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

+ 2(𝑤𝑘 − 𝑤∗)
𝑇

𝐻(𝑤𝑘+1 − 𝑤𝑘)

+
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤𝑘
󵄩󵄩󵄩󵄩󵄩
2

𝐻

.

(33)

Inserting (32) into (33), we obtain
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

≤
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘 − 𝑤∗
󵄩󵄩󵄩󵄩󵄩
2

𝐻

−
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘+1 − 𝑤𝑘
󵄩󵄩󵄩󵄩󵄩
2

𝐻

. (34)

This completes the proof.

Corollary 5. Let 𝑤∗ be an arbitrary point in Ω∗, and let the
sequence {𝑤𝑘} be generated by ((∗)–(∗ ∗ ∗)). Then

(1) the sequence {𝑤𝑘} is bounded;
(2) the sequence {‖𝑤𝑘 − 𝑤∗‖

𝐻
} is nonincreasing;

(3) lim
𝑘→∞

{‖𝑤𝑘+1 − 𝑤𝑘‖
𝐻
} = 0.

We are now ready to prove the global convergence of the
new method.

Theorem 6. Let the sequence {𝑤𝑘} be generated by the
proposed algorithm and the condition (24) holds. Then the
sequence {𝑤𝑘} converges to an optimal primal-dual solution for
(1) from any starting point.

Proof. It follows from Corollary 5 that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩󵄩 = 0, lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑦
𝑘+1 − 𝑦𝑘

󵄩󵄩󵄩󵄩󵄩 = 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘+1 − 𝜆𝑘

󵄩󵄩󵄩󵄩󵄩 = 0.
(35)

Since {𝑤𝑘} is bounded, it has at least one cluster point.
Suppose 𝑤𝑘 has a subsequence {𝑤𝑘𝑗} that converges to 𝑤∞ =
{𝑥∞, 𝑦∞, 𝜆∞}. It follows from (23) that

lim
𝑗→∞

ℎ (𝑢) − ℎ (𝑢
𝑘
𝑗)

+ (

𝑥 − 𝑥𝑘𝑗

𝑦 − 𝑦𝑘𝑗

𝜆 − 𝜆𝑘𝑗
)

𝑇

{{
{{
{

(

−𝐴𝑇𝜆𝑘𝑗

−𝐵𝑇𝜆𝑘𝑗

𝐴𝑥𝑘𝑗 + 𝐵𝑦𝑘𝑗 − 𝑏

)
}}
}}
}

≥ 0.

(36)

Consequently, we have

ℎ (𝑢) − ℎ (𝑢
∞) + (

𝑥 − 𝑥∞

𝑦 − 𝑦∞

𝜆 − 𝜆∞
)

𝑇

{
{
{

(
−𝐴𝑇𝜆∞

−𝐵𝑇𝜆∞

𝐴𝑥∞ + 𝐵𝑦∞ − 𝑏

)
}
}
}

≥ 0,

(37)

which implies that 𝑤∞ ∈ Ω∗.
Because lim

𝑘→∞
{‖𝑤𝑘+1 − 𝑤𝑘‖

𝐻
} = 0, for any given 𝜖 > 0,

there exists 𝑙
0
> 0 such that
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘
𝑙+1 − 𝑤𝑘𝑙

󵄩󵄩󵄩󵄩󵄩𝐻 <
𝜖

2
, ∀𝑙 > 𝑙

0
. (38)
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Since 𝑤𝑘𝑗 → 𝑤∞, for the 𝜖 > 0 given above, there is an
integer 𝑘

𝑙
> 𝑙

0
, such that,

󵄩󵄩󵄩󵄩󵄩𝑤
𝑘
𝑙 − 𝑤∞

󵄩󵄩󵄩󵄩󵄩𝐻 <
𝜖

2
. (39)

Therefore, for any 𝑘 > 𝑘
𝑙
, it follows from (38) and (39) that

󵄩󵄩󵄩󵄩󵄩𝑤
𝑘 − 𝑤∞

󵄩󵄩󵄩󵄩󵄩𝐻 ≤
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘
𝑙 − 𝑤∞

󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘
𝑙+1 − 𝑤𝑘𝑙

󵄩󵄩󵄩󵄩󵄩𝐻 +
󵄩󵄩󵄩󵄩󵄩𝑤

𝑘
𝑙+1 − 𝑤∞

󵄩󵄩󵄩󵄩󵄩𝐻 < 𝜖.
(40)

This implies that the sequence {𝑤𝑘} converges to 𝑤∞ ∈ Ω∗.

