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The aim of this work is to explore the optimal exploitation way for a biological resources model incorporating individual’s size
difference and spatial effects. The existence of a unique nonnegative solution to the state system is shown by means of Banach’s
fixed point theorem, and the continuous dependence of the population density with the harvesting effort is given. The optimal
harvesting strategy is established via normal cone and adjoint system technique. Some conditions are found to assure that there is
only one optimal policy.

1. Introduction and Problem Setting

Since the classical work by Skellam [1], dispersal or diffusion
of biological individuals has been recognized as one of the
most significant features, which affect the dynamics and
evolution of populations. Researchers made lots of efforts
to understand the role of dispersal in the distribution of
populations and the structure of communities; see, for exam-
ple, [2, 3]. On the other hand, size-structured models are
still an active field due to their ecological importance and
mathematical challenge (see, e.g., [4, 5]).

This paper is concerned with an optimal harvesting
problem of a species model, which incorporates the dis-
persal and body size of organisms. There are a number of
results in some particular situations, such as [6–8] for age-
and space-structured models and [9–18] for size-structured
models without consideration of diffusion. In [9], Botsford
constructed a size-specific population model based on the
continuity equation and suggested that the inclusion of
individual growth rates could reveal optimal harvesting
policies. Some linear optimal harvesting population models
structured by size were introduced in [10, 11]. The optimality
conditions of Pontryagin’s type were obtained in [12] for an
optimal control problem for a size-structured system. Hri-
tonenko et al. [13] analyzed nonlinear optimal control of
integral-differential equations that described the optimal

management of a forest; Gasca-Leyva et al. [14] analyzed
the optimal harvesting time for husbanded biological assets
consisting of individuals of different sizes. In [15], Davydov
and Platov established size-structured population dynamics
in the case where the growth rate, mortality, and exploitation
intensity depend only on the size. The global stability of
a nontrivial stationary state and some necessary optimality
conditions were obtained. Kato in [16] sought the optimal
harvesting rate in a profitmaximization problem for a nonlin-
ear size-structured model of two-species population. Other
nonlinear size-specificmodels can be found in [17, 18].He and
Liu [17] took fertility as the control variable and established
the necessary optimality conditions of first order in the
form of an Euler-Lagrange system. The existence of a unique
optimal controller was established by means of Ekeland’s
variational principle. Similar techniques were introduced
in [18], and the optimality conditions describing the opti-
mal strategy were also obtained via tangent-normal cone
technique.

There are, however, only few models that combine size
structure with spatial diffusion. In Section 1.2 of [5], Webb
introduced a kind of population models with size structure
and spatial position. The theory of semigroup of operators
was employed to study the existence and asymptotical behav-
iors; some numerical simulations were made as an aid to
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understand the theoretical results. Moreover, a tumor growth
model was examined. Faugeras and Maury established an
advection model of fish with length and plane position dis-
tribution in [19], for which the well-posedness was rigorously
treated and approximation procedure presented. Further-
more, the model was applied to skipjack tuna population in
the Indian Ocean. Hadeler (in [20]) emphasized the value of
introducing diffusion to structured population models and
discussed how to supply appropriate boundary conditions for
the models.

Theobjective of this paper is to investigate an optimal har-
vesting problem for a size- and space-structured population
model and to analyze the structure of the optimal strategies.
We aremotivated to optimize the economic profits functional
of resources exploitation as follows:

maximize 𝐽 (𝑢) := ∫

𝑠

𝑠

∫

𝑇

0

∫
Ω

[𝑤 (𝑠, 𝑡, 𝑥) 𝑢 (𝑠, 𝑡, 𝑥) 𝑝
𝑢

(𝑠, 𝑡, 𝑥)

−
1

2
𝜌𝑢
2

(𝑠, 𝑡, 𝑥)] 𝑑𝑥 𝑑𝑡 𝑑𝑠,

(1)

subject to 𝑢 ∈ U = {V ∈ 𝐿
2

(𝑄) : 0 ≤ 𝜁
1
(𝑠, 𝑡, 𝑥) ≤ V(𝑠, 𝑡, 𝑥) ≤

𝜁
2
(𝑠, 𝑡, 𝑥) a.e. in 𝑄}, where𝑄 := (𝑠, 𝑠)×(0, 𝑇)×Ω,𝑇 > 0 is the

finite horizon of control, and Ω ⊂ 𝑅
𝑁

(𝑁 ≤ 3) is a bounded
open domainwith a boundary 𝜕Ω smooth enough. Constants
𝑠 and 𝑠 stand for, respectively, the minimal and maximal size
of individuals. 𝑤(𝑠, 𝑡, 𝑥) denotes the economic value of an
individual of size 𝑠 ∈ [𝑠, 𝑠] at time 𝑡 ∈ [0, 𝑇] at location 𝑥 ∈ Ω.
𝜌 > 0 is a costs factor for implementing the control policy 𝑢.
𝑝
𝑢

(𝑠, 𝑡, 𝑥) is the population density corresponding to 𝑢, which
is governed by the following system:

𝜕𝑝

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑝)

𝜕𝑠
− 𝑘Δ𝑝 = −𝜇 (𝑠, 𝑡, 𝑥) 𝑝 − 𝑢 (𝑠, 𝑡, 𝑥) 𝑝,

(𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑝 (𝑠, 𝑡, 𝑥) = ∫

𝑠

𝑠

𝛽 (𝑠, 𝑡, 𝑥) 𝑝 (𝑠, 𝑡, 𝑥) 𝑑𝑠,

(𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑝 (𝑠, 0, 𝑥) = 𝑝
0
(𝑠, 𝑥) , (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑝

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ,

(2)

where Σ := (𝑠, 𝑠) × (0, 𝑇) × 𝜕Ω, 𝑛 is the outward unit
normal, and the system (2) is endowedwith the homogeneous
Neumann boundary condition, which means no exchange
of population across 𝜕Ω. Control variable 𝑢 ∈ U is the
harvesting effort; functions 𝜁

1
(𝑠, 𝑡, 𝑥) and 𝜁

2
(𝑠, 𝑡, 𝑥) give the

minimum andmaximum harvesting efforts, respectively.The
vital parameters 𝜇(𝑠, 𝑡, 𝑥) and𝛽(𝑠, 𝑡, 𝑥) are the death and birth
rates, 𝑘 > 0 is the diffusive coefficient, and 𝑝

0
(𝑠, 𝑥) is the

initial size and spatial distribution of our target population.
𝑔(𝑠) is the growth modulus of size; that is, 𝑔(𝑠) = 𝑑𝑠/𝑑𝑡.

Hereafter, let Γ(𝑠) := ∫
𝑠

𝑠

(1/𝑔(V))𝑑V. We need the following
definition.

