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TheFourier law of one-dimensional heat conduction equation in fractalmedia is investigated in this paper. An approximate solution
to one-dimensional local fractional Volterra integral equation of the second kind, which is derived from the transformation of
Fourier flux equation in discontinuous media, is considered. The Picard successive approximation method is applied to solve the
temperature field based on the givenMittag-Leffler-type Fourier flux distribution in fractal media.The nondifferential approximate
solutions are given to show the efficiency of the present method.

1. Introduction

Engineering problems can be mathematically described by
differential equations. Many initial and boundary value
problems associated with differential equations can be trans-
formed into problems of solving some approximate integral
equations. Heat transfer is described by theory of integral
equations. Integral equation arising in heat transfer with
smooth condition is valid for continuous media [1–4]. The
common methods for solving the equations of heat transfer
are purelymathematical are among them; the finite difference
techniques (FDT) [5], the regression analysis (RA) [6], the
Adomian decomposition method (ADM) [7], the combined
Laplace-Adomian method (CLAM) [8], the homotopy anal-
ysis method (HAM) [9, 10], the differential transformation
method (DTM) [11], the spline-wavelets techniques (SWT)
[12], the boundary element method (BEM) [13], the heat-
balance integral method (HBIM) [14, 15], the variational
iteration method (VIM) [16], the local fractional variational

iteration method (LFVIM) [17], and the Picard successive
approximation method (PSAM) [18].

On the other hand, the nanoscale heat problem can be
characterized as fractal behaviors. As usual, the materials are
called the Cantor materials. Heat transfer in fractal media
with nonsmooth conditions is a hot topic. For example, the
heat transfer equations in a medium with fractal geometry
[19] and fractal domains [20] were considered. The local
fractional transient heat conduction equations based upon
the Fourier law within local fractional derivative arising in
heat transfer from discontinuous media were presented in
[21–24].

Fractional calculus was successfully used to deal with the
real world problems [25–30]. There is its limit that the oper-
ators do not deal with the local fractional continuous func-
tions (nondifferential functions). Hence, the local fractional
Fourier flux [21] is not handled by using some approaches
from the classical and fractional operators.This paper focuses
on analytical solution to local fractional Fourier flux in fractal
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media by using Picard’s successive approximation method
[18]. This paper is organized as follows. In Section 2, we
give notations to local fractional derivative and integrals and
investigate the heat transfer in fractal media. Section 3 is
devoted to Picard’s successive approximation method based
upon local fractional integrals. Analysis solution is shown in
Section 4. Conclusions are in Section 5.

2. Heat Transfer in Fractal Media
with Local Fractional Derivative

In order to study the non-differential solution for the heat
problem in fractal media with local fractional derivative, we
here begin with the Fourier flux equation in discontinuous
media.

The temperature field reads as [21]

𝑇 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑓 (𝑥, 𝑦, 𝑧, 𝜏) at 𝜏 > 𝜏
0
and in Ω, (1)

where 𝑓(𝑥, 𝑦, 𝑧, 𝜏) is local fractional continuous at fractal
domainΩ.

For a given temperature field 𝑇, a local fractional temper-
ature gradient [21] can be written as follows:
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where the local fractional partial derivative is defined by [21–
24]
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whereΔ𝛼(𝑓(𝑥, 𝑦)−𝑓(𝑥
0
, 𝑦)) ≅ Γ(1+𝛼)Δ(𝑓(𝑥, 𝑦)−𝑓(𝑥

0
, 𝑦)).

Here, the local fractional derivative is defined on the
fractal set like a Cantor set. For example, when we consider
the Cantor set, we can find the local fractional derivative of
discontinuous function 𝑇 (however, 𝑇 is a local fractional
continuous function).

We consider the heat flux per unit fractal area ⇀
𝑞 is

proportional to the temperature gradient in fractal medium.
Fourier law of heat conduction in fractal medium with local
fractional derivative is expressed by [21]

⇀
𝑞 (𝑥, 𝑦, 𝑧, 𝑡) = −𝐾

2𝛼
∇
𝛼
𝑇 (𝑥, 𝑦, 𝑧, 𝑡) , (4)

where 𝐾
2𝛼 denotes the thermal conductivity of the fractal

material, and it is related to fractal dimensions of materials.
It is shown that the fractal dimensions of materials are an
important characteristic value. Here, we consider the fractal
Fourier flow, which is discontinuous; however, it is found that
it is local fractional continuous. Like classical Fourier flow, its
thermal conductivity is an approximate value for fractal one
when 𝛼 = 1.