5. Application to the Stable Principal
Component Pursuit Problem

In this section, we apply the proposed method to solve the
stable principal component pursuit problem with nonnega-
tive constraints (SPCP). The problem tested is from Example
2 of [19]. Our code was written in Matlab R2009b and all
experiments were performed on a laptop with Intel Core 2
Duo @ 2.0GHz CPU and 2GB of memory.

Let𝑀 = 𝐿+𝑆+𝑍 be a given observationmatrix, where𝐿 is
a low-rank and non-negative matrix, 𝑆 is a sparse matrix,𝑍 is
a noise matrix. SPCP arising from image processing seeks to
recover 𝐿 and 𝑆 by solving the following nonsmooth convex
optimization problem:

min
𝐿,𝑆,𝑍

‖𝐿‖
∗
+ 𝜌‖𝑆‖

1
+I (‖𝑍‖

𝐹
≤ 𝜎) +I (𝐿 ≥ 0)

s.t. 𝐿 + 𝑆 + 𝑍 = 𝑀,

(41)

where ‖ ⋅ ‖
∗
is the nuclear norm (defined as the sum of all

singular values), ‖ ⋅ ‖
1
and ‖ ⋅ ‖

𝐹
denote the 𝑙

1
norm and the

Frobenius norm of a matrix, respectively, and I(⋅) is the
indicator function for the nonnegative orthant R𝑚×𝑛. In the
above model, 𝑍 denotes the noise matrix and 𝜌 and 𝜎 are
some fixed parameters.

Following the procedure described in [19], by introducing
an auxiliary variable𝐾 and grouping 𝐿 and 𝑆 as one big block
[𝐿; 𝑆] and grouping 𝑍 and 𝐾 as another big block [𝑍;𝐾],
model (41) can be easily reformulated as

min
𝐿,𝑆,𝑍,𝐾

‖𝐿‖
∗
+ 𝜌‖𝑆‖

1
+I (‖𝑍‖

𝐹
≤ 𝜎) +I (𝐾 ≥ 0)

s.t. (
𝐼 𝐼
𝐼 0
)(
𝐿
𝑆
) + (

𝐼 0
0 −𝐼

)(
𝑍
𝐾
) = (

𝑀
0
) .

(42)

which fits the setting of (1). The proposed algorithm ((∗)–
(∗ ∗ ∗)) is therefore applicable for (42), and we obtain the
following iterative scheme:

𝐿𝑘+1 = arg min ‖𝐿‖
∗
+
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐿 − 𝐿𝑘 −

1

𝑟
(Λ𝑘

1
+ Λ𝑘

2
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (43)

𝑆𝑘+1 = arg min 𝜌‖𝑆‖
1
+
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑆 − 𝑆𝑘 −

1

𝑟
Λ𝑘
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (44)

𝑍𝑘+1

= argminI (‖𝑍‖
𝐹
≤ 𝜎)

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑍 − 𝑍𝑘 −

1

𝑠
(Λ𝑘

1
− 𝛽 (2𝐿𝑘+1 − 𝐿𝑘 + 2𝑆𝑘+1 − 𝑆𝑘 + 𝑍𝑘

−𝐾𝑘 −𝑀))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(45)

𝐾𝑘+1 = arg minI (𝐾 ≥ 0)

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐾 − 𝐾𝑘 +

1

𝑠
(Λ𝑘

2
− 𝛽 (2𝐿𝑘+1 − 𝐿𝑘 − 𝐾𝑘))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(46)