Definition 1. The set of curves 𝑆 = {(𝑠, 𝑡) ∈ (𝑠, 𝑠) × (0, 𝑇) :

𝑡 − Γ(𝑠) = ℎ, ℎ ∈ 𝑅} is called the family of characteristic
curves.

Throughout this paper, we make the following hypothe-
ses:
(H
1
) 𝑔 ∈ 𝐶

1

[𝑠, 𝑠], 𝑔(𝑠) > 0, and 0 ≤ 𝑔(𝑠) ≤ 𝑔 ≤ 2𝑔(𝑠) for
∀𝑠 ∈ [𝑠, 𝑠];

(H
2
) 𝜇 ∈ 𝐿

∞

loc([𝑠, 𝑠)×[0, 𝑇]×Ω), 𝜇(𝑠, 𝑡, 𝑥) ≥ 𝜇
0
(𝑠, 𝑡) ≥ 0, a.e.

in 𝑄, where 𝜇
0
∈ 𝐿
∞

loc([𝑠, 𝑠) × [0, 𝑇]) and ∫
𝑠

𝑠

𝜇
0
(𝑠, 𝑡 −

Γ(𝑠) + 𝑠)d𝑠 = +∞, a.e. 𝑡 ∈ [0, 𝑇];
(H
3
) 𝛽(𝑠, 𝑡, 𝑥) ≥ 0 a.e. in 𝑄, 𝛽 ∈ 𝐿

∞

(𝑄), and let 𝛽 :=

‖𝛽‖
𝐿
∞
(𝑄)

;
(H
4
) 𝑝
0
(𝑠, 𝑥) ≥ 0 a.e. in (𝑠, 𝑠) × Ω, 𝑝

0
∈ 𝐿
∞

((𝑠, 𝑠) × Ω), and
let 𝑝
0
:= ‖𝑝
0
‖
𝐿
∞
((𝑠,𝑠)×Ω)

;
(H
5
) 𝑤(𝑠, 𝑡, 𝑥) > 0 a.e. in 𝑄 from (1), 𝑤 ∈ 𝐿

∞

(𝑄), and let
𝑊:= ‖𝑤‖

𝐿
∞
(𝑄)

.
Denote by 𝐷𝑝 the directional derivative operator of 𝑝;

that is,

𝐷𝑝 (𝑠, 𝑡, 𝑥) := lim
ℎ→0

𝑝 (Γ
−1

(Γ (𝑠) + ℎ) , 𝑡 + ℎ, 𝑥) − 𝑝 (𝑠, 𝑡, 𝑥)

ℎ
.

(3)

It is obvious that 𝐷𝑝 = 𝜕𝑝/𝜕𝑡 + 𝑔(𝑠)(𝜕𝑝/𝜕𝑠) for 𝑝 smooth
enough.

Define
𝐴𝐶(𝑆; 𝐿

2

(Ω))

:= {𝑘 : 𝑆 → 𝐿
2

(Ω) ; 𝑘 is absolutely

continous on any compact subinterval} .

(4)

Then, we introduce the definition of weak solutions as
follows.

Definition 2. By solution of system (2), we mean a function
𝑝(𝑠, 𝑡, 𝑥) ∈ 𝐿

2

(𝑄), which belongs to 𝐶(𝑆; 𝐿
2

(Ω)) ∩

𝐴𝐶(𝑆; 𝐿
2

(Ω)) ∩ 𝐿
2

(𝑆;𝐻
1

(Ω)) ∩ 𝐿
2

loc(𝑆;𝐻
2

(Ω)) for almost any
characteristic curve 𝑆 and satisfies

𝐷𝑝 (𝑠, 𝑡, 𝑥) − 𝑘Δ𝑝 = − [𝜇 (𝑠, 𝑡, 𝑥) + 𝑢 (𝑠, 𝑡, 𝑥) + 𝑔


(𝑠)] 𝑝,

a.e. (𝑠, 𝑡, 𝑥) ∈ 𝑄,

lim
ℎ→0+

𝑔 (Γ
−1

(ℎ)) 𝑝 (Γ
−1

(ℎ) , 𝑡 + ℎ, ⋅)

= ∫

𝑠

𝑠

𝛽 (𝑠, 𝑡, ⋅) 𝑝 (𝑠, 𝑡, ⋅) 𝑑𝑠, in 𝐿
2

(Ω) , a.e. 𝑡 ∈ (0, 𝑇) ,

lim
ℎ→0+

𝑝 (Γ
−1

(Γ (𝑠) + ℎ) , ℎ, ⋅) = 𝑝
0
(𝑠, ⋅) ,

in 𝐿
2

(Ω) , a.e. 𝑠 ∈ (𝑠, 𝑠) ,

𝜕𝑝

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, a.e. (𝑠, 𝑡, 𝑥) ∈ Σ.

(5)
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The remainder of this paper is organized as follows. The
next section deals with the well-posedness of the state system
(2) for given parameters. Section 3 derives the necessary opti-
mality conditions and describes an optimal feedback law of
control, while Section 4 establishes the existence and unique-
ness of optimal strategies. The paper ends with a remarks
section.

2. Well-Posedness of the State System

Lemma 3. If 𝜇 ∈ 𝐿
∞

(𝑄) and hypotheses (H
1
), (H
3
), and (H

4
)

hold, then the system (2) has a unique nonnegative solution.

Proof. Without loss of generality, we may assume that
𝑢(𝑠, 𝑡, 𝑥) ≡ 0. Let 𝑏(𝑡, 𝑥) ∈ 𝐿

2

((0, 𝑇) × Ω) be the density
of population at the minimum size 𝑠, and denote by 𝑝

𝑏
the

solution of the following system:

𝐷𝑝 (𝑠, 𝑡, 𝑥) − 𝑘Δ𝑝 = − [𝜇 (𝑠, 𝑡, 𝑥) + 𝑔


(𝑠)] 𝑝, (𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑝 (𝑠, 𝑡, 𝑥) = 𝑏 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑝 (𝑠, 0, 𝑥) = 𝑝
0
(𝑠, 𝑥) , (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑝

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ.

(6)

In what follows, we prove the existence and uniqueness of
𝑝
𝑏
following the spirits in [6].
Firstly, we replace 𝑝 in the right-hand side of the first

equation in (6) with 𝑞 ∈ 𝐿
2

(𝑄) arbitrarily fixed:

𝐷𝑝 − 𝑘Δ𝑝 = − (𝜇 + 𝑔


) 𝑞, (𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑝 (𝑠, 𝑡, 𝑥) = 𝑏 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑝 (𝑠, 0, 𝑥) = 𝑝
0
(𝑠, 𝑥) , (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑝

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ.