Fourier lawof one-dimensional heat conduction equation
in fractal media reads as [21]

𝑞 (𝑥, 𝑡) = −𝐾
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𝑑𝑥𝛼
, at 𝜏 > 𝜏

0
and in 𝐴, (5)

where 𝐾
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When 𝜏 = 𝜏

0
, from (5) we have
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at 𝜏 > 𝜏
0
and in 𝐴, where 𝐾2𝛼 is the thermal conductivity

of the fractal materials. Namely, 𝑇 is a bi-Lipschitz mapping,
and shows the fractal characteristic behavior [21].

Local fractional heat conduction equation with heat
generation in fractal media can be written as [21]
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Local fractional heat conduction equation with no heat
generation in fractal media is suggested as [21, 22]
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where ∇2𝛼 is a local fractional Laplace operator [21].

3. The Method

In this section, we discuss the Picard successive approxima-
tion method. Meanwhile, we transfer the Fourier law of one-
dimensional heat conduction equation in fractal media into
the local fractional Volterra integral equation of the second
kind.

3.1. Picard’s Successive Approximation Method. This method
is first proposed in [18]. Here wewill give a short introduction
to Picard’s successive approximation method within the local
fractional calculus.

In this method, we set

𝑢
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We give the first approximation 𝑢
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where the local fractional integral of 𝑓(𝑥) of order 𝛼 in the
interval [𝑎, 𝑏] is defined as follows [21–24]:
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Here, we find that the equality 𝑢
1
(𝑥) is a local fractional

continuous function if 𝑓(𝑥), 𝐾(𝑥, 𝑡) and 𝑢
0
(𝑥) are local

fractional continuous functions.
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Continuing in thismanner, we have the infinite sequences
of functions
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such that the recurrence equations are given by
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where 𝑢
0
(𝑥) is equivalent to any selected function, which is

the local fractional continuous function.
Hence, we have successive approximation as follows:
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Thus, at the limit, the solution 𝑢(𝑥) is written as

𝑢 (𝑥) = lim
𝑛→∞

𝑢
𝑛 (𝑥) . (15)

3.2. An Alternative Method from Local Fractional Derivative
to Local Fractional Volterra Integral Equations. We directly
observe that the local fractional differential equation of 𝛼
order
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can be written immediately as the local fractional Volterra
integral equation of thee second kind in the form
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where 𝜆 = 1/𝐾
2.

TheMittag-Leffler type Fourier flux distribution in fractal
media can be written as follows:
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Making use of (18), we can get the local fractional Volterra
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4. Approximate Solutions for Local
Fractional Volterra Integral Equation
of the Second Kind

Let us assume that the zeroth approximation is
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Then the first approximation can be written as follows:
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Proceeding in this manner, we have the third approximation
in the following form:
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Hence, continuing in this manner, we obtain
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Taking the limit, we have
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where the term𝐸
𝛼
[𝑥
𝛼
(1+𝜆
𝛼
)] is aMittag-Leffler type Fourier

flux distribution in fractal media, which is related to the
fractal coarse-grained mass function [21, 24]. When 𝐾 = 1,
we get 𝑢(𝑥) = 𝑇(𝑎)𝐸

𝛼
[2𝑥
𝛼
]. The nondifferentiable solution

of (25) for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 1

is shown in Figure 1; the non-differentiable solution of (25)
for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 2 is
shown in Figure 2; the non-differentiable solution of (25)
for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 3 is
shown in Figure 3; the non-differentiable solution of (25) for
parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and 𝑇(𝑎) = 4 is shown in
Figure 4.

5. Conclusions

This work studied the Fourier law of one-dimensional heat
conduction equation in fractal media. Mittag-Leffler type
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Figure 1: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 1.
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Figure 2: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 2.
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Figure 3: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 3.
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Figure 4: The nondifferentiable solution for Mittag-Leffler type
Fourier flux distribution for parameters 𝐾 = 1, 𝛼 = ln 2/ ln 3, and
𝑇(𝑎) = 4.

Fourier flux distribution in fractal media with temperature
field effect was considered. An approximation solution for
the local fractional Volterra integral equation of the second
kind derived from Fourier law of one-dimensional heat
conduction equation for heat conduction in discontinuous
mediawas studied by using Picard’s successive approximation
method. The non-differential approximate solutions were
given to show the efficiency of the present method.
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