Λ𝑘+1
1
= Λ𝑘

1
− 𝛽 (2𝐿𝑘+1 − 𝐿𝑘 + 2𝑆𝑘+1 − 𝑆𝑘 + 𝑍𝑘+1 −𝑀) ,

(47)

Λ𝑘+1
2
= Λ𝑘

2
− 𝛽 (2𝐿𝑘+1 − 𝐿𝑘 − 𝐾𝑘+1) . (48)

The main advantage of CPPA applied to SPCP is that the
generatedminimizations in ((43)–(46)) are all simple enough
to have closed-form solutions. For completeness, we elaborate
on the strategy of solving the resulted subproblems at each
iteration.

(i) The 𝐿-subproblem (43) amounts to evaluate the prox-
imal operator of the nuclear norm function and is
given by the matrix shrinkage operation:

𝐿𝑘+1 := MatShrink(𝐿𝑘 + 1
𝑟
(Λ𝑘

1
+ Λ𝑘

2
) ,
1

𝑟
) , (49)

where the matrix shrinkage operator
MatShrink (𝑀, 𝜉) (𝜉 > 0) is defined as

MatShrink (𝑀, 𝜉) := 𝑈Diag (max {𝜎 − 𝜉, 0}) 𝑉𝑇, (50)

and 𝑈Diag(𝜎)𝑉𝑇 is the SVD of matrix𝑀.
(ii) The closed-form solution of 𝑆-subproblem (44) can

be given by the 𝑙
1
shrinkage operation:

𝑆𝑘+1 := Shrink(𝑆𝑘 + 1
𝑟
Λ𝑘
1
,
𝜌

𝑟
) , (51)

where the 𝑙
1
shrinkage operator Shrink(𝑀, 𝜉) is

defined as

[Shrink (𝑀, 𝜉)]
𝑖𝑗
:=
{{
{{
{

𝑀
𝑖𝑗
− 𝜉, if 𝑀

𝑖𝑗
> 𝜉

𝑀
𝑖𝑗
+ 𝜉, if 𝑀

𝑖𝑗
< −𝜉

0, if 󵄨󵄨󵄨󵄨󵄨𝑀𝑖𝑗

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜉.

(52)

(iii) The 𝑍-subproblem (45) amounts to projecting the
matrix𝑊𝑘 := 𝑀+(1/𝛽)Λ𝑘

1
−(2𝐿𝑘+1 −𝐿𝑘 +2𝑆𝑘+1 −𝑆𝑘)

onto the Euclidean ball ‖𝑍‖
𝐹
≤ 𝜎, whose closed-form

solution is given by

𝑍𝑘+1 :=
𝑊𝑘

max {1, 󵄩󵄩󵄩󵄩𝑊𝑘
󵄩󵄩󵄩󵄩𝐹/𝜎}

. (53)
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Table 1: Numerical results for stable principal component pursuit problem.

𝑛
APGM CPPA

Iter. rel
𝐿

rel
𝑆

CPU(s) Iter. rel
𝐿

rel
𝑆

CPU(s)
Rank

𝑟
= 0.01,Card

𝑟
= 0.01

50 84 9.36𝑒 − 003 2.67𝑒 − 005 0.2 88 9.15𝑒 − 003 2.29𝑒 − 005 0.2
100 44 8.41𝑒 − 003 2.47𝑒 − 005 0.6 52 8.38𝑒 − 003 1.87𝑒 − 005 0.6
150 58 5.00𝑒 − 003 2.16𝑒 − 005 2.1 57 4.89𝑒 − 003 1.87𝑒 − 005 2.0
200 52 4.81𝑒 − 003 2.01𝑒 − 005 4.1 45 4.42𝑒 − 003 2.36𝑒 − 005 3.4
250 52 3.40𝑒 − 003 1.97𝑒 − 005 7.4 46 3.14𝑒 − 003 2.42𝑒 − 005 6.4
300 47 3.30𝑒 − 003 1.90𝑒 − 005 11.4 42 2.53𝑒 − 003 3.58𝑒 − 005 9.8
400 43 2.57𝑒 − 003 1.83𝑒 − 005 39.1 42 1.66𝑒 − 003 4.18𝑒 − 005 37.7
500 38 2.08𝑒 − 003 2.77𝑒 − 005 82.1 42 1.13𝑒 − 003 4.68𝑒 − 005 89.2