(7)

Then, we regard the above problem as a collection of linear
parabolic systems on the characteristic curves 𝑆 (let (𝑠

0
, 𝑡
0
) be

an initial point of 𝑆):

𝜕𝑝
𝑆

𝜕ℎ
− 𝑘Δ𝑝

𝑆
= − (𝜇 (ℎ, 𝑥) + 𝑔



(Γ
−1

(Γ (𝑠
0
) + ℎ))) 𝑞

𝑆
(ℎ, 𝑥) ,

(ℎ, 𝑥) ∈ (0, 𝛼) × Ω,

𝜕𝑝
𝑆

𝜕𝑛
(ℎ, 𝑥) = 0, (ℎ, 𝑥) ∈ (0, 𝛼) × 𝜕Ω,

𝑝
𝑆
(0, 𝑥) =

{{

{{

{

𝑏 (𝑡
0
, 𝑥)

𝑔 (𝑠)
, if 𝑠 = 𝑠

0
,

𝑝
0
(𝑠
0
, 𝑥) , if 𝑡 = 𝑡

0
,

𝑥 ∈ Ω.

(8)

Here, 𝑝
𝑆
(ℎ, 𝑥) := 𝑝

𝑏,𝑞
(Γ
−1

(Γ(𝑠
0
) + ℎ), 𝑡

0
+ ℎ, 𝑥) and 𝑝

𝑏,𝑞
is

the solution to (7), which is a linear heat equation. By

standard theory of PDE (see, e.g., [21]), we assure that the
system (7) has a unique solution 𝑝

𝑏,𝑞
∈ 𝐿
2

(𝑄). Clearly, 𝑝
𝑏,𝑞

∈

𝐶(𝑆; 𝐿
2

(Ω)) ∩ 𝐴𝐶(𝑆; 𝐿
2

(Ω)) ∩ 𝐿
2

(𝑆;𝐻
1

(Ω)) ∩ 𝐿
2

loc(𝑆;𝐻
2

(Ω))

for almost any characteristic curve 𝑆.
Secondly, by Banach’s fixed point theorem, we infer that

there exists a unique bounded solution 𝑝
𝑏
to the system (6).

The proof is trivial and is omitted here.
We now define an operator A : 𝐿

2

((0, 𝑇) × Ω) →

𝐿
2

((0, 𝑇) × Ω) as

(A𝑏) (𝑡, 𝑥) :=∫

𝑠

𝑠

𝛽 (𝑠, 𝑡, 𝑥) 𝑝
𝑏
(𝑠, 𝑡, 𝑥) 𝑑𝑠, (𝑡, 𝑥) ∈ (0, 𝑇) × Ω.

(9)

Consider a norm in space 𝐿2((0, 𝑇) × Ω) given by

‖V‖ = (∫

𝑇

0

𝑒
−𝜆𝑡

‖V (𝑡, ⋅)‖2
𝐿
2
(Ω)

𝑑𝑡)

1/2

, ∀V ∈ 𝐿
2

((0, 𝑇) × Ω) .

(10)

Clearly, it is equivalent to the usual norm.The constant 𝜆will
be determined later.

Let 𝑏
1
, 𝑏
2
∈ 𝐿
2

((0, 𝑇) × Ω), and 𝑟(𝑠, 𝑡, 𝑥) = 𝑝
𝑏
1

(𝑠, 𝑡, 𝑥) −

𝑝
𝑏
2

(𝑠, 𝑡, 𝑥). It can be readily verified that 𝑟 is the solution of
the following system:

𝜕𝑟

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑟)

𝜕𝑠
+ 𝜇𝑟 − 𝑘Δ𝑟 = 0, (𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑟 (𝑠, 𝑡, 𝑥) = 𝑏
1
(𝑡, 𝑥) − 𝑏

2
(𝑡, 𝑥) , (𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑟 (𝑠, 0, 𝑥) = 0, (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑟

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ.

(11)

Multiplying the first equation in (11) by 𝑟 and integrating
over 𝑄

𝑡
:= (𝑠, 𝑠) × (0, 𝑡) × Ω, we get that

∫
Ω

∫

𝑠

𝑠

∫

𝑡

0

𝑟
𝜕𝑟

𝜕𝜏
𝑑𝜏 𝑑𝑠 𝑑𝑥 + ∫

Ω

∫

𝑡

0

∫

𝑠

𝑠

𝑟
𝜕 (𝑔 (𝑠) 𝑟)

𝜕𝑠
𝑑𝑠 𝑑𝜏 𝑑𝑥

= −∫
𝑄
𝑡

(𝜇𝑟
2

− 𝑘𝑟Δ𝑟) 𝑑𝜎,

(12)

where by ∫
𝑄
𝑡

(⋅)𝑑𝜎 we mean ∫
𝑠

𝑠

∫
𝑡

0

∫
Ω

(⋅)𝑑𝑥 𝑑𝜏 𝑑𝑠; the style will
be used hereafter.

By (H
1
), we obtain that

∫
Ω

∫

𝑡

0

∫

𝑠

𝑠

𝑟
𝜕 (𝑔 (𝑠) 𝑟)

𝜕𝑠
𝑑𝑠 𝑑𝜏 𝑑𝑥

= ∫
Ω

∫

𝑡

0

{[𝑔 (𝑠) 𝑟
2

(𝑠, 𝜏, 𝑥)]


𝑠

𝑠

− ∫

𝑠

𝑠

𝑔 (𝑠) 𝑟
𝜕𝑟

𝜕𝑠
𝑑𝑠} 𝑑𝜏 𝑑𝑥

≥ ∫
Ω

∫

𝑡

0

{[𝑔(𝑠)𝑟
2

(𝑠, 𝜏, 𝑥)]


𝑠

𝑠

− ∫

𝑠

𝑠

𝑔𝑟
𝜕𝑟

𝜕𝑠
𝑑𝑠} 𝑑𝜏 𝑑𝑥
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= ∫
Ω

∫

𝑡

0

{[𝑔 (𝑠) 𝑟
2

(𝑠, 𝜏, 𝑥)]


𝑠

𝑠

−
1

2
𝑔𝑟
2

(𝑠, 𝜏, 𝑥)|
𝑠

𝑠
} 𝑑𝜏 𝑑𝑥

≥ ∫
Ω

∫

𝑡

0

[(𝑔 (𝑠)−
1

2
𝑔) 𝑟
2

(𝑠, 𝜏, 𝑥)−𝑔 (𝑠) 𝑟
2

(𝑠, 𝜏, 𝑥)] 𝑑𝜏 𝑑𝑥

≥ −∫
Ω

∫

𝑡

0

𝑔 (𝑠) 𝑟
2

(𝑠, 𝜏, 𝑥) 𝑑𝜏 𝑑𝑥.

(13)

In addition, we are able to write down that

∫
Ω

∫

𝑠

𝑠

∫

𝑡

0

𝑟
𝜕𝑟

𝜕𝜏
𝑑𝜏 𝑑𝑠 𝑑𝑥 =

1

2
‖𝑟 (⋅, 𝑡, ⋅)‖

2

𝐿
2
((𝑠,𝑠)×Ω)

. (14)

So we have

‖𝑟(⋅, 𝑡, ⋅)‖
2

𝐿
2
((𝑠,𝑠)×Ω)

≤ 2∫

𝑡

0

∫
Ω

𝑔 (𝑠) 𝑟
2

(𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝜏. (15)

Then, we can derive the following inequalities:

A𝑏
1
−A𝑏
2


2

= ∫

𝑇

0

𝑒
−𝜆𝑡



∫

𝑠

𝑠

𝛽(𝑠, 𝑡, ⋅)(𝑝
𝑏
1

− 𝑝
𝑏
2

)(𝑠, 𝑡, ⋅)𝑑𝑠



2

𝐿
2
(Ω)

𝑑𝑡

≤ 𝛽∫

𝑇

0

𝑒
−𝜆𝑡



∫

𝑠

𝑠

𝑟(𝑠, 𝑡, ⋅)𝑑𝑠



2

𝐿
2
(Ω)

𝑑𝑡

≤ (𝑠 − 𝑠) 𝛽∫

𝑇

0

𝑒
−𝜆𝑡

‖𝑟(⋅, 𝑡, ⋅)‖
2

𝐿
2
((𝑠,𝑠)×Ω)

𝑑𝑡

≤ 2 (𝑠 − 𝑠) 𝛽∫

𝑇

0

𝑒
−𝜆𝑡

∫
Ω

𝑔 (𝑠) 𝑟
2

(𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

≤
2 (𝑠 − 𝑠) 𝛽

𝑔 (𝑠)
∫

𝑇

0

∫

𝑡

0

𝑒
−𝜆𝑡𝑏1(𝜏, ⋅) − 𝑏

2
(𝜏, ⋅)


2

𝐿
2
(Ω)

𝑑𝜏 𝑑𝑡

=
2 (𝑠 − 𝑠) 𝛽

𝑔 (𝑠)
∫

𝑇

0

∫

𝑇

𝜏

𝑒
−𝜆𝑡𝑏1(𝜏, ⋅) − 𝑏

2
(𝜏, ⋅)


2

𝐿
2
(Ω)

𝑑𝑡 𝑑𝜏

≤
2 (𝑠 − 𝑠) 𝛽

𝑔 (𝑠)

1

𝜆
∫

𝑇

0

𝑒
−𝜆𝑡𝑏1(𝑡, ⋅) − 𝑏

2
(𝑡, ⋅)


2

𝐿
2
(Ω)

𝑑𝑡

=
2 (𝑠 − 𝑠) 𝛽

𝑔 (𝑠)

1

𝜆

𝑏1 − 𝑏
2


2

.

(16)

It is now obvious that, for any 𝜆 > 2(𝑠 − 𝑠)𝛽/𝑔(𝑠), A is
a contraction on (𝐿

2

((0, 𝑇) × Ω), ‖ ⋅ ‖). Banach’s fixed point
theorem allows us to conclude that there exists a unique 𝑏∗ ∈
𝐿
2

((0, 𝑇) × Ω) such that 𝑏∗ = A𝑏
∗. Let

𝐿
2

+
((0, 𝑇) × Ω) := {V (𝑡, 𝑥) ∈ 𝐿

2

((0, 𝑇) × Ω) ; V (𝑡, 𝑥) ≥ 0

a.e. in (0, 𝑇) × Ω} .

(17)

Since A(𝐿
2

+
((0, 𝑇) × Ω)) ⊂ 𝐿

2

+
((0, 𝑇) × Ω) and 𝐿

2

+
((0, 𝑇) ×

Ω) is closed in 𝐿
2

((0, 𝑇) × Ω), then 𝑏
∗

(𝑡, 𝑥) ∈ 𝐿
2

+
((0, 𝑇) ×

Ω). Consequently,𝑝
𝑏
∗(𝑠, 𝑡, 𝑥) is the desired solution of system

(2).

Using the approximating procedure of Banach’s fixed
point, we obtain the following monotonicity result.

Lemma 4. Under the hypotheses of Lemma 3, let 𝑝
𝑖
(𝑖 = 1, 2)

be the solutions of the system (2) corresponding to (𝜇
𝑖
, 𝛽
𝑖
, 𝑝
0𝑖
).

If 𝜇
1
≥ 𝜇
2
, 𝛽
1
≤ 𝛽
2
, 𝑝
01

≤ 𝑝
02
, then

0 ≤ 𝑝
1
(𝑠, 𝑡, 𝑥) ≤ 𝑝

2
(𝑠, 𝑡, 𝑥) a.e. in 𝑄. (18)

Then, we prove the main result of this section.

Theorem 5. Under the hypotheses (H
1
)–(H
4
), system (2) has

a unique solution 𝑝(𝑠, 𝑡, 𝑥) in 𝑄. Furthermore, the solution is
nonnegative and bounded:

0 ≤ 𝑝 (𝑠, 𝑡, 𝑥) ≤ 𝑀
1

a.e. in 𝑄, (19)

where𝑀
1
= ‖𝑝‖

𝐿
∞
(𝑄)

and 𝑝 is the solution of system (2) with
𝜇 = 0, 𝛽 = 𝛽, and 𝑝

0
= 𝑝
0
.

Proof. For any 𝑁 ∈ N∗ (the set of all positive integers), we
define

𝜇
𝑁

(𝑠, 𝑡, 𝑥) := min {𝜇 (𝑠, 𝑡, 𝑥) ,𝑁} , (𝑠, 𝑡, 𝑥) ∈ 𝑄. (20)

It is apparent that 𝜇
𝑁 satisfies the assumption of 𝜇 in

Lemma 3, and the sequence {𝜇𝑁} is increasing. Denote by 𝑝
𝑁

the unique nonnegative solution of system (2) corresponding
to 𝜇𝑁. For𝑁

1
≤ 𝑁
2
≤ 𝑁
3
≤ ⋅ ⋅ ⋅ , we have 𝜇𝑁1 ≤ 𝜇

𝑁
2 ≤ 𝜇
𝑁
3 ≤

⋅ ⋅ ⋅ , and so 𝑝
𝑁
1

≥ 𝑝
𝑁
2

≥ 𝑝
𝑁
3

≥ ⋅ ⋅ ⋅ ≥ 0 by Lemma 4. Beppo
Levi’s theorem implies that

𝑝
𝑁
(𝑠, 𝑡, 𝑥) → 𝑝 (𝑠, 𝑡, 𝑥) a.e. in 𝑄, as 𝑁 → +∞. (21)

So 𝑝(𝑠, 𝑡, 𝑥) ≥ 0 a.e. in 𝑄. It is not difficult to prove that 𝑝 is
the unique solution of system (2) (see, e.g., Theorem 4.1.3 in
[6]), but we omit the details.