Rank
𝑟
= 0.02,Card

𝑟
= 0.02

50 65 1.38𝑒 − 002 3.24𝑒 − 005 0.2 78 1.32𝑒 − 002 2.68𝑒 − 005 0.2
100 72 7.05𝑒 − 003 2.71𝑒 − 005 1.1 68 6.77𝑒 − 003 2.27𝑒 − 005 1.0
150 63 4.88𝑒 − 003 2.69𝑒 − 005 2.8 48 4.61𝑒 − 003 2.42𝑒 − 005 2.1
200 53 3.66𝑒 − 003 2.52𝑒 − 005 7.4 43 3.24𝑒 − 003 4.50𝑒 − 005 5.4
250 47 2.98𝑒 − 003 2.62𝑒 − 005 7.3 43 2.10𝑒 − 003 4.51𝑒 − 005 6.7
300 41 2.55𝑒 − 003 3.02𝑒 − 005 10.4 43 1.58𝑒 − 003 5.38𝑒 − 005 10.8
400 34 1.70𝑒 − 003 4.95𝑒 − 005 32.5 44 1.14𝑒 − 003 5.74𝑒 − 005 41.9
500 34 7.67𝑒 − 004 4.88𝑒 − 005 75.3 45 9.18𝑒 − 004 5.73𝑒 − 005 101.0

Rank
𝑟
= 0.03,Card

𝑟
= 0.03

50 98 9.03𝑒 − 003 3.91𝑒 − 005 0.4 88 8.86𝑒 − 003 3.09𝑒 − 005 0.3
100 78 6.41𝑒 − 003 3.18𝑒 − 005 1.3 64 6.13𝑒 − 003 2.62𝑒 − 005 1.0
150 56 3.67𝑒 − 003 3.42𝑒 − 005 2.5 51 3.41𝑒 − 003 2.97𝑒 − 005 2.2
200 45 3.09𝑒 − 003 3.32𝑒 − 005 4.2 46 2.54𝑒 − 003 3.94𝑒 − 005 4.0
250 38 2.16𝑒 − 003 4.35𝑒 − 005 6.1 46 1.67𝑒 − 003 4.94𝑒 − 005 7.1
300 35 1.71𝑒 − 003 4.86𝑒 − 005 8.7 46 1.32𝑒 − 003 5.39𝑒 − 005 11.5
400 34 1.22𝑒 − 003 8.13𝑒 − 005 31.9 47 9.56𝑒 − 004 5.85𝑒 − 005 45.4
500 34 9.29𝑒 − 004 8.18𝑒 − 005 74.5 47 8.43𝑒 − 004 6.44𝑒 − 005 106.4

(iv) The 𝐾-subproblem (46) amounts to projecting the
matrix 2𝐿𝑘+1−𝐿𝑘−(1/𝛽)Λ𝑘

2
onto the the nonnegative

orthant, whose closed-form solution is given by:

𝐾𝑘+1 := max{2𝐿𝑘+1 − 𝐿𝑘 − 1
𝛽
Λ𝑘
2
, 0} . (54)

For detailed analytical methods of ((43)–(46)), the reader
is referred to, for example, [19, 26]. Thus, the simplicity
assumption (5) holds for the application (41).