Then, we examine the boundedness of solutions. Since 𝑝
is the unique nonnegative solution of (2) corresponding to
𝜇 = 0, 𝛽 = 𝛽, and 𝑝

0
= 𝑝
0
, where 𝛽 and 𝑝

0
are constants

given in (H
3
) and (H

4
), Lemma 4 implies that

0 ≤ 𝑝 (𝑠, 𝑡, 𝑥) ≤ 𝑝 a.e. in 𝑄. (22)

Letting𝑀
1
= ‖𝑝‖

𝐿
∞
(𝑄)

leads to

0 ≤ 𝑝 (𝑠, 𝑡, 𝑥) ≤ 𝑀
1

a.e. in 𝑄, (23)

which completes the proof.

3. Optimal Feedback Policy

In order to establish ourmain theorem,we need the following
auxiliary results.
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Lemma 6. Let 𝑝𝑢1 , 𝑝𝑢2 be the solutions of system (2) corre-
sponding to the controls 𝑢

1
, 𝑢
2
∈ U, respectively. Then, one has

𝑝
𝑢
1 − 𝑝
𝑢
2

2

𝐿
2
(𝑄)

≤ 𝑇𝐶
1

𝑢1 − 𝑢
2


2

𝐿
2
(𝑄)

, (24)

where 𝐶
1
is a constant independent of 𝑢

1
, 𝑢
2
.

Proof. Let 𝑦 = 𝑝
𝑢
1 − 𝑝
𝑢
2 . Then, 𝑦 is the solution of

𝜕𝑦

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑦)

𝜕𝑠
= 𝑘Δ𝑦 − 𝜇𝑦 − 𝑢

1
𝑦 − (𝑢

1
− 𝑢
2
) 𝑝
𝑢
2 ,

(𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑦 (𝑠, 𝑡, 𝑥) = ∫

𝑠

𝑠

𝛽 (𝑠, 𝑡, 𝑥) 𝑦 (𝑠, 𝑡, 𝑥) 𝑑𝑠,

(𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑦 (𝑠, 0, 𝑥) = 0, (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑦

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ.

(25)

Multiplying the first equation of (25) by 𝑦, integrating on𝑄
𝑡
,

we obtain

∫
Ω

∫

𝑠

𝑠

∫

𝑡

0

𝑦
𝜕𝑦

𝜕𝜏
𝑑𝜏 𝑑𝑠 𝑑𝑥 + ∫

Ω

∫

𝑡

0

∫

𝑠

𝑠

𝑦
𝜕 (𝑔 (𝑠) 𝑦)

𝜕𝑠
𝑑𝑠 𝑑𝜏 𝑑𝑥

= ∫
𝑄
𝑡

𝑘𝑦Δ𝑦𝑑𝜎 − ∫
𝑄
𝑡

(𝜇 + 𝑢
1
) 𝑦
2

𝑑𝜎

+ ∫
𝑄
𝑡

(𝑢
2
− 𝑢
1
) 𝑝
𝑢
2𝑦𝑑𝜎.

(26)

Proceeding in a similar way to the proof of Lemma 3, we
arrive at
𝑦(⋅, 𝑡, ⋅)


2

𝐿
2
((𝑠,𝑠)×Ω)

≤ 2∫

𝑡

0

∫
Ω

𝑔 (𝑠) 𝑦
2

(𝑠, 𝜏, 𝑥) 𝑑𝑥 𝑑𝜏 + 2∫
𝑄
𝑡

(𝑢
2
− 𝑢
1
) 𝑝
𝑢
2𝑦𝑑𝜎

≤
2

𝑔 (𝑠)
∫

𝑡

0

∫
Ω

(∫

𝑠

𝑠

𝛽 (𝑠, 𝜏, 𝑥) 𝑦 (𝑠, 𝜏, 𝑥) 𝑑𝑠)

2

𝑑𝑥 𝑑𝜏

+ ∫

𝑡

0

𝑦(⋅, 𝜏, ⋅)

2

𝐿
2
((𝑠,𝑠)×Ω)

𝑑𝜏

+𝑀
2

1
∫
𝑄
𝑡

𝑢1 (𝑠, 𝜏, 𝑥) − 𝑢
2
(𝑠, 𝜏, 𝑥)

 𝑑𝜎

≤ (1 + 𝐶
∗

) ∫

𝑡

0

𝑦(⋅, 𝜏, ⋅)

2

𝐿
2
((𝑠,𝑠)×Ω)

𝑑𝜏

+𝑀
2

1
∫
𝑄
𝑡

𝑢1(𝑠, 𝜏, 𝑥) − 𝑢
2
(𝑠, 𝜏, 𝑥)


2

𝑑𝜎,

(27)

where 𝑀
1
is as in Theorem 5 and 𝐶

∗

:= 2𝛽
2

(𝑠 − 𝑠)/𝑔(𝑠).
Bellman’s lemma implies that

𝑦(⋅, 𝑡, ⋅)

2

𝐿
2
((𝑠,𝑠)×Ω)

≤ 𝑀
2

1
𝑒
(1+𝐶
∗

)𝑇𝑢1 − 𝑢
2


2

𝐿
2
(𝑄)

(28)

holds for any 𝑡 ∈ (0, 𝑇). Consequently,

𝑦

2

𝐿
2
(𝑄)

≤ 𝑇𝑀
2

1
𝑒
(1+𝐶
∗

)𝑇𝑢1 − 𝑢
2


2

𝐿
2
(𝑄)

. (29)

Then, letting 𝐶
1

:= 𝑀
2

1
𝑒
(1+𝐶
∗

)𝑇 gives the conclusion of
Lemma 6.

We now define the following dual problem associated
with the system (2):

𝜕𝑞

𝜕𝑡
+ 𝑔 (𝑠)

𝜕𝑞

𝜕𝑠
+ 𝑘Δ𝑞 = (𝜇 + 𝑢) 𝑞 + 𝑤𝑢 − 𝑞 (𝑠) 𝛽,

(𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝜕𝑞

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ,

𝑞 (𝑠, 𝑇, 𝑥) = 0, (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝑞 (𝑠, 𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0, 𝑇) × Ω.