For the numerical experiments, we follow [19] to ran-
domly generate the data of (41). We consider the scenario
of 𝑚 = 𝑛. For given 𝑛, 𝑟 < 𝑛, we generate 𝐿∗ = 𝑅

1
𝑅𝑇
2
,

where 𝑅
1
and 𝑅

2
are independent 𝑛×𝑟 full row rankmatrices

whose elements are independently and identically (i.i.d.)
uniformly distributed in [0, 1]. Note that in this experiment,
𝐿∗ is a component-wise nonnegative and low-rank matrix
to be recovered. The support of the sparse matrix 𝑆∗ was
chosen uniformly and randomly, and the nonzero entries in
𝑆∗ are generated i.i.d. uniformly in [−500, 500]. The entries
of matrix 𝑍∗ for noise were generated as i.i.d. Gaussian with
standard deviation 10−4; we set𝑀 := 𝐿∗ + 𝑆∗ + 𝑍∗.

In the following, we compare CPPA with APGM in
[18, 19], since they are all designed based on the “simple”
assumption and share the same conditions for convergence.
For the penalty parameter 𝛽, we take 𝛽 = 0.01. For other
individual parameters required by these methods, we choose
𝑟 = 2.618𝛽, 𝑠 = 𝛽, and 𝜌 := 1/√𝑛. To implement all
the compared methods, the initial iterate for both CPPA and
APGM is chosen 𝐿0 = 𝐾0 = −𝑀, 𝑆0 = 𝑍0 = 0, Λ0

1
= Λ0

2
= 0.

The stopping criterion is set as

resid := ‖𝐿 + 𝑆 + 𝑍 −𝑀‖𝐹
‖𝑀‖

𝐹

< 𝜖
𝑟
, (55)

where 𝜖
𝑟
is the tolerance set as 𝜖

𝑟
= 10−4. We denoted

Rank
𝑟
:= 𝑟/𝑛 so that the rank of 𝐿∗ is 𝑛 ∗Rank

𝑟
and Card

𝑟
:=

cardinality (𝑆∗)/(𝑛2) so that the cardinality of 𝑆∗ is 𝑛2∗Card
𝑟
.

Some preliminary numerical results are reported in
Table 1. Since they are synthetic examples with random date,
for each scenario we test for 10 times, and the results were
averaged over ten runs. Specifically, we reported the number
of iteration (Iter.), relative error of the low-rank matrix
𝐿(rel

𝐿
), relative error of the sparse matrix 𝑆(rel

𝑆
), and CPU
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Figure 1: (a) Relative errors of low-rank matrix 𝐿. (b) Relative errors of sparse matrix 𝑆.

times in seconds (CPU(s)), where the relative errors are
defined as

rel
𝐿
:=

󵄩󵄩󵄩󵄩𝐿 − 𝐿
∗󵄩󵄩󵄩󵄩𝐹

‖𝐿∗‖
𝐹

, rel
𝑆
:=

󵄩󵄩󵄩󵄩𝑆 − 𝑆
∗󵄩󵄩󵄩󵄩𝐹

‖𝑆∗‖
𝐹

. (56)

From Table 1, we observe that both of the methods are
efficient. Our method tends to be competitive with APGM
and performs reasonably well for moderate dimensions (say,
𝑛 ∈ [100–300]). To see the comparison clearly, we focus
on the particular case where 𝑛 = 150 and Rank

𝑟
= 0.02,

Card
𝑟
= 0.02; we visualize the iterative processes of different

method in Figure 1. More specifically, we plot the evolutions
of the relative error rel

𝐿
and rel

𝑆
, with respect to the iterations.

According to the curves in Figure 1, the performance of CPPA
is slightly worse than that of APGM, when the iterations are
small. However, with the iterations going large, CPPA shows
a better performance than APGM.

6. Concluding Remarks

We have proposed a new algorithm for solving (1) which
admits easy subproblems assuming the proximal mappings
of 𝑓 and 𝑔 are easy to compute. Our algorithm can be
viewed as a customized proximal point method with a special
proximal regularization parameter. We established its global
convergence under the analytic framework of contraction
type methods. The computational results on solving the
stable principal component pursuit problem show that our
algorithm works reasonably well on large-scale instances.
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