(30)

Denote by 𝑞𝑢(𝑠, 𝑡, 𝑥) the solution to (30) corresponding to 𝑢 ∈

U. Introducing the transformation 𝑞(𝑠−𝑠, 𝑇−𝑡, 𝑥) = 𝑞(𝑠, 𝑡, 𝑥),
we then treat the system (30) in the same manner as that in
Theorem 5 and Lemma 6 and obtain the properties of 𝑞 as
follows.

Lemma 7. The dual system (30) has a unique solution 𝑞
𝑢

∈

𝐿
∞

(𝑄) and

𝑞
𝑢

(𝑠, 𝑡, 𝑥)
 ≤ 𝑀

2
a.e. in 𝑄, (31)

where𝑀
2
is a positive constant.

Furthermore, let 𝑞𝑢1 , 𝑞𝑢2 be the solutions of the system (30)
corresponding to 𝑢

1
, 𝑢
2
∈ U, respectively. Then, there exists a

positive constant 𝐶
2
, which is independent of 𝑢

1
, 𝑢
2
, such that

𝑞
𝑢
1 − 𝑞
𝑢
2

2

𝐿
2
(𝑄)

≤ 𝑇𝐶
2

𝑢1 − 𝑢
2


2

𝐿
2
(𝑄)

. (32)

By a standard reasoning, we may derive the following
result.

Lemma 8. Suppose that 𝑢∗ ∈ U is a solution for the optimal
control problem (1), and 𝑝

𝑢
∗

is the corresponding solution of
system (2). Then, for any V ∈ 𝐿

∞

(𝑄), such that 𝑢∗ +𝜀V ∈ U for
𝜀 > 0 small enough, the following holds:

1

𝜀
(𝑝
𝑢
∗

+𝜀V
− 𝑝
𝑢
∗

) → 𝑧, a.e. in 𝑄 as 𝜀 → 0
+

, (33)
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where 𝑧 ∈ 𝐿
∞

(𝑄) satisfies

𝜕𝑧

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑧)

𝜕𝑠
− 𝑘Δ𝑧 = − (𝜇 + 𝑢

∗

) 𝑧 − V𝑝𝑢
∗

,

(𝑠, 𝑡, 𝑥) ∈ 𝑄,

𝑔 (𝑠) 𝑧 (𝑠, 𝑡, 𝑥) = ∫

𝑠

𝑠

𝛽 (𝑠, 𝑡, 𝑥) 𝑧 (𝑠, 𝑡, 𝑥) d𝑠,

(𝑡, 𝑥) ∈ (0, 𝑇) × Ω,

𝑧 (𝑠, 0, 𝑥) = 0, (𝑠, 𝑥) ∈ (𝑠, 𝑠) × Ω,

𝜕𝑧

𝜕𝑛
(𝑠, 𝑡, 𝑥) = 0, (𝑠, 𝑡, 𝑥) ∈ Σ.

(34)

We now establish the structure of optimal controllers in a
feedback form.

Theorem 9. Let 𝑢∗ ∈ U be an optimal policy for problem (1)-
(2) and 𝑝

𝑢
∗

and 𝑞 the corresponding solutions of systems (2)
and (30). Then,

𝑢
∗

(𝑠, 𝑡, 𝑥) = F{
[𝑤 + 𝑞] 𝑝

𝑢
∗

𝜌
} (𝑠, 𝑡, 𝑥) , (35)

in which the mappingF is defined as

(Fℎ) (𝑠, 𝑡, 𝑥)

=

{{

{{

{

𝜁
1
(𝑠, 𝑡, 𝑥) , ℎ (𝑠, 𝑡, 𝑥) < 𝜁

1
(𝑠, 𝑡, 𝑥) ,

ℎ (𝑠, 𝑡, 𝑥) , 𝜁
1
(𝑠, 𝑡, 𝑥) ≤ ℎ (𝑠, 𝑡, 𝑥) ≤ 𝜁

2
(𝑠, 𝑡, 𝑥) ,

𝜁
2
(𝑠, 𝑡, 𝑥) , ℎ (𝑠, 𝑡, 𝑥) > 𝜁

2
(𝑠, 𝑡, 𝑥) .

(36)

Proof. LetTU(𝑢
∗

) be the tangent cone toU at 𝑢∗ (see [22]).
For any V ∈ TU(𝑢

∗

), we know that 𝑢∗ + 𝜀V ∈ U for 𝜀 > 0

small enough. Since 𝑢∗ is optimal, it follows that

∫
𝑄

(𝑤𝑢
∗

𝑝
𝑢
∗

−
1

2
𝜌𝑢
∗2

)𝑑𝑥 𝑑𝑡 𝑑𝑠

≥ ∫
𝑄

(𝑤 (𝑢
∗

+ 𝜀V) 𝑝𝑢
∗

+𝜀V
−
1

2
𝜌(𝑢
∗

+ 𝜀V)2)𝑑𝑥 𝑑𝑡 𝑑𝑠,

(37)

which implies that

∫
𝑄

(𝑤𝑢
∗
𝑝
𝑢
∗

+𝜀V
− 𝑝
𝑢
∗

𝜀
+ 𝑤V𝑝𝑢

∗

+𝜀V

−
1

2
𝜌V (2𝑢∗ + 𝜀V))𝑑𝑥 𝑑𝑡 𝑑𝑠 ≤ 0.

(38)

Passing to limit 𝜀 → 0
+ in (38) and using Lemma 8, we have

∫
𝑄

𝑤𝑢
∗

𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠 + ∫
𝑄

V (𝑤𝑝𝑢
∗

− 𝜌𝑢
∗

) 𝑑𝑥 𝑑𝑡 𝑑𝑠 ≤ 0, (39)

where 𝑧 is the solution of the system (34).

In order to derive the optimality conditions, we will use
the structure of the corresponding normal cone. Firstly, we
verify the following integral relation:

∫
𝑄

𝑤𝑢
∗

𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠 = ∫
𝑄

V𝑝𝑢
∗

𝑞𝑑𝑥 𝑑𝑡 𝑑𝑠. (40)

Actually, multiplying the first equation of (30) by 𝑧(𝑠, 𝑡, 𝑥),
integrating on 𝑄, and using (34), we obtain that

∫
𝑄

𝑤𝑢
∗

𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠

= ∫

𝑠

𝑠

∫
Ω

∫

𝑇

0

𝜕𝑞

𝜕𝑡
𝑧𝑑𝑡 𝑑𝑥 𝑑𝑠 + ∫

𝑇

0

∫
Ω

∫

𝑠

𝑠

𝑔 (𝑠)
𝜕𝑞

𝜕𝑠
𝑧𝑑𝑠 𝑑𝑥 𝑑𝑡

+ ∫
𝑄

𝑘𝑧Δ𝑞𝑑𝑥 𝑑𝑡 𝑑𝑠

= −∫

𝑠

𝑠

∫
Ω

∫

𝑇

0

𝑞
𝜕𝑧

𝜕𝑡
𝑑𝑡 𝑑𝑥 𝑑𝑠

− ∫

𝑇

0

∫
Ω

𝑔 (𝑠) 𝑧 (𝑠, 𝑡, 𝑥) 𝑞 (𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

∫
Ω

∫

𝑠

𝑠

𝑞
𝜕 (𝑔 (𝑠) 𝑧)

𝜕𝑠
𝑑𝑠 𝑑𝑥 𝑑𝑡 + ∫

𝑄

𝑘𝑞Δ𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠

= −∫
𝑄

𝑞(
𝜕𝑧

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑧)

𝜕𝑠
− 𝑘Δ𝑧)𝑑𝑥𝑑𝑡 𝑑𝑠

− ∫
𝑄

𝑞 (𝑠, 𝑡, 𝑥) 𝛽 (𝑠, 𝑡, 𝑥) 𝑧 (𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝑡 𝑑𝑠,

∫
𝑄

V𝑝𝑢
∗

𝑞𝑑𝑥 𝑑𝑡 𝑑𝑠

= ∫
𝑄

(𝜇 + 𝑢
∗

) 𝑞𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠 + ∫
𝑄

𝑤𝑢
∗

𝑧𝑑𝑥 𝑑𝑡 𝑑𝑠

− ∫
𝑄

𝑞 (𝑠, 𝑡, 𝑥) 𝛽 (𝑠, 𝑡, 𝑥) 𝑧 (𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝑡 𝑑𝑠.

(41)

So we have

∫
𝑄

((𝜇 + 𝑢
∗

) 𝑞𝑧 + 𝑤𝑢
∗

𝑧) 𝑑𝑥 𝑑𝑡 𝑑𝑠

= −∫
𝑄

𝑞(
𝜕𝑧

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑧)

𝜕𝑠
− 𝑘Δ𝑧)𝑑𝑥𝑑𝑡 𝑑𝑠.

(42)

Similarly, it follows from the system (34) that

∫
𝑄

𝑞(
𝜕𝑧

𝜕𝑡
+
𝜕 (𝑔 (𝑠) 𝑧)

𝜕𝑠
− 𝑘Δ𝑧)𝑑𝑥𝑑𝑡 𝑑𝑠

= −∫
𝑄

((𝜇 + 𝑢
∗

) 𝑧𝑞 + V𝑝𝑢
∗

𝑞) 𝑑𝑥 𝑑𝑡 𝑑𝑠.

(43)
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The relations (42) and (43) imply that (40) is true. Then,
from (38) and (40), it follows that

∫
𝑄

{[(𝑤 + 𝑞) 𝑝
𝑢
∗

− 𝜌𝑢
∗

] V} (𝑠, 𝑡, 𝑥) 𝑑𝑥 𝑑𝑡 𝑑𝑠 ≤ 0,

∀V ∈ TU (𝑢
∗

) .

(44)

Therefore, according to the properties of normal cone (see
[22]), the expression in the square brackets of (44) satisfies
(𝑤 + 𝑞)𝑝

𝑢
∗

− 𝜌𝑢
∗

∈ NU(𝑢
∗

), the normal cone to U at 𝑢∗.
Consequently, the conclusion follows.

4. Existence of a Unique Optimal Policy

In this section, we prove the existence and uniqueness of
optimal policies. The main result reads as follows.

Theorem 10. Let the hypotheses (H
1
)–(H
5
) be satisfied. If

𝑇 <
𝜌
2

(𝑊(1 +𝑀
2
)√𝐶
1
+𝑊𝑀

1
√𝐶
2
)
2
, (45)

where𝑊 is as in (H
5
) and constants𝑀

𝑖
, 𝐶
𝑖
(𝑖 = 1, 2) are given

inTheorem 5 and Lemmas 6 and 7, then the optimal harvesting
problem (1)-(2) has a unique solution.

Proof. Firstly, we define a function of 𝜀 ∈ (0, 1) as

𝐻(𝜀) := 𝐽 (𝜀𝑢
1
+ (1 − 𝜀) 𝑢

2
) , (46)

where 𝐽(⋅) is of the form (1) and 𝑢
1
and 𝑢

2
∈ U are arbitrarily

fixed. We will show that𝐻(𝜀) is strictly decreasing, and then
𝐽(𝑢) is strictly concave inU.

Denote by 𝑝
𝜀, 𝑝𝜀+𝛿 (0 < 𝛿 ≪ 1) the solutions of (2)

corresponding to 𝜀𝑢
1
+(1−𝜀)𝑢

2
and (𝜀+𝛿)𝑢

1
+(1−(𝜀+𝛿))𝑢

2
,

respectively. It follows from (1) that

𝐻


(𝜀)

= lim
𝛿→0

1

𝛿
[𝐻 (𝜀 + 𝛿) − 𝐻 (𝜀)]

= lim
𝛿→0

1

𝛿
{∫
𝑄

{𝑤 [(𝜀 + 𝛿) 𝑢
1
+ (1 − (𝜀 + 𝛿)) 𝑢

2
] 𝑝
𝜀+𝛿

−
1

2
𝜌[(𝜀 + 𝛿)𝑢

1
+ (1 − (𝜀 + 𝛿))𝑢

2
]
2

} 𝑑𝜎

− ∫
𝑄

{𝑤 [𝜀𝑢
1
+ (1 − 𝜀) 𝑢

2
] 𝑝
𝜀

−
1

2
𝜌[𝜀𝑢
1
+ (1 − 𝜀) 𝑢

2
]
2

} 𝑑𝜎}

= lim
𝛿→0

1

𝛿
∫
𝑄

{𝑤 [𝜀𝑢
1
+ (1 − 𝜀) 𝑢

2
] (𝑝
𝜀+𝛿

− 𝑝
𝜀

)

+𝑤𝛿 (𝑢
1
− 𝑢
2
) 𝑝
𝜀+𝛿

} 𝑑𝜎

− 𝜌∫
𝑄

[𝜀𝑢
1
+ (1 − 𝜀) 𝑢

2
] (𝑢
1
− 𝑢
2
) 𝑑𝜎

= ∫
𝑄

[𝑤 (𝑢
2
+ 𝜀 (𝑢

1
− 𝑢
2
)) 𝑧
𝜀

+ 𝑤 (𝑢
1
− 𝑢
2
) 𝑝
𝜀

] 𝑑𝜎

− ∫
𝑄

[𝜌 (𝑢
2
+ 𝜀 (𝑢

1
− 𝑢
2
)) (𝑢
1
− 𝑢
2
)] 𝑑𝜎,

(47)

where 𝑧𝜀 is the solution of (34) corresponding to 𝑢
2
+ 𝜀(𝑢
1
−

𝑢
2
). By the same argument as that in Theorem 9, we have

∫
𝑄

𝑤 (𝑢
2
+ 𝜀 (𝑢

1
− 𝑢
2
)) 𝑧
𝜀

𝑑𝜎 = ∫
𝑄

(𝑢
1
− 𝑢
2
) 𝑝
𝜀

𝑞
𝜀

𝑑𝜎, (48)

where 𝑞𝜀 is the solution of (30) corresponding to 𝑢
2
+ 𝜀(𝑢
1
−

𝑢
2
). Therefore,

𝐻


(𝜀)

= ∫
𝑄

(𝑢
1
− 𝑢
2
) [𝑤𝑝
𝜀

(1 + 𝑞
𝜀

) − 𝜌 (𝑢
2
+ 𝜀 (𝑢

1
− 𝑢
2
))] 𝑑𝜎.

(49)

Next, choosing 𝜀
1
, 𝜀
2
∈ (0, 1) and 𝜀

1
̸= 𝜀
2
, we get that

[𝐻


(𝜀
1
) − 𝐻



(𝜀
2
)] (𝜀
1
− 𝜀
2
)

= (𝜀
1
−𝜀
2
) ∫
𝑄

(𝑢
1
−𝑢
2
) [𝑤𝑝
𝜀
1 (1+𝑞

𝜀
1)−𝑤𝑝

𝜀
2 (1+𝑞

𝜀
2)] 𝑑𝜎

− 𝜌(𝜀
1
− 𝜀
2
)
2

∫
𝑄

(𝑢
1
− 𝑢
2
)
2

𝑑𝜎

= (𝜀
1
− 𝜀
2
) ∫
𝑄

𝑤 (𝑢
1
− 𝑢
2
) [(𝑝
𝜀
1 − 𝑝
𝜀
2) (1 + 𝑞

𝜀
1)

+ 𝑝
𝜀
2 (𝑞
𝜀
1 − 𝑞
𝜀
2)] 𝑑𝜎

− 𝜌(𝜀
1
− 𝜀
2
)
2

∫
𝑄

(𝑢
1
− 𝑢
2
)
2

𝑑𝜎

:= 𝐼
1
− 𝜌(𝜀
1
− 𝜀
2
)
2

∫
𝑄

(𝑢
1
− 𝑢
2
)
2

𝑑𝜎.

(50)

Combining Theorem 5 and Lemmas 6 and 7 with Cauchy-
Schwarz inequality, it follows from (H

5
) that

𝐼
1
≤
𝜀1 − 𝜀

2

𝑊{(1 +𝑀
2
) ∫
𝑄

𝑢1 − 𝑢
2


𝑝
𝜀
1 − 𝑝
𝜀
2
 𝑑𝜎

+𝑀
1
∫
𝑄

𝑢1 − 𝑢
2


𝑞
𝜀
1 − 𝑞
𝜀
2
 𝑑𝜎}



8 Abstract and Applied Analysis

≤ 𝑊(1 +𝑀
2
)
𝜀1 − 𝜀

2



× (∫
𝑄

𝑢1 − 𝑢
2


2

𝑑𝜎 ⋅ ∫
𝑄

𝑝
𝜀
1 − 𝑝
𝜀
2

2

𝑑𝜎)

1/2

+𝑊𝑀
1

𝜀1−𝜀2
 (∫
𝑄

|𝑢
1
−𝑢
2
|
2

𝑑𝜎 ⋅ ∫
𝑄

|𝑞
𝜀
1−𝑞
𝜀
2 |
2

𝑑𝜎)

1/2

≤ [𝑊(1 +𝑀
2
)√𝑇𝐶

1
+𝑊𝑀

1
√𝑇𝐶
2
]

× (𝜀
1
− 𝜀
2
)
2

∫
𝑄

𝑢1 − 𝑢
2


2

𝑑𝜎

= √𝑇(𝑊(1 +𝑀
2
)√𝐶
1
+𝑊𝑀

1
√𝐶
2
)

× (𝜀
1
− 𝜀
2
)
2

∫
𝑄

𝑢1 − 𝑢
2


2

𝑑𝜎.

(51)

Consequently,

[𝐻


(𝜀
1
) − 𝐻



(𝜀
2
)] (𝜀
1
− 𝜀
2
)

≤ (√𝑇(𝑊(1 +𝑀
2
)√𝐶
1
+𝑊𝑀

1
√𝐶
2
) − 𝜌) (𝜀

1
− 𝜀
2
)
2

× ∫
𝑄

(𝑢
1
− 𝑢
2
)
2

𝑑𝑥 𝑑𝑡 𝑑𝑠.

(52)

If 𝑇 < 𝜌
2

/(𝑊(1 +𝑀
2
)√𝐶
1
+𝑊𝑀

1
√𝐶
2
)
2, then we have

[𝐻


(𝜀
1
) − 𝐻



(𝜀
2
)] (𝜀
1
− 𝜀
2
) < 0. (53)

Hence, 𝐻(𝜀) is strictly decreasing, which implies the strict
concavity of 𝐽(𝑢) inU.

Define the functional𝜙 : 𝐿
2

(𝑄) → [−∞, +∞) as follows:

𝜙 (𝑢) = {
𝐽 (𝑢) , if 𝑢 ∈ U,

−∞, if 𝑢 ∉ U.
(54)

It is clear that 𝜙 is concave in 𝐿
2

(𝑄). By Lemma 6, we claim
that𝜙 is upper semicontinuous. SinceU is convex, closed, and
bounded and 𝐽(𝑢) is strictly concave, 𝐽(𝑢) attains its unique
maximum inU, which is the solution to problem (1)-(2).The
proof is completed.

5. Concluding Remarks

As a main research result in the present paper, Theorem 9
describes the law of optimal harvesting, which is given by
a feedback manner in terms of the corresponding state and
costate variables.The results in this paper may serve as a base
to many realistic applications. In those situations, one must
estimate the parameters in the harvesting problem, such as
price function𝑤(𝑠, 𝑡, 𝑥), growth function 𝑔(𝑠), and vital rates
𝜇, 𝛽, and then apply some proper numerical procedure or
algorithm to obtain an approximating solution with errors
small enough. We should be satisfied with such treatment
since the coupled state-costate system cannot be expected to
get analytical solutions.